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We consider discrete-modulation protocols for continuous-variable quantum key distribution (CV-QKD) that
employ a modulation constellation consisting of a finite number of coherent states and that use a homodyne-
or a heterodyne-detection receiver. We establish a security proof for collective attacks in the asymptotic
regime, and we provide a formula for an achievable secret-key rate. Previous works established security proofs
for discrete-modulation CV-QKD protocols that use two or three coherent states. The main constituents of
our approach include approximating a complex, isotropic Gaussian probability distribution by a finite-size
Gauss-Hermite constellation, applying entropic continuity bounds, and leveraging previous security proofs for
Gaussian-modulation protocols. As an application of our method, we calculate secret-key rates achievable over
a lossy thermal bosonic channel. We show that the rates for discrete-modulation protocols approach the rates
achieved by a Gaussian-modulation protocol as the constellation size is increased. For pure-loss channels, our
results indicate that in the high-loss regime and for sufficiently large constellation size, the achievable key rates
scale optimally, i.e., proportional to the channel’s transmissivity.
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I. INTRODUCTION

Quantum key distribution (QKD) allows for two dis-
tant parties, often called Alice and Bob, to create a shared
secret key by employing an insecure and noisy quantum
communication channel and an authenticated public classi-
cal communication channel [1–3]. The security is based on
the physical laws of quantum mechanics, in contrast to con-
ventional cryptographic protocols, whose security relies on
computational complexity-theoretic assumptions.

There are two basic classes of QKD protocols that have
been considered: discrete-variable and continuous-variable
(see, e.g., [3] for a review). In discrete-variable QKD
(DV-QKD), the information is usually encoded in the po-
larization or time bin of single photons or weak coherent
states (laser-light pulses). Discrete-variable QKD requires
high-efficiency, low dark-count-rate, single-photon detectors,
which are expensive and often need extreme cryocooling. In
the other class of protocols, known as continuous-variable
QKD (CV-QKD), the information is encoded in the quadra-
ture amplitudes of coherent states. The transmitter modulates
the phase and/or the amplitude of laser-light pulses, and
the receiver is based on coherent detection (i.e., homodyne
or heterodyne detection). Near shot-noise-limited, low-noise,
homodyne or heterodyne detection is readily realizable at
room temperature using off-the-shelf hardware, unlike the
single-photon detectors of DV-QKD. CV-QKD protocols thus
possess a major advantage over DV-QKD in terms of the cost
and ease of experimental implementation.

However, one major area that DV-QKD currently possesses
an advantage over CV-QKD is that the DV modulation in-

volves few levels (e.g., two polarization states of a photon
or three amplitude levels of a coherent state in the decoy-
state BB84 protocol [4–6]), which puts far less burden on
the transmitter’s modulator compared to that of the traditional
Gaussian-modulation CV-QKD protocol. The latter requires
modulation using an infinite-size constellation. This also
makes the error-correction protocols far simpler for DV-QKD,
along with much less overhead for random-number genera-
tion. Another area where DV-QKD is arguably more advanced
is the availability of quantum repeater protocols [7–11] for
overcoming the fundamental rate-vs-loss tradeoff of direct-
transmission based QKD [12–14]. However, there have been
recent advances in designs of repeaters for CV-QKD [15–17].
For experimental developments in CV-QKD, see [18–23].

In the most common form of CV-QKD, one uses Gaus-
sian modulation of coherent states [24]: Alice modulates
laser-light pulses with amplitudes selected randomly from a
complex-valued Gaussian distribution with a given variance.
Security proofs for this Gaussian modulation CV-QKD pro-
tocol have been developed for arbitrary attacks, even in the
finite key-length regime [25]. Additionally, a suite of variants
of this CV-QKD protocol exist, some of which use squeezed
light modulation and two-way transmission [26–34].

However, all of their asymptotic security proofs require
a Gaussian modulation. Gaussian modulation has obvious
drawbacks, which include extreme burden on the transmitter’s
random number source, as well as computationally demand-
ing and inefficient error-correction techniques. Furthermore,
no matter how high the extinction ratio of a practically realiz-
able electro-optic modulator, it is impossible to sample pulse

2469-9926/2021/103(1)/012412(20) 012412-1 ©2021 American Physical Society

https://orcid.org/0000-0002-3916-4462
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.012412&domain=pdf&date_stamp=2021-01-15
https://doi.org/10.1103/PhysRevA.103.012412


ENEET KAUR, SAIKAT GUHA, AND MARK M. WILDE PHYSICAL REVIEW A 103, 012412 (2021)

amplitudes from a true Gaussian distribution, on which the
security proofs rely.

Despite the fact that Gaussian modulation has made
security proofs manageable, it is important, for the prac-
tical realizability of CV-QKD, that protocols that use a
few predetermined modulation levels (such as binary phase
and quadrature amplitude modulation) are proven secure.
Discrete-modulation CV-QKD was introduced in [35–37],
where the coherent states transmitted in each mode are cho-
sen according to a discrete probability distribution, and it
was developed further in [38]. Discrete-modulation CV-QKD
protocols can leverage the efficient modulation and error cor-
rection, and low-overhead random number generation that
DV-QKD enjoys, while retaining the ease of implementation
of homodyne or heterodyne detection of CV-QKD.

Several discrete-modulation protocols have already been
considered [38–41], and security proofs have been developed
in the asymptotic regime, i.e., in the limit of a large number of
uses of the quantum channel, hence generating a large-length
key (at a given key-bits per channel-use rate). Reference
[38] considered a protocol with binary-phase shift keying
of coherent states along with homodyne detection. However,
the secure key rate established there is more than an order
of magnitude lower than that which can be achieved with
Gaussian modulation. Motivated by [38], Ref. [39] considered
ternary-phase shift-keying modulation with homodyne detec-
tion, which led to an improvement in the secure key rates, but
the resulting secret-key rates are still far from the key rates
achievable with Gaussian modulation. References [40,41] es-
tablished security for discrete-modulation protocols against
particular collective attacks that correspond to linear bosonic
channels. For other protocols that use discrete modulation of
coherent states, see [42,43].

This brings us to the long-standing open problem of prov-
ing security of a general M-ary discrete-modulation CV-QKD
protocol, for M beyond a minimum threshold value, with
the feature that the achievable key rate approaches that of
Gaussian modulation as M goes to infinity. Such a result is
of significant value for the practical usability of CV-QKD. In
this paper, we accomplish the aforesaid for security against
collective attacks having the physically reasonable assump-
tions outlined in Sec. III. Establishing a security proof and
key-rate lower bounds for discrete modulation CV-QKD pro-
tocols with a finite key length is left open for future work.
Our proof eliminates the need to consider protocols based on
Gaussian modulation in order to have asymptotic security in
CV-QKD, with the ability of the user to determine the size of
the modulation alphabet based on how close one desires the
key rates to be to the Gaussian-modulation protocol. In addi-
tion, our numerical evaluation of achievable key rates over a
pure-loss bosonic channel suggests that, for sufficiently large
constellation size, the achievable key rates are proportional to
the channel’s transmissivity, which is known to be the optimal
rate-vs-loss scaling achievable with any QKD protocol, CV or
DV [12].

To establish these results, we make use of two important
recent theoretical advances: the approximation of Gaussian
distributions with discrete ones for communication [44,45],
especially in the context of bosonic Gaussian states [45], and
an entropic continuity bound from [46] for energy-bounded

bosonic states. The idea of approximating a Gaussian modula-
tion with a discrete one for CV-QKD was proposed in [47], but
this work did not provide a security proof for CV-QKD with
discrete modulation. One of the main tools, beyond the ap-
proaches considered in [47] and which allows us to establish
a security proof, is the entropic continuity bound from [46].
We also develop methods for using the parameters observed
in a discrete-modulation CV-QKD protocol to bound Eve’s
Holevo information.

This paper is organized as follows. We introduce discrete-
modulation CV-QKD in Sec. II, followed by Sec. III’s detailed
list of our assumptions on the collective attack of an eaves-
dropper. We give our security proof in Sec. IV, and we discuss
details of channel estimation in Sec. V. We then showcase,
in Sec. VI, the secure key rates that our approach leads to
when the protocol is conducted over a lossy thermal bosonic
channel. We end with open questions and future directions in
Sec. VII.

II. PROTOCOL

We begin by outlining the steps of a phase-symmetrized
discrete-modulation CV-QKD protocol based on m2 coherent
states, where m ∈ N. In this protocol, Bob performs either ho-
modyne or heterodyne detection. Let X be a random variable
with realizations x ∈ {1, 2, . . . , m2} and fix αx ∈ C for all x.
Let r(x) be the probability associated with the realization x.
The steps of the protocol are as follows:

(1) Alice prepares the coherent state |αx〉 with probability
r(x). She records the value of x in the variable x j , where j ∈
{1, . . . , n} refers to the transmission round. She also records
the value

√
2 Reαx in the variable q j and the value

√
2 Imαx

in the variable p j . Exact expressions for αx and r(x) that we
use in the protocol are given in Sec. V.

(2) Alice then picks a phase φ j ∈ {0, π/2, π, 3π/2} uni-
formly at random, applies it to her channel input mode as the
unitary e−in̂φ j , which is physically realized by a phase shifter.
The resulting state is then e−in̂φ j |αx〉 = |αxe−iφ j 〉, which she
transmits over the unknown and insecure quantum communi-
cation channel N to Bob. At the same time, she communicates
the choice φ j to Bob over a public authenticated classical
channel and then she locally discards or forgets the choice of
φ j . The insecure quantum channel N can be controlled by an
eavesdropper Eve. Our assumptions on the insecure quantum
channel N are stated in Sec. III.

(3) Upon receiving the output of the quantum channel,
namely, the state N (e−in̂φ j |αx〉〈αx|ein̂φ j ), as well as the clas-
sical choice of φ j from the public authenticated classical
channel, Bob applies the reverse phase as the inverse unitary
ein̂φ j , and then locally discards or forgets the value of φ j . The
resulting state is then as follows:

N (|αx〉〈αx|), (1)

where the phase-symmetrized channel N is defined as

N (ρ) ≡ 1

4

3∑
k=0

U (k)†N (U (k)ρU (k)†)U (k), (2)

with U (k) ≡ e−in̂πk/2. The phase symmetrization of the chan-
nel N is helpful in reducing the number of parameters that
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need to be estimated during the channel estimation part of the
protocol, as we explain in Sec. V.

(4) If Bob performs position-quadrature or real-quadrature
homodyne detection on the state N (|αx〉〈αx|) the result is
recorded in the variable yq

j .
1 If Bob performs heterodyne de-

tection, then the value of the position quadrature is recorded
in yq

j , and the value of the momentum quadrature is recorded
in yp

j .
(5) Steps 1–4 are repeated n times, for n a large positive

integer. If Bob performs homodyne detection, then the se-
quence {q j}n

j=1 is known to Alice, and the sequence {yq
j }n

j=1
is known to Bob. If Bob performs heterodyne detection, then
the sequences {q j}n

j=1 and {p j}n
j=1 are known to Alice, and

{yq
j }n

j=1 and {yp
j }n

j=1 are known to Bob.
(6) A constant fraction δ of the rounds are used for channel

estimation (or parameter estimation), for δ ∈ (0, 1) a small
number. That is, for these δn rounds, the parameters γ11, γ22,
and γ12 are calculated. If Bob performs homodyne detection,
then these parameters are given as

γ11 ≡ 1

δn

δn∑
j=1

(q j − q)2, (3)

γ12 ≡ 1

δn

δn∑
j=1

(q j − q)
(
yq

j − y
)
, (4)

γ22 ≡ 1

δn

δn∑
j=1

(
yq

j − y
)2

, (5)

where

q ≡ 1

δn

δn∑
j=1

q j, y ≡ 1

δn

δn∑
j=1

yq
j . (6)

If Bob performs heterodyne detection, then these parameters
are given as

γ11 ≡ 1

δn

δn∑
j=1

(q j − q)2 = 1

δn

δn∑
j=1

(p j − p)2, (7)

γ12 ≡ 1

2δn

δn∑
j=1

(q j − q)
(
yq

j − yq
) + (p j − p)

(
yp

j − yp
)
, (8)

γ22 ≡ 1

2δn

δn∑
j=1

(
yq

j − yq
)2 + (

yp
j − yp

)2
, (9)

1The phase symmetrization performed in steps 2 and 3 of the
protocol implies that Bob need only perform measurements in one
quadrature. That is, the effect of phase symmetrization is to sym-
metrize Eve’s attack evenly with respect to both the position and
momentum quadratures, and therefore a measurement of only one
of the quadratures suffices to detect Eve’s tampering. It is for this
reason that we have elected to simplify the CV-QKD protocol so that
all of the homodyne measurements are conducted with respect to a
single quadrature.

where

q ≡ 1

δn

δn∑
j=1

q j, yq ≡ 1

δn

δn∑
j=1

yq
j , (10)

p ≡ 1

δn

δn∑
j=1

p j, yp ≡ 1

δn

δn∑
j=1

yp
j . (11)

Clearly, the parameter γ11 can be calculated from Alice’s
data alone, γ22 can be calculated from Bob’s data alone, but it
is necessary to calculate γ12 from both Alice and Bob’s data,
and so it is necessary for Bob to share the y j values of these δn
rounds with Alice over a public authenticated classical chan-
nel. Furthermore, the public authenticated classical channel is
used for Alice and Bob to share the values of γ11, γ12, and
γ22 with each other. The data x j , q j , p j , and yq,p

j for these
δn channel estimation rounds are then discarded. A detailed
analysis of the channel estimation part of the protocol is given
in Sec. V.

(7) The remaining qj , p j , and yq,p
j data are used for final

key generation. The final key-generation protocol includes
reverse reconciliation, error correction, and privacy amplifi-
cation (see [3] for a review).

III. ASSUMPTIONS ON THE INSECURE QUANTUM
COMMUNICATION CHANNEL

In this section, we outline the various assumptions that we
make on the insecure quantum communication channel:

(1) Each Alice-to-Bob transmission is assumed to take
place over independent and identical uses of a quantum chan-
nel N , which is unknown to Alice and Bob at the beginning
of the protocol. We assume that any deviation of N from the
identity channel is attributed to the most general adversarial
action by Eve. Even though Eve’s action, which appears as
a noisy quantum channel N to Alice and Bob, remains the
same for each transmission, she is allowed to make arbitrary
collective measurements on her quantum system at the end of
the protocol. See below for a mathematical description. This
scenario is referred to as a collective attack.

(2) The channel is described mathematically as an iso-
metric quantum channel UA→BE , meaning that there exists an
isometry UA→BE , satisfying [UA→BE ]†UA→BE = IA, such that

UA→BE (ρA) ≡ UA→BE ρA (UA→BE )† (12)

for all input density operators ρA. The systems A, B, and E
are described by separable Hilbert spaces HA, HB, and HE ,
respectively. The system A corresponds to a single bosonic
mode, and system B does also. In particular, the channel can
accept coherent states at the input A and is such that the
receiver can perform homodyne or heterodyne detection on
the system B. The system A is accessible to the sender Alice,
the system B is accessible to the receiver Bob, and the system
E is in possession of the eavesdropper Eve.

(3) The reduced channel from Alice to Bob is given by

NA→B(ρA) ≡ TrE [UA→BE (ρA)], (13)

and this channel NA→B is what is used in the protocol descrip-
tion in Sec. II. We assume that if the mean photon number of
the input state ρA is finite, then the mean photon number of the
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output state NA→B(ρA) is finite. That is, Tr[n̂NA→B(ρA)] < ∞
if Tr[n̂ρA] < ∞. Furthermore, we assume that if the vari-
ance of the photon number of the input state ρA is finite,
then the variance of the photon number of the output state
NA→B(ρA) is finite. This implies that Tr[n̂2NA→B(ρA)] < ∞ if
Tr[n̂2ρA] < ∞.

(4) We assume that if the mean photon number of the
input state ρA is finite, then the mean energy of Eve’s state
TrB[UA→BE (ρA)] is finite, where the mean energy is com-
puted with respect to a physically reasonable Hamiltonian
HE that satisfies the Gibbs hypothesis [48–50], meaning
that Tr[e−βHE ] < ∞ for all β > 0 and has its ground-state
energy equal to zero. For example, if Eve’s system E of
the state TrB[UA→BE (ρA)] consists of several bosonic modes
E1, . . . , Ek , then HE could be taken as the total photon-number
operator n̂1 + · · · + n̂k for all of the k modes.

(5) Let

μ(qA, pA) ≡
∫

dqB rQB|QA,PA (qB|qA pA) qB (14)

denote the conditional mean of the position quadrature of
Bob, where rQB|QA,PA (qB|qA pA) is the conditional probability
distribution of the position quadrature qB of the state

σ
qA,pA
B ≡ NA→B(|α(qA, pA)〉〈α(qA, pA)|A), (15)

and |α(qA, pA)〉〈α(qA, pA)| is a coherent state with position
quadrature qA and momentum quadrature pA. We suppose that
μ(qA, pA) = ∑K1

k=0

∑K2
l=0 μkl qk

A pl
A, where K1, K2 ∈ Z+. That

is, the mean value of the position quadrature of σ
qA,pA
B is no

more than a K1th-order polynomial in qA and a K2th-order
polynomial in pA. We also suppose that μkl is an exponentially
decaying function, exp[−a(k + l )], in k and l for k � 2m − 2
and l � 2m − 1. Here, a > 0 and m is the constellation size.
For simplicity, we suppose that K1 = K2. These assumptions
are required for the security proof presented in Appendix A.

We note that an immediate consequence of the bounded
mean photon-number assumption in part 3 above, by apply-
ing the Cauchy-Schwarz inequality, is the following: If Alice
inputs a state ρA with finite mean vector [〈q̂〉ρ, 〈p̂〉ρ], then the
output mean vector for the state of system B is finite. If the
input state ρA has a finite covariance matrix with entries given
by [

2
〈
q̂2

0

〉
ρ

〈q̂0 p̂0 + p̂0q̂0〉ρ
〈q̂0 p̂0 + p̂0q̂0〉ρ 2

〈
p̂2

0

〉
ρ

]
, (16)

where q̂0 ≡ q̂ − 〈q̂〉ρ and p̂0 ≡ p̂ − 〈p̂〉ρ , then the covariance
matrix of the output state NA→B(ρA) is finite.

IV. SECRET-KEY RATE LOWER BOUND

The asymptotic secret-key rate K is bounded from below
by the Devetak-Winter formula [51,52] as

K � I (X ;Y ) − sup
UA→BE ∈S

χ (Y ; E ). (17)

In the inequality above, the Shannon mutual information be-
tween Alice’s variable X and Bob’s variable Y is denoted by
I (X ;Y ), and the Holevo information between Bob’s variable
Y and Eve’s quantum system E is denoted by χ (Y ; E ). We
suppose that the quantum channel connecting Alice to Bob

is not known, satisfies the assumptions given in Sec. III, and
can only be partially estimated from X and the measurement
outcomes Y on Bob’s side, as we discuss in Sec. V. This lack
of knowledge is an advantage to Eve. Therefore, the inequality
in (17) features an optimization of the Holevo information
χ (Y ; E ) over all isometric quantum channels UA→BE of Eve
that are compatible with Alice’s and Bob’s data. Let S denote
the set of channels that are consistent with the measurement
data. We discuss the precise meaning of this statement in
Sec. V. We also suppose that reverse reconciliation [53] is
being used in the key-generation protocol, in which the public
classical communication is from Bob to Alice, and this ac-
counts for Bob’s variable Y appearing in the χ (Y ; E ) term in
(17).

To calculate the lower bound in (17), we first need to
calculate the Shannon mutual information I (X ;Y ), which can
be easily obtained from the observed data of Alice and Bob.
The main difficulty is then to perform the optimization over
the isometric quantum channels UA→BE of Eve and to bound
the Holevo information χ (Y ; E ) from above. Doing so is the
main bottleneck for many security proofs in quantum key
distribution.

For protocols involving Gaussian modulation of coherent
states, the aforementioned problem was solved in [54,55],
with [54] relying on the techniques of [56]. The optimal attack
by Eve for such protocols was proved to be a Gaussian attack,
which considerably simplifies the security analysis. However,
once we consider discrete-modulation protocols, the optimal
attack by Eve is no longer known, and is unlikely to be Gaus-
sian. To address this problem, novel techniques are required.

In this paper, we provide a security proof for the proto-
col described in Sec. II by employing various existing tools:
the approximation of Gaussian distributions with discrete
ones [44,45], an entropic continuity bound from [46], and
the optimality of Gaussian attacks for Gaussian modulation
of coherent states [54,55]. The approach that we employ
in this paper is rather intuitive: we approximate the Gaus-
sian distribution with a discrete distribution and bound the
error introduced due to this approximation in trace norm,
by employing the techniques of [44,45]. Then, we expect
Eve’s Holevo information due to this approximation to be
close to Eve’s Holevo information resulting from a Gaussian-
modulated protocol, with the absolute value of the difference
being a function of the error introduced in the approximation.

We now discuss this approach in detail. First, consider
a key-generation protocol that employs coherent states with
Gaussian modulation. The expected density operator for Al-
ice’s transmitted state is a thermal state θ (NS ) with mean
photon number NS � 0:

θ (NS ) ≡ 1

NS + 1

∞∑
n=0

(
NS

NS + 1

)n

|n〉〈n|. (18)

The P function of the thermal state θ (NS ) is a circularly
symmetric complex Gaussian [57]. Following the approach of
[45], we can approximate the real and imaginary parts of the
circularly symmetric Gaussian by the various constellations
considered in [44]: Gauss-Hermite, random walk, equilattice,
and quantile. The type of constellation fixes |αx〉 and r(x).
In this paper, we focus exclusively on the Gauss-Hermite
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constellation. It is possible to consider other constellations
and obtain security proofs for these other constellations using
the techniques described below. We obtain the error intro-
duced by this approximation, by employing bounds from [45],
and then we apply an entropic continuity bound from [46] to
obtain an upper bound on Eve’s Holevo information χ (Y ; E ).

We now discuss our security proof for discrete-modulation
protocols of the form presented in Sec. II. Suppose that Alice
employs the following discrete-modulation ensemble of co-
herent states:

{r(x), |αx〉}m2

x=1, (19)

with expected density operator

ρ ≡
m2∑

x=1

r(x)|αx〉〈αx|. (20)

Then, depending on the constellation size m2 and the mean
photon number NS of the thermal state being approximated,
we obtain the following bound on the normalized trace dis-
tance:

1
2‖ρ − θ (NS )‖1 � ε(m, NS ), (21)

where θ (NS ) is a thermal state of mean photon number NS and
ε(m, NS ) is the approximation error, for which we determine
an explicit characterization later in (100), by employing the
techniques of [45].

The secret-key rate with reverse reconciliation is given by

βI (X ;Y ) − χ (Y ; E ), (22)

where β is the reconciliation efficiency [58] and the mutual
information quantities are computed with respect to the fol-
lowing ensemble: {

r(x, y), ρx,y
E

}
x,y, (23)

where

r(x, y) ≡ r(x)r(y|x), (24)

r(y|x) ≡ Tr
{(


y
B ⊗ IE

)
UA→BE (|αx〉〈αx|A)

}
, (25)

ρ
x,y
E ≡ 1

r(y|x)
TrB

{(


y
B ⊗ IE

)
UA→BE (|αx

〉〈αx|A)}, (26)

with {y}y denoting Bob’s positive-operator-valued measure-
ment (POVM) and UA→BE the isometric channel satisfying the
assumptions of Sec. III and corresponding to the collective
attack of Eve. Since we do not know what collective attack
Eve will employ, we minimize the secret-key rate with respect
to all collective attacks that are consistent with the measure-
ment data observed by Alice and Bob, i.e., with respect to
all isometric channels UA→BE satisfying the assumptions of
Sec. III and in the set S . It is possible to estimate the Shannon
mutual information I (X ;Y ) from the measurement data of
Alice and Bob, but we are left with the following optimization
problem for Eve’s Holevo information:

sup
UA→BE ∈S

χ (Y ; E )Eρ
, (27)

where the optimization is with respect to all collective attacks
of Eve consistent with the measurement data of Alice and
Bob, and the subscript notation Eρ indicates that the Holevo

information χ (Y ; E ) between Bob’s measurement outcome
and Eve’s quantum system is being computed with respect to
the following ensemble:

Eρ ≡ {
r(y), ρy

E

}
y, (28)

where

r(y) ≡
∑

x

r(x, y), (29)

ρ
y
E ≡

∑
x

r(x|y)ρx,y
E

=
∑

x

r(x|y)

r(y|x)
TrB

{(


y
B ⊗ IE

)
UA→BE (|αx〉〈αx|A)

}

= 1

r(y)
TrB

{(


y
B ⊗ IE

)
UA→BE (ρA)

}
. (30)

From the data processing inequality for trace distance (under
the action of the isometric channel UA→BE and Bob’s measure-
ment channel), we find that

ε � 1

2
‖ρ − θ (NS )‖1 (31)

� 1

2

∫
dy

∥∥r(y)ρy
E − rG(y)θ y

E (NS )
∥∥

1, (32)

where

rG(y) ≡ Tr
{(


y
B ⊗ IE

)
UA→BE (θ (NS ))

}
, (33)

θ
y
E (NS ) ≡ 1

rG(y)
TrB

{(


y
B ⊗ IE

)
UA→BE (θ (NS ))

}
. (34)

We then define the following ensemble as that which would
arise had Alice employed a Gaussian modulation at the chan-
nel input:

Eθ = {
rG(y), θ y

E

}
y. (35)

At this point, we invoke the fourth assumption from
Sec. III: if the mean energy of the input state to the channel
TrB ◦UA→BE is fixed at some finite mean photon number κ ∈
[0,∞), then the mean energy of the output state is no larger
than κ ′(κ ) ∈ [0,∞). Supposing that HE is the Hamiltonian for
Eve’s system E satisfying the properties stated in the fourth
assumption from Sec. III, by applying the continuity bound
given in [46, Proposition 27], we find that

χ (Y ; E )Eρ
� χ (Y ; E )Eθ

+ f (ε, P), (36)

where P is an upper bound on the mean energy of the states
TrB ◦UA→BE (ρA) and TrB ◦UA→BE (θ (NS )) and f (ε, P) is a
function of ε and P, given in [46], with the property that

lim
ε→0

f (ε, P) = 0. (37)

In particular, the function f (ε, P) is given by

f (ε, P) ≡ ε[2t + rε(t )]S[θE (P/εt )]

+ 2g[εrε(t )] + 2h(εt ), (38)
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for any t ∈ (0, 1
2ε

], where

rε(t ) ≡ (1 + t/2)/(1 − εt ), (39)

g(x) ≡ (x + 1) log2(x + 1) − x log2(x), (40)

h(x) ≡ −x log2(x) − (1 − x) log2(1 − x), (41)

and S[θE (P/εt )] is the entropy of a thermal state θE (P/εt )
of Eve’s system with mean energy P/εt . Due to this uniform
bound, we can then apply suprema to find that

sup
UA→BE ∈S

χ (Y ; E )Eρ
� sup

UA→BE ∈S
χ (Y ; E )Eθ

+ f (ε, P), (42)

with the optimizations again taken with respect to collective
attacks of Eve consistent with the measurement data of Alice
and Bob. The lower bound on the key rate is then given as

K � I (X ;Y ) − sup
UA→BE ∈S

χ (Y ; E )Eθ
− f (ε, P). (43)

The Shannon mutual information between X and Y , i.e., the
term I (X ;Y ), can be calculated from the observed data, as
mentioned previously. The term f (ε, P), introduced due to the
continuity of Holevo information, can be estimated from (38).
Obtaining an upper bound on the remaining term, the Holevo
information supUA→BE ∈S χ (Y ; E )Eθ

, still requires further devel-
opment, which we detail in the next section.

V. CHANNEL ESTIMATION

The main objective of this section is to obtain an up-
per bound on the remaining term, the Holevo information
supUA→BE ∈S χ (Y ; E )Eθ

. The approach that we take to obtain
an upper bound can be divided into three parts: estimation of
parameters from the actual protocol described in Sec. II, using
these to bound the parameters that would result if a Gaussian-
modulation protocol had been employed instead, and finally
using these last estimates to bound the Holevo information
supUA→BE ∈S χ (Y ; E )Eθ

from above.

A. Estimation of parameters from the actual
discrete-modulation protocol

Alice and Bob calculate the parameters γ11, γ12, and γ22

given in (3)–(5) or in (7)–(9), depending on Bob’s measure-
ment, as described in Sec. II. Then, the set S discussed in
Sec. IV consists of all of the isometric channels UN

A→BE that
are consistent with the calculated values of γ11, γ12, and γ22.
In this way, Alice and Bob characterize the attack by Eve.

Since we are operating in the asymptotic regime, such that
the number n of rounds is large, it follows that the number
δn of channel estimation rounds is also large. Additionally,
since Eve is employing a collective attack and the protocol has
an independent and identically distributed (i.i.d.) structure, it
follows that the parameters γ11, γ12, and γ22 are given exactly
as the expectation of particular random variables.

To determine these random variables, we now give ex-
act expressions for the constellation {αx}m2

x=1 and distribution
rX (x) that are used in the protocol. We begin by recalling
the Gauss-Hermite approximation to the normal distribution
with zero mean and unit variance, which reproduces the first
2m − 1 moments of the Gaussian distribution [59, Sec. 3.6].

Let Hm be the mth Hermite polynomial, and let Lm be a
random variable with m realizations lwm, with probability dis-
tribution given by rLm (lwm), where w ∈ {1, 2, . . . , m}. Then,
as defined in [44], the values lwm are set to the roots of
the Hermite polynomial Hm, and the probability distribution
rLm (lwm) is defined as

rLm (lwm) ≡ (m − 1)!

mH2
m−1(lwm)

. (44)

The P function of a thermal state with mean photon number
NS is a circularly symmetric complex Gaussian [57]. Fol-
lowing [45], we approximate the real and imaginary parts
of the thermal-state P function individually by the constel-
lation described above. Specifically, we choose qwm for w ∈
{1, . . . , m} such that the sequence {qwm/

√
NS}w is equal to the

zeros of the Hermite polynomial Hm, and we choose ptm for
t ∈ {1, . . . , m} such that the sequence {ptm/

√
NS}t is equal to

the zeros of the Hermite polynomial Hm. Then, the constella-
tion is given by the following distribution:

rX (x) = rX (αx ) (45)

= rX

(
qwm + iptm√

2

)
(46)

= rLm

(
qwm√

NS

)
rLm

(
ptm√

NS

)
(47)

≡ rQA (qwm) rPA (ptm), (48)

where x = (w, t ) ∈ {1, . . . , m} × {1, . . . , m}. The factor
√

NS

is a scaling factor incorporated so that the mean photon
number of the expected density operator for the resulting con-
stellation is equal to the mean photon number of the thermal
state θ (NS ). The phase-space distribution for several discrete
modulated states is given in Fig. 1.

Let QA denote the discrete random variable with realiza-
tions qA ∈ R, taking values qwm and having a probability
distribution as detailed above. Let QB denote the random
variable associated to Bob’s homodyne measurement outcome
of the position-quadrature operator, taking values in R. Then,
for characterizing the isometric channels UA→BE in S , Alice
and Bob calculate the parameters γ11, γ12, and γ22 from their
data. Due to the fact that we are operating in the asymptotic
regime (with no finite-size statistical effects), the following
equalities hold for protocols with homodyne detection

γ11 = E[(QA − E[QA])2], (49)

γ12 = E[(QA − E[QA])(QB − E[QB])], (50)

γ22 = E[(QB − E[QB])2]. (51)

Now, consider the discrete-modulation protocols with het-
erodyne detection. Let QA denote the discrete random variable
with realizations qA ∈ R, taking values qwm and having a
probability distribution as detailed above. Let PA denote the
discrete random variable with realizations pA ∈ R, taking
values pwm and having a probability distribution as detailed
above. Let QB denote the random variable associated to Bob’s
heterodyne measurement outcome of the position-quadrature
operator, taking values in R. Let PB denote the random vari-
able associated to Bob’s heterodyne measurement outcome of
the momentum-quadrature operator, taking values in R. Then,
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FIG. 1. (a) M = 10, Ns = 0.5; (b) M = 20, Ns = 0.5 ρ̄; (c) M = 20, Ns = 0.05; (d) M = 2, Ns = 0.5.

in the asymptotic regime, the following equalities hold for
protocols with heterodyne measurement

γ11 = E[(QA − E[QA])2] = E[(PA − E[PA])2], (52)

γ12 = 1
2 (E[(QA − E[QA])(QB − E[QB])]

+E[(PA − E[PA])(PB − E[PB])]), (53)

γ22 = 1
2 (E[(QB − E[QB])2] + E[(PB − E[PB])2]). (54)

Due to the symmetry of the protocol, (53) and (54) can be
simplified as

γ12 = E[(QA − E[QA])(QB − E[QB])], (55)

γ22 = E[(QB − E[QB])2]. (56)

As stated previously, Alice estimates γ11 from her preparation
data, while Bob estimates γ22 from his measurement data.
Alice calculates γ12 from the data that are publicly published
by Bob. Then, S is the set of isometric channels UA→BE that
fulfill the constraints in Sec. III and produce the observed
values of γ12 and γ22. As a consequence, Alice and Bob
deduce that the attack by Eve yields the observed values of
γ12 and γ22. In this way, they are able to restrict the possible
attacks that could have been performed by Eve.

B. Estimation of parameters for a hypothetical
Gaussian-modulation protocol

Now, notice that the remaining Holevo information
supUA→BE ∈S χ (Y ; E )Eθ

from (43) that we want to bound from
above is calculated for a thermal state θ (NS ) sent over an
isometric channel UA→BE in the set S and Bob performing
homodyne or heterodyne detection. Therefore, we want to
obtain an estimate of the parameters γ G

11, γ G
12, and γ G

22, which
are defined analogously to (49)–(51), but with the initial ran-
dom variable QA replaced by a Gaussian random variable
with mean zero and variance equal to NS . The parameters γ G

11,
γ G

12, and γ G
22 are those that would be observed in a Gaussian-

modulation protocol when the average channel input of Alice
is a thermal state θ (NS ) instead of ρ. A hypothetical Gaussian-
modulation protocol refers to a protocol in which the average
state that Alice sends is a thermal state θ (NS ) instead of ρ.
This protocol is not carried out by Alice and Bob experi-
mentally, but the parameters γ G

11, γ
G
12, γ

G
22 corresponding to the

hypothetical Gaussian-modulation protocol are inferred from
the discrete-modulation protocol.

In order to bound the values of the parameters that would
be obtained in a Gaussian-modulation protocol with Eve’s
attack taken from the set S , we can employ the parameters that
are observed in the discrete-modulation protocol. Before we
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do so, let us recall the definition of the χ2 divergence of two
states ρ and σ as χ2(ρ, σ ) ≡ Tr[(ρσ−1/2)2] − 1 [60]. Then
we have the following proposition:

Proposition 1. Let ρ = ∑
x rX (x)|αx〉〈αx|, where

αx = qA + ipA√
2

, (57)

rX (x) = rQA (qA) rPA (pA), (58)

θNS =
∫

dx rG
X (x)|αx〉〈αx|, (59)

and rG(x) is the P function of a thermal state with mean
photon number NS . If

√
χ2(ρ, θ (NS )) � ε2, and Eve’s attacks

fulfill the constraints in Sec. III, then

γ11 = γ G
11, (60)∣∣γ22 − γ G

22

∣∣ � ε1, (61)∣∣γ12 − γ G
12

∣∣ � ε2, (62)

where

ε1 ≡ ε(1 + c1)
√
E[(QB − E[QB])4], (63)

some constant c1 > 0 and

ε2 ≡
2m−2∑
k=0

K∑
l=2m

μkl |ηG(qA, k + 1)[ηG(pA, l ) − η(pA, l )]|

+
K∑

k=2m−1

2m−1∑
l=0

μkl |ηG(pA, l )

× [ηG(qA, k + 1) − η(qA, k + 1)]|

+
K∑

k=2m−1,l=2m

μkl |ηG(pA, l )ηG(qA, k + 1)

− η(pA, l )η(qA, k + 1)|, (64)

where μkl is an arbitrary function for k � 2m − 2, l � 2m −
1 and is equal to exp[−a(k + l )] otherwise. We also define the
following quantities:

ηG(qA, k) ≡ ErG
QA

[
Qk

A

]
, (65)

η(qA, k) ≡ ErQA

[
Qk

A

]
, (66)

ηG(pA, k) ≡ ErG
PA

[
Pk

A

]
, (67)

η(pA, k) ≡ ErPA

[
Pk

A

]
. (68)

Our proof of (61) relies mainly on the properties of trace
distance, invoking the Cauchy-Schwarz inequality and the
assumption that the fourth moment of the channel output is
bounded. Our proof of (62) relies mainly on the properties
of Gauss-Hermite distribution, and on the last assumption in
Sec. III. For details, please refer to Appendix A. By invoking
Proposition 1, we conclude that γ G

22 ∈ [γ22 − ε1, γ22 + ε1],
and γ G

12 ∈ [γ12 − ε2, γ12 + ε2], where ε1 and ε2 are defined
above.

Now, consider the following scenario corresponding to an
entanglement-based (EB) QKD protocol: Alice prepares a
two-mode squeezed vacuum state ψ (n̄)RA = |ψ (n̄)〉〈ψ (n̄)|RA

where

|ψ (n̄)〉RA ≡ 1√
n̄ + 1

∞∑
n=0

√(
n̄

n̄ + 1

)n

|n〉R|n〉A, (69)

with n̄ � 0. She applies a phase e−in̂πk/2 to her channel input
mode A, with k ∈ {0, 1, 2, 3} selected uniformly at random,
and she sends the system A to Bob over an isometric channel
UN

A→BE selected from the set S . She also communicates k to
Bob over an authenticated public classical channel. Bob then
applies the inverse phase e−in̂πk/2. Both Alice and Bob then
discard the value of k. Let ρRB denote the state shared by Alice
and Bob at the end, so that the reduced channel NA→B has
been phase symmetrized due to the protocol above and with
N A→B defined as in (2):

ρRB ≡ N A→B(ψ (n̄)RA). (70)

Due to the symmetries of the two-mode squeezed vacuum
state ψ (n̄)RA as well as those of the phase-symmetrized chan-
nel N A→B, it follows that the covariance matrix of the state
ρRB has the following form:[

γ EB
11 I2 γ EB

12 R(θ )

γ EB
12 R(θ ) γ EB

22 I2

]
, (71)

where γ EB
11 , γ EB

12 , γ EB
22 ∈ R such that the matrix above is a

legitimate quantum covariance matrix [61], the matrix I2 is
the 2 × 2 identity matrix, and

R(θ ) ≡
[

cos(θ ) sin(θ )

sin(θ ) − cos(θ )

]
(72)

is a rotation matrix. See Appendix B for a proof of this claim.
In what follows, we assume that θ = 0, due to the fact that
doing so simplifies the protocol, as well as reduces the number
of parameters that need to be estimated, and it furthermore
does not lead to an increase in Eve’s Holevo information,
as discussed in [25]. Alice then performs a heterodyne mea-
surement on mode R and Bob performs a homodyne or a
heterodyne measurement on mode B. As mentioned above,
this is the entanglement-based (EB) version of the Gaussian-
modulated prepare-measure (PM) protocol with the attacks by
Eve constrained to the set S .

Now, we want to deduce the parameters γ EB
11 , γ EB

12 , γ EB
22

observed in the EB protocol from the parameters γ G
11, γ

G
12, γ

G
22

observed in the PM version of the Gaussian-modulation pro-
tocol. As is common in the CV-QKD literature, we consider
the EB protocol because it is helpful in analyzing the Holevo
information χ (Y ; E ) that results in the prepare-measure (PM)
protocol. The “PM to EB” mapping of the parameters is well
known in the literature [62] and is given as follows for a
protocol where Bob performs homodyne detection:

γ EB
11 = γ G

11 + 1 = γ11 + 1, (73)

γ EB
22 = γ G

22 ∈ [γ22 − ε1, γ22 + ε1], (74)

γ EB
12 =

√
γ11 + 2

γ11
γ G

12

∈
[√

γ11 + 2

γ11
(γ12 − ε2),

√
γ11 + 2

γ11
(γ12 + ε2)

]
. (75)
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For protocols where Bob performs heterodyne detection the
“PM to EB” mapping of the parameters is given by

γ EB
11 = γ G

11 + 1 = γ11 + 1, (76)

γ EB
22 = 2γ G

22 − 1 ∈ [2γ22 − 1 − ε1, 2γ22 − 1 + ε1], (77)

γ EB
12 =

√
2(γ11 + 2)

γ11
γ G

12

∈
[√

2(γ11 + 2)

γ11
(γ12 − ε2),

√
2(γ11 + 2)

(γ11
(γ12 + ε2)

]
.

(78)

Let � denote the set of quantum states ρRB that have covari-
ance matrix of the following form:[

γ EB
11 I2 γ EB

12 σZ

γ EB
12 σZ γ EB

22 I2

]
. (79)

C. Upper bound on Eve’s Holevo information

By applying purification techniques of quantum informa-
tion theory, the following equality holds:

χ (Y ; E )Eθ
= H (RB)ρ − H (R|Y ){p(y),ρy}y (80)

for ρRB the state in (70) and {p(y), ρy
R}y the ensemble result-

ing from Bob performing a position-quadrature homodyne
detection, or a heterodyne detection on the state ρRB. As
a consequence, the task of obtaining an upper bound on
supUA→BE ∈S χ (Y ; E )Eθ

can be accomplished by obtaining an
upper bound on supρRB∈� [H (RB)ρ − H (R|Y ){p(y),ρy}y ].

We then invoke the extremality of Gaussian states [54,56],
from which we infer that the Holevo information is optimized
by a Gaussian state ρG

RB having the same covariance matrix as
ρRB. Therefore, we obtain the following:

sup
ρRB∈�

[H (RB)ρ − H (R|Y ){p(y),ρy}]

= sup
ρG

RB∈�

[H (RB)ρG − H (R|Y ){pG(y),ρy,G}], (81)

where {pG(y), ρy,G
R } is the ensemble obtained if Bob performs

a homodyne or heterodyne measurement on mode B of ρG
RB.

Then, Eve’s Holevo information can be calculated as fol-
lows:

H (RB)ρG − H (R|Y ){pG(y),ρy,G} = g(ν1) + g(ν2) − g(ν3),
(82)

where the function g(·) is defined in (40), ν1 and ν2 are
the symplectic eigenvalues of the covariance matrix in (79).
For protocols where Bob performs homodyne detection, ν3 =
γ EB

11 (γ11 − (γ EB
12 )

2

γ EB
22 +1

). For protocols where Bob performs hetero-

dyne detection, ν3 = γ EB
11 − (γ EB

22 )2

γ EB
12 +1

. Numerical checks, similar
to those performed and stated in [25], reveal that the Holevo
information is a monotonically decreasing function of γ EB

12 ,
and a monotonically increasing function of γ EB

11 and γ EB
22 .

Intuitively, the correlations between Alice and Bob are quanti-
fied by γ EB

12 , so that increasing this parameter decreases Eve’s
Holevo information.

Therefore, we conclude that the Holevo information for
protocols where Bob performs homodyne detection is no
larger than that achieved by a Gaussian state ρRB that has a
covariance matrix as follows:⎡

⎢⎣ (γ11 + 1)I
√

γ11+2
γ11

(γ12 − ε2)σZ√
γ11+2
γ11

(γ12 − ε2)σZ (γ22 + ε1)I

⎤
⎥⎦. (83)

The Holevo information for protocols where Bob performs
heterodyne detection is no larger than that achieved by a
Gaussian state ρRB that has a covariance matrix as follows:

⎡
⎣ (γ11 + 1)I

√
2(γ11+2)

γ11
(γ12 − ε2)σZ√

2(γ11+2)
γ11

(γ12 − ε2)σZ (2γ22 − 1 + ε1)I

⎤
⎦. (84)

With this, we conclude our goal of obtaining an upper bound
on the remaining term supUA→BE ∈S χ (Y ; E )Eθ

.
In Appendix C, we give an alternative method to upper

bound the Holevo information supUA→BE ∈S χ (Y ; E )Eρ
in (42).

The proposed method does not depend on the parameters c1,
K , and a; however, it seems to be numerically intensive.

VI. NUMERICAL RESULTS FOR A LOSSY THERMAL
BOSONIC CHANNEL

We now proceed with calculating the various terms in
(43) for a Gauss-Hermite constellation of size m2 and for a
lossy thermal bosonic channel of transmissivity η ∈ [0, 1] and
NB � 0. This allows for determining the performance of the
discrete-modulation CV-QKD protocol when the underlying
channel is a lossy thermal channel (however, keep in mind
that Alice and Bob are not aware of this when executing the
protocol).

The first term that we need to calculate is the Shannon
mutual information I (X ;Y ). Here, X is a random variable that
encodes the choice of coherent state, and Y is the random
variable that is associated with the measurement result. For
discrete-modulation protocols with homodyne detection and
the underlying channel as the pure-loss channel, we use the
following approach: The Wigner function associated with the
coherent state |αx〉 subjected to a pure-loss channel with trans-
missivity η is given as

W αx
y,p = 1

π
exp

(−|z − √
ηαx|2

)
, (85)

where z = qB + ipB, with the real part qB corresponding to
the position-quadrature phase-space variable, and the imag-
inary part pB corresponding to the momentum-quadrature
phase-space variable. Bob performs homodyne detection with
respect to the qB quadrature, which provides the raw data for
key generation. Then, the various probability distributions are
given as

rX (x) = QNS,m(αx ), (86)

rY |X (qB|x) =
∫ ∞

−∞
d pBW αx

qB,pB
, (87)

rY (qB) =
∑

x

rX (x)rY |X (qB|x). (88)
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With this information in hand, it is easy to calculate I (X ;Y ) =
H (Y )r − H (Y |X )r . Now, let us calculate I (X ;Y ) for the dis-
crete modulation protocols with heterodyne detection. Alice
sends a coherent state characterized by |αx〉 through a thermal
channel characterized by η and NB. After the transmission,
Bob has a displaced thermal state with the mean vector r̄final

and covariance matrix σfinal. These can be written as

r̄final = √
η r̄coherent = √

η[
√

2qwm,
√

2ptm]T , (89)

σfinal = η σcoherent + (1 − η)(2NB + 1)I2

= η I2 + (1 − η)(2NB + 1)I2, (90)

where r̄coherent is the mean vector and σcoherent is the covari-
ance matrix of the coherent state |αx〉 = | qwm+iptm√

2
〉. Then, the

various probability distributions are given as

rY |X (qb, pb|qwm, ptm) =
exp

[− (qb−
√

2qwm )2−(pb−
√

2ptm )2

2[1−NB (1−η)]

]
π

√
Det {2[1 − NB(1 − η)]I2}

,

(91)

rY (qb, pb) =
∑

qwm,ptm

rX (qwm, ptm)rY |X (qb, pb|qwm, ptm). (92)

With this information, we can easily calculate I (X ;Y ). Nu-
merically, we find that I (X ;Y ) calculated from the above
method is approximately equal to the I (X ;Y ) that we obtain
from a Gaussian modulation protocol with the underlying
channel as thermal channel. We invoke this approximation in
the numerics. This approximation has been proven rigorously
in [45].

The second term that we need to calculate is the Holevo in-
formation supUA→BE ∈S χ (Y ; E )Eθ

for a key-generation protocol
that uses Gaussian modulation of coherent states and homo-
dyne or heterodyne detection. To this end, we need to calculate
the parameters γ11, γ22, and γ12 for the discrete-modulation
protocol in order to obtain the covariance matrix in (83) or
in (84). These can be calculated numerically. However, note
that θ (NS ) and ρ have the same covariance matrix due to
the second moment of the Gauss-Hermite approximation and
Gaussian distribution being the same. Since we are consider-
ing the underlying channel as a lossy thermal bosonic channel,
we can calculate the parameters γ22 and γ12 using the analyti-
cal formulas given in Sec. 7 of [62]. From the values of γ12 and
γ22 we now have to estimate the parameters γ G

12 and γ G
22. To

this end, we apply Proposition 1. When applying Proposition
1, it is necessary to make a choice for the parameters c1, a, and
K . In our example considered here, we take the conservative
choices c1 = 100, K = 104, and a = 5.

Next, we have to calculate the third term, which is the error
introduced in the Holevo information χ (Y ; E ) and denoted by
f (ε, N ′

S ) in (43). To this end, we first calculate the approxima-
tion error ε defined in (21). Following [45], we use the χ2

distance, defined as χ2(ρ, σ ) ≡ Tr[(ρσ−1/2)2] − 1, and we
employ the bound ‖ρ − σ‖2

1 � χ2(ρ, σ ), which follows from
Lemma 5 of [60] with k = 1

2 .
Let us denote an additive white Gaussian noise channel

with signal-to-noise ratio s by Ws. The action of Ws is defined
as Ws(Z ) = √

sZ + G, where G is a normally distributed ran-
dom variable with unit variance. Then, for Z ∼ N (0, 1) with
distribution PZ , a random variable Z ′

m with distribution PZm as

given in (44), Y = Ws(Z ), and Y ′
m = Ws(Z ′

m), the χ2 distance
is given as

χ2(PY ′
m
, PY

) = 2κ2
∑
k�m

( s

1 + s

)2k
(93)

= 2κ2 (1 + s)2

1 + 2s

( s

1 + s

)2m
, (94)

with 2κ2 ≈ 2.36 [44].
Let

ρm =
m2∑

x=1

QNS,m(αx )|αx〉〈αx|, (95)

and θNS be a thermal state of mean photon number NS . Then,

χ2(ρm, θNS ) = [1 + χ2(PYm , PY )]2 − 1 (96)

= (1 + τ )2 − 1 (97)

= τ (2 + τ ), (98)

with s = NS/[
√

NS (NS + 1) − NS] [45] and

τ ≡ 2κ2(1 + NS )

[
NS√

NS (1 + NS )

]2m

. (99)

Combining (93) and (96), we obtain the following expression
for the approximation error:

1

2
‖ρm − θNS ‖1 � ε = 1

2

√
τ (2 + τ ). (100)

We can then invoke [46, Proposition 27], which utilizes
some techniques from [50], to obtain

f (ε, NS ) = ε[2t + rε(t )]g(P/εt ) + 2g(εrε(t )) + 2h(εt ),
(101)

for any t ∈ (0, 1
2ε

], where

rε(t ) = (1 + t/2)/(1 − εt ), (102)

P = 107, (103)

g(N ) = (N + 1) log2(N + 1) − N log2(N ), (104)

h(x) = −x log2(x) − (1 − x) log2(1 − x). (105)

In the above, we have set P = 107, which is an extremely
conservative choice to employ with respect to the fourth as-
sumption on Eve’s attack discussed in Sec. III. We have also
supposed that Eve’s system is a harmonic oscillator. Even
though the mean photon number of the average input state in
all example cases that we consider in what follows is many
orders of magnitude smaller than P = 107 and the actual
physical channel being employed is a pure-loss channel, we
can still suppose that the mean energy of the eavesdropper’s
states is extremely large (way beyond what an eavesdropper
might reasonably employ in an attack) and we find that the
performance of the discrete-modulation protocols approaches
that of the Gaussian-modulation protocol relatively quickly
as the constellation size m2 increases. One could choose
an even more conservative value for P, higher than what
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FIG. 2. In this figure, we plot the lower bounds on the key rates
for various constellation size m2 of the discrete-modulation protocol
considered in Sec. II with the underlying channel as a lossy bosonic
channel.

we have taken. However, in our numerics, we have found
the same qualitative behavior: that the performance of the
discrete-modulation protocol rapidly approaches that of the
Gaussian-modulation protocol as the constellation size m2

increases.
With all these ingredients in hand, we can now numerically

evaluate (43) to obtain a lower bound on the secret-key rate
for a lossy thermal bosonic channel with transmissivity η

and thermal noise NB. We take the reconciliation efficiency
β = 0.95. Note that the key rates obtained from (43) have a
dependence on the mean photon number NS of the input state.
Thus, to obtain tight lower bounds on the secret-key rate, we
also optimize over NS .

In Fig. 2, we present the achievable key rates obtained from
discrete-modulation protocol with homodyne detection if the
underlying channel is a pure-loss channel. In Figs. 3 and 4,
we present the achievable key rates from discrete-modulation
protocol with heterodyne detection if the underlying chan-
nel is a thermal channel. We plot lower bounds for various
values of m2 and compare the obtained lower bounds with
the Gaussian-modulation protocol. It is clear that the secure
key rate of the discrete-modulation protocol increases as the
constellation size m2 increases.

As explained before, to obtain the lower bound on the rates
for a pure-loss channel and thermal channel, we optimize over
the mean photon number NS . For the Gaussian-modulation
protocol, we find that the optimal variance for secret-key
rates decreases with the increase in loss. Now, the main idea
behind the technique presented in this paper is to discretize the
Gaussian probability distribution by a finite constellation of
size m2 and calculate the error introduced due to this ap-
proximation. We find that as the variance of the Gaussian
modulation increases, the number of constellation points re-
quired to approximate the distribution to an ε error increases.
Therefore, for low losses, this technique requires a large num-
ber m2 of constellation points to closely match the secret-key
rates obtained with Gaussian modulation.

FIG. 3. In this figure, we plot the lower bounds on the key rate
for various constellation size m2 of the discrete-modulation protocol
considered in Sec. II with the underlying channel as a lossy thermal
bosonic channel with thermal noise NB = 10−3.

A consequence of the aforementioned reasoning is that,
with our approach, the lower bound on the secret-key rate does
not tend to log m2 in the limit as η → 1. Certainly, in this limit,
the Holevo information with Eve tends to zero, and the key
rate is then given as K � I (X ;Y ) − f (ε, N ′

S ). We numerically
observe that the Shannon mutual information of Alice and
Bob saturates towards log m2 with the increase in variance;
however, the approximation error f (ε, N ′

S ) increases with the
increase in variance. Due to this tradeoff, our technique does
not achieve the ideal rate of log m2 rate in the low-loss and
low-noise limit.

It is possible (and likely) that our rate lower bounds can
be improved by other constellation choices or other proof
techniques. However, even with our proof, requiring a pair

FIG. 4. In this figure, we plot the lower bounds on the key rate
for various constellation size m2 of the discrete-modulation protocol
considered in Sec. II with the underlying channel as a lossy thermal
bosonic channel NB = 10−4.
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of electro-optic (phase and amplitude) modulators to generate
a 90 × 90 size constellation size is much more practical and
less demanding compared to asking that we modulate a pulse
with a complex amplitude to an extremely high floating point
accuracy, which a Gaussian modulation would need.

We should also point out that dark counts in detectors can
be modeled as thermal noise for lossy thermal bosonic chan-
nels [63]. Thus, our numerics are also applicable to protocols
with imperfect detectors modeled in this way.2

VII. CONCLUSION

In this paper, we have addressed an open problem in
continuous-variable quantum key distribution (CV-QKD), by
establishing a security proof for discrete-modulation proto-
cols. Even though many experiments have been performed
on discrete-modulation CV-QKD with multiple constellation
points (see, e.g., [64–66]), no security proofs have been
available for them, and the expected key-rate calculations
previously reported based on measured homodyne statistics
have been based on assuming Gaussian attacks, which are
not known to be optimal for discrete-modulation CV-QKD.
We have introduced a discrete-modulation protocol and then
obtained rigorous lower bounds on the secret-key rates, se-
cure against physically reasonable collective attacks in the
asymptotic key-length regime. The approach that we have
used works well in the high-loss regime, with the secure
key rates being close to the secure key rates achievable with
a Gaussian-modulation protocol. Another prominent feature
of our approach is that with the increase in the size m2 of
the constellation, the lower bound on the secret-key rate ap-
proaches the key rate for the Gaussian-modulation protocol.
This result demonstrates that we need not consider the full
continuum of the Gaussian distribution in order to obtain key
rates achievable with a Gaussian modulation, and we do not
need to rely on Gaussian modulation for security proofs of
discrete-modulation CV-QKD protocols.

Going forward from here, it is a pressing open question to
determine security proofs for discrete-modulation CV-QKD
protocols in the nonasymptotic, or finite key-length, regime.
It would also be ideal to improve the bound from Proposition
1 to reduce or eliminate its dependence on the parameters c1,
a, and K . In this context, it might be possible to utilize the
results presented in Appendix C, but as mentioned previously,
this approach is numerically intensive.

Note added. Recently, other approaches for security proofs
in discrete modulation of CV-QKD have been put forward
[67,68].
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APPENDIX A: PROOF OF PROPOSITION 1

In this Appendix, we provide a proof of Proposition 1. We
first restate it here for convenience.

Proposition 1. Let ρ = ∑
x rX (x)|αx〉〈αx|, where

αx = qA + ipA√
2

, (A1)

rX (x) = rQA (qA) rPA (pA), (A2)

θNS =
∫

dx rG
X (x)|αx〉〈αx|, (A3)

and rG(x) is the P function of a thermal state with mean
photon number NS . If

√
χ2(ρ, θ (NS )) � ε2, and Eve’s attacks

fulfill the constraints in Sec. III, then

γ11 = γ G
11, (A4)∣∣γ22 − γ G

22

∣∣ � ε1, (A5)∣∣γ12 − γ G
12

∣∣ � ε2, (A6)

where

ε1 = ε(1 + c1)
√
E[(QB − E[QB])4] (A7)

for some constant c1 > 0 and

ε2 =
2m−2∑
k=0

K∑
l=2m

μkl |ηG(qA, k + 1)[ηG(pA, l ) − η(pA, l )]|

+
K∑

k=2m−1

2m−1∑
l=0

μkl |ηG(pA, l )

× [ηG(qA, k + 1) − η(qA, k + 1)]|

+
K∑

k=2m−1,l=2m

μkl |ηG(pA, l )ηG(qA, k + 1)

− η(pA, l )η(qA, k + 1)|, (A8)

where μkl is an arbitrary function for k � 2m − 2, l � 2m −
1 and is equal to exp[−a(k + l )] otherwise. We also have

ηG(qA, k) = ErG
QA

[
Qk

A

]
, (A9)

η(qA, k) = ErQA

[
Qk

A

]
, (A10)

ηG(pA, k) = ErG
PA

[
Pk

A

]
, (A11)

η(pA, k) = ErPA

[
Pk

A

]
. (A12)
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Proof. For simplicity, we prove the claim under the as-
sumption that all random variables have zero mean, and we
note that it can be generalized by adopting a shift of the
variables involved in the proof.

To prove the equality in (A4), consider the following: γ11

is equal to the variance of the position quadrature that is
encoded by Alice during the preparation procedure. Since we
are using the Gauss-Hermite approximation of the Gaussian
for the encoding, for which the lower moments match those of
the Gaussian distribution, it follows that γ11 = γ G

11. To prove
the inequality in (A5), observe that

‖ρ − θ (NS )‖1 �
√

χ2(ρ, θ (NS )) � ε2 (A13)

implies that

‖N (ρ ) − N (θ (NS ))‖1 � ε2. (A14)

The inequality in (A14) follows from data processing.

Now let us define

rQB (qB) ≡
∫∫

dx d pBW N ,αx (qB, pB)rX (x), (A15)

rG
QB

(qB) ≡
∫∫

dx d pBW N ,αx (qB, pB)rG
X (x), (A16)

where W N ,αx is the associated Wigner function for the state
resulting from transmitting a coherent state over the channel
N . Let rQB|X (qB|x) ≡ ∫

d pBW N ,αx (qB, pB) be the probability
distribution obtained over the position quadrature when the
coherent state αx is sent over a channel N . Then, we have the
following:∫

dqB

∣∣rQB (qB) − rG
QB

(qB)
∣∣ � ‖N (ρ̄ ) − N (θ (NS ))‖1 � ε2,

(A17)

which is a consequence of monotonicity of trace distance and
(A13).

We obtain the following:

∣∣γ G
22 − γ22

∣∣ =
∣∣∣∣
∫

dqBrG
QB

(qB) |qB|2 −
∫

dqBrQB (qB) |qB|2
∣∣∣∣ (A18)

=
∣∣∣∣
∫

dqB
[
rG

QB
(qB) − rQB (qB)

] |qB|2
∣∣∣∣ (A19)

=
∣∣∣∣
∫

dqB

[√
rG

QB
(qB)

√
rG

QB
(qB) −

√
rG

QB
(qB)

√
rQB (qB) +

√
rG

QB
(qB)

√
rQB (qB) − √

rQB (qB)
√

rQB (qB)
]

|qB|2
∣∣∣∣ (A20)

�
∫

dqB

∣∣√rG
QB

(qB) − √
rQB (qB)

∣∣ √rG
QB

(qB)|qB|2 +
∫

dqB

∣∣√rG
QB

(qB) − √
rQB (qB)

∣∣ √rQB (qB)|qB|2 (A21)

�
√∫

dqB

∣∣√rG
QB

(qB) − √
rQB (qB)

∣∣2 ∫
dqBrG

QB
(qB)|qB|4

+
√∫

dqB

∣∣√rG
QB

(qB) − √
rQB (qB)

∣∣2 ∫
dqBrQB (qB)|qB|4 (A22)

=
√∫

dqB

∣∣√rG
QB

(qB) − √
rQB (qB)

∣∣2(
√∫

dqBrG
QB

(qB)|qB|4 +
√∫

dqBrQB (qB)|qB|4
)

. (A23)

Now, using that

√∫
dqB|

√
rG

QB
(qB) − √

rQB (qB)|
2

is the Hellinger divergence and less than the square root of the total variation

distance
∫

dqB|rG
QB

(qB) − rQB (qB)|, we obtain that

∣∣∣∣
∫

dqBrG
QB

(qB) |qB|2 −
∫

dqBrQB (qB) |qB|2
∣∣∣∣ � ε

(√∫
dqBrG

QB
(qB)|qB|4 +

√∫
dqBrQB (qB)|qB|4

)
. (A24)

To bound the second term we invoke the assumption that the photon-number variance of the channel output is bounded.
Therefore,

Tr(n̂2ρ) = Tr
[(

q̂2
B + p̂2

B − 1
)2

ρ
]

(A25)

= Tr
[(

q̂4
B + p̂4

B + 1 − 2q̂2
B − 2 p̂2

B + 2q̂2
B p̂2

B

)
ρ
]

< ∞, (A26)

where ρ = N (θ (NS )). We thus conclude that
√∫

dqBrG
QB

(qB)|qB|4 is also bounded, so that
√∫

dqBrG
QB

(qB)|qB|4 �

c1

√∫
dqBrQB (qB)|qB|4, for some constant c1 > 0.
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To prove the inequality in (A6), observe the following:

γ12 =
∫∫

dqAd pArQA (qA)rPA (pA)qA

∫∫
d pBdqBrQB,PB|QA,PA (qB pB|qA pA)qB (A27)

=
∫∫

dqAd pArQA (qA)rPA (pA)qA

∫
dqBrQB|QA,PA (qB|qA pA)qB. (A28)

Let us define

μ(qA, pA) ≡
∫

dqBqBrQB|QAPA (qB|qA pA). (A29)

This implies that

γ12 =
∫∫

dqAd pArQA (qA)rPA (pA)qA μ(qA, pA). (A30)

Similarly, we can define

γ G
12 =

∫∫
dqAd pA rG

QA
(qA)rG

PA
(pA)qAμ(qA, pA). (A31)

This implies

∣∣γ12 − γ G
12

∣∣ =
∣∣∣∣
∫

dqAd pAμ(qA, pA)
[
rG(pA) rG(qA)qA − rPA (pA)rQA (qA)qA

]∣∣∣∣. (A32)

Now, let us suppose that it is possible to expand μ(qA, pA) as a polynomial in qA and pA, as mentioned in the assumptions from
Sec. III. That is,

μ(qA, pA) =
K∑

k=0

K∑
l=0

μk,l q
k
A pl

A. (A33)

This assumption implies that the mean value of Bob’s position-quadrature measurement result when a coherent state
|α(qA, pA)〉〈α(qA, pA)| is transmitted through an unknown channel N is no more than polynomial in qA and pA.

With this assumption, we obtain the following:

∣∣γ12 − γ G
12

∣∣ =
∣∣∣∣∣
∑
k,l

μk,l

∫∫
dqAd pA

[
rG

PA
(pA)pl

A rG
QA

(qA) qk+1
A − rPA (pA)pl

A rQA (qA)qk+1
A

]∣∣∣∣∣. (A34)

Let us now define the following:

ηG(pA, l ) ≡
∫

d pArG
PA

(pA)pl
A, (A35)

ηG(qA, l ) ≡
∫

dqArG
QA

(qA)ql
A, (A36)

η(pA, l ) ≡
∫

d pArPA (pA)pl
A, (A37)

η(qA, l ) ≡
∫

dqArQA (pA)ql
A. (A38)

This implies that

∣∣γ12 − γ G
12

∣∣ � ∑
k,l

μk,l |ηG(pA, l )ηG(qA, k + 1) − η(pA, l )η(qA, k + 1)|. (A39)

012412-14



ASYMPTOTIC SECURITY OF DISCRETE-MODULATION … PHYSICAL REVIEW A 103, 012412 (2021)

Now, we know that the first 2m − 1 moments of the Gauss-Hermite distribution are equal to the first 2m − 1 moments of the
Gaussian distribution. With that, we conclude the following upper bound:

∣∣γ12 − γ G
12

∣∣ � 2m−2∑
k=0

K∑
l=2m

μkl |ηG(qA, k + 1)[ηG(pA, l ) − η(pA, l )]|

+
K∑

k=2m−1

2m−1∑
l=0

μkl |ηG(pA, l )[ηG(qA, k + 1) − η(qA, k + 1)]|

+
K∑

k=2m−1,l=2m

μkl |ηG(pA, l )ηG(qA, k + 1) − η(pA, l )η(qA, k + 1)|. (A40)

This concludes the proof. �

APPENDIX B: CHANNEL SYMMETRIZATION

We now show that by performing a discrete phase sym-
metrization in steps 2 and 3 of the key-distribution protocol
from Sec. II, it is possible to simplify the form of the covari-
ance matrix of the state that Alice and Bob share at the end
of the EB protocol to a symmetrized form. Let NA→B be a
single-mode bosonic channel. Alice and Bob can make this
channel phase covariant by applying a random phase rotation
and its inverse at the channel input and output, respectively,
resulting in the following symmetrized channel:

N A→B(ρA) = 1

4

3∑
k=0

ein̂Bπk/2NA→B

× (e−in̂Aπk/2ρAein̂Aπk/2)e−in̂Bπk/2. (B1)

If the state input to the phase-randomized channel is one share
of a two-mode squeezed vacuum ψ (n̄)RA = |ψ (n̄)〉〈ψ (n̄)|RA,
defined from

|ψ (n̄)〉RA ≡ 1√
n̄ + 1

∞∑
n=0

√( n̄

n̄ + 1

)n

|n〉R ⊗ |n〉A, (B2)

then it follows that

N A→B(ψ (n̄)RA) = 1

4

3∑
k=0

(e−in̂Rπk/2 ⊗ ein̂Bπk/2)NA→B(ψ (n̄)RA)

× (ein̂Rπk/2 ⊗ e−in̂Bπk/2), (B3)

where we have applied the fact that

e−in̂Aπk/2|ψ (n̄)〉RA = e−in̂Rπk/2|ψ (n̄)〉RA. (B4)

We would now like to determine the covariance matrix ele-
ments of the phase-randomized state τRB ≡ N A→B(ψ (n̄)RA):⎡
⎢⎢⎢⎣

2
〈
x̂2

R

〉
τ

〈{x̂R, p̂R}〉τ 〈{x̂R, x̂B}〉τ 〈{x̂R, p̂B}〉τ
〈{x̂R, p̂R}〉τ 2

〈
p̂2

R

〉
τ

〈{ p̂R, x̂B}〉τ 〈{ p̂R, p̂B}〉τ
〈{x̂R, x̂B}〉τ 〈{ p̂R, x̂B}〉τ 2

〈
x̂2

B

〉
τ

〈{x̂B, p̂B}〉τ
〈{x̂R, p̂B}〉τ 〈{ p̂R, p̂B}〉τ 〈{x̂B, p̂B}〉τ 2

〈
p̂2

B

〉
τ

⎤
⎥⎥⎥⎦,

(B5)

where we assume for simplicity that τRB has zero mean, but
we note here that the more general case can be incorporated

by a shift. Given an initial covariance matrix with elements

σ =

⎡
⎢⎣

σ11 σ12 σ13 σ14

σ12 σ22 σ23 σ24

σ13 σ23 σ33 σ34

σ14 σ24 σ34 σ44

⎤
⎥⎦, (B6)

the phase rotation e−in̂Rφ ⊗ ein̂Bφ corresponds to the following
symplectic transformation:

X (φ) =

⎡
⎢⎣

cos(φ) sin(φ) 0 0
− sin(φ) cos(φ) 0 0

0 0 cos(φ) − sin(φ)
0 0 sin(φ) cos(φ)

⎤
⎥⎦. (B7)

So, then calculating the covariance matrix for the phase-
randomized state, it is given by

1

4

3∑
k=0

X (πk/2)σX T(πk/2), (B8)

and we find that it is equal to

1

2

⎡
⎢⎣

σ11 + σ22 0 σ13 − σ24 σ14 + σ23

0 σ11 + σ22 σ14 + σ23 −(σ13 − σ24)
σ13 − σ24 σ14 + σ23 σ33 + σ44 0
σ14 + σ23 −(σ13 − σ24) 0 σ33 + σ44

⎤
⎥⎦.

(B9)
The latter has the following form:⎡

⎢⎣
a 0 c2 c1

0 a c1 −c2

c2 c1 b 0
c1 −c2 0 b

⎤
⎥⎦ (B10)

for a, b � 1 and c1, c2 ∈ R. We can write this in the form of
Eq. (D34) in [25] by setting c1 = z sin(θ ) and c2 = z cos(θ ),
so that z =

√
c2

1 + c2
2 and θ = arctan(c1/c2), so that the form

becomes⎡
⎢⎣

a 0 z cos(θ ) z sin(θ )
0 a z sin(θ ) −z cos(θ )

z cos(θ ) z sin(θ ) b 0
z sin(θ ) −z cos(θ ) 0 b

⎤
⎥⎦

=
[

aI2 z R(θ )
z R(θ ) bI2

]
. (B11)

This completes the symmetrization of the covariance matrix
due to the discrete phase randomization.
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Ideally, we would estimate all the elements of the covari-
ance matrix in the channel estimation step of the protocol.
However, it is much simpler to estimate only the parameters a,
b, and z cos(θ ), and assume instead that the covariance matrix
has the following form:⎡

⎢⎣
a 0 z cos(θ ) 0
0 a 0 −z cos(θ )

z cos(θ ) 0 b 0
0 −z cos(θ ) 0 b

⎤
⎥⎦. (B12)

That is, we ignore all correlations between position and
momentum quadratures. The effect of doing so is to un-
derestimate the correlations that are present in the state
τRB. Therefore, this intuitively means we overestimate Eve’s
Holevo information during the channel estimation phase, and
exhaustive numerical checks confirm that Eve’s Holevo in-
formation is larger when replacing z with z cos(θ ) (as was
reported in [25]). Since we overestimate the Holevo infor-
mation, the security of the protocol is not compromised, but
it is only the final key rate that is potentially reduced. For
additional discussion, see Appendix D of [25].

APPENDIX C: ALTERNATIVE APPROACH FOR
BOUNDING THE PARAMETERS OF A HYPOTHETICAL

GAUSSIAN-MODULATED PROTOCOL

In this Appendix, we outline a method to remove the
parameters c1 and c2 from the security proof of discrete-
modulation protocols.

Let ρ be the averaged state that Alice sends to Bob in the
discrete-modulation protocol, and let the thermal state θ (NS )
be the averaged state that Alice sends to Bob in Gaussian-
modulation protocol. Let S be a set of isometries UA→BE

that Eve implements and which agrees with the statistics
that are collected by Alice and Bob, and fulfills the cri-
teria given in Sec. III. Then, we want to obtain an upper
bound on the Holevo information supU∈S χ (B; E )U (ρ). Let
W = Span{|α1〉, |α2〉, . . . , |αm2〉} be a finite-dimensional vec-
tor space, and is spanned by a basis having m2 elements. We
want to construct an orthonormal basis for this space, and
this can be done by using Gram-Schmidt orthogonalization
method. Let

|φ′
i〉 = |αi〉 −

i−1∑
j=1

〈φ′
j |αi〉|φ′

j〉, (C1)

and define |φi〉 = |φ′
i 〉

‖φ′
i‖ . We can then construct the orthonormal

basis {|φ1〉, |φ2〉 . . . , |φ〉m2} for W . Now, let us define the
following projector on W:

�W =
m2∑
i=1

|φi〉〈φi|. (C2)

It is easy to see that

�W ρ�W = ρ. (C3)

To each isometry UA′→BE ∈ S , we can define the isometry U
such that

TrE ′ [UA′→BEE ′ (ρA′ )]

= UA′→BE (�W ρA′�W ) + Tr[(1−�W )ρA′ ]|u〉〈u|BE , (C4)

where |u〉BE is an arbitrary unit vector in HBE . Then,
TrE ′ [UA′→BEE ′ (ρA′ )] = UA′→BE (�W ρA′�W ). We also have
that

χ (B; EE ′)U (ρ̄ ) � χ (B; E )U (ρ ) = χ (B; E )U (ρ ). (C5)

Then, using the continuity of Holevo information, we obtain

χ (B; E )U (ρ) � χ (B; EE ′)U (θ (NS )) + f (ε, NS ), (C6)

where f (ε, Ns) is defined in (38). Now, we need to obtain an
upper bound on χ (B; EE ′)U (θ (NS )). This Holevo information
is calculated for a thermal state θ (NS ) sent over an isometric
channel UA′→BEE ′ in the set S and Bob performing homo-
dyne or heterodyne measurement. For this, we obtain the
parameters γ̄ G

11, γ̄ G
12, and γ̄ G

22, which are defined analogously
to (49)–(51), with the initial random variable QA replaced with
Gaussian random variable with mean zero and variance equal
to NS . In the following proposition, we obtain bounds on the
parameters γ̄ G

11, γ̄ G
12, and γ̄ G

22 with respect to γ11, γ12, and γ22

observed in discrete-modulation protocol.
Proposition 2. Let ρ = ∑

x rX (x)|αx〉〈αx|, where

αx = qAs + ipAt√
2

, (C7)

rX (x) = rQA (qAs ) rPA

(
pAt

)
, (C8)

θNS =
∫

dx rG(x)|αx〉〈αx|, (C9)

where rG(x) is the P function for a thermal state with mean
photon number NS , and s, t ∈ {1 . . . m}. If

√
χ2(ρ, θ (NS )) �

ε2 and Eve’s attack UA′→B′E ′ fulfills the constraints in Sec. III,
then,

γ̄ G
11 = γ11, (C10)

γ̄ G
22 � γ22 + γ22

∥∥ρ (− 1
2 )
∥∥2

∞ε + ε Tr[|u〉〈u|q̂2], (C11)

γ̄ G
12 � zγ12 +

∫
dqArG(qA)qA

∫
d pArG(pA)

× Tr[(I − �W )|α(qA, pA)〉〈α(qA, pA)|] Tr[|u〉〈u|q̂],

(C12)

where �W = ∑m2

i=1 |φi〉〈φi|, |u〉 represents an arbitrary unit
vector and |φi〉, with i ∈ {1, . . . , m2}, forms an orthonormal
basis for W = Span{|α1〉, |α2〉, . . . , |αm2〉}, and

z = min
i, j

∣∣∣∣
∫

dqA
∫

d pArG(qA)rG(pA)qAdi j (qA, pA)∑
s,t qAs r(qAs )r(pAt )bi j (s, t )

∣∣∣∣, (C13)

with di j (qA, pA) = 〈φi|α(qA, pA)〉〈α(qA, pA)|φ j〉, and
bi j (s, t ) = 〈φi|α(qAs , pAt )〉〈α(qAs , pAt )|φ j〉.

Proof. First, consider γ̄ G
22 defined as

γ̄ G
22 = Tr[q̂2N (�W θ (NS )�W )]

+ Tr[(1 − �W )(θ (NS ))] Tr[|u〉〈u|q̂2]. (C14)

Let us concentrate on the first term Tr[q̂2N
(�W θ (NS )�W )] = Tr [q̂2N (σ )], where σ = �W θ (NS )�W .
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Then,

Tr[q̂2N (σ )] = Tr
[
q̂2N

(
ρ ( 1

2 )ρ (− 1
2 )σρ (− 1

2 )ρ ( 1
2 )
)]

(C15)

� Tr[q̂2N (ρ)]
∥∥ρ (− 1

2 )σρ (− 1
2 )
∥∥

∞ (C16)

� γ22

∥∥ρ

(
− 1

2

)
σρ

(
− 1

2

)∥∥
∞. (C17)

To obtain (C16) from (C15), observe that

ρ−1/2σρ−1/2 � ‖ρ−1/2σρ−1/2‖∞ I (C18)

⇒ ρ1/2ρ−1/2σρ−1/2ρ1/2 � ‖ρ−1/2σρ−1/2‖∞ ρ (C19)

⇒ Tr[q̂2ρ1/2ρ−1/2σρ−1/2ρ1/2]

� ‖ρ−1/2σρ−1/2‖∞ Tr[q̂2ρ]. (C20)

Then, from linearity of channel, the inequality follows.
Now, we would like to obtain an upper bound on

‖ρ (− 1
2 )σρ (− 1

2 )‖∞. Let � = σ − ρ. Then,∥∥ρ (− 1
2 )σρ (− 1

2 )
∥∥

∞ = ∥∥ρ (− 1
2 )(� + ρ )ρ (− 1

2 )
∥∥

∞ (C21)

= ∥∥ρ (− 1
2 )�ρ (− 1

2 ) + I
∥∥

∞ (C22)

� ‖I‖∞ + ∥∥ρ (− 1
2 )�ρ (− 1

2 )
∥∥

∞ (C23)

� 1 + ∥∥ρ (− 1
2 )
∥∥2

∞‖�‖∞ (C24)

� 1 + ∥∥ρ (− 1
2 )
∥∥2

∞‖�‖1. (C25)

Now, ‖ρ − θ (NS )‖1 � ε. By data processing we obtain

‖ρ − σ‖1 � ε. (C26)

We thus obtain

Tr[q̂2N (σ )] � γ22 + γ22‖ρ (− 1
2 )‖2

∞‖�‖1 (C27)

� γ22 + γ22‖ρ (− 1
2 )‖2

∞ε. (C28)

Now, consider the following term: Tr [(I − �W )θ (NS )]. We
know that

‖ρ − θ (NS )‖1 � ε. (C29)

This implies

sup
0�M�1

Tr [M(θ (NS ) − ρ )] � ε. (C30)

Choosing M = I − �W , we obtain Tr [(I − �W )θ (NS )] � ε.
Then,

γ̄ G
22 � γ22 + γ22

∥∥ρ (− 1
2 )
∥∥2

∞ε + ε Tr[|u〉〈u|q̂2]. (C31)

Now, let us consider the parameter γ̄ G
12. Numerical checks,

similar to those stated in [40], reveal that Holevo informa-
tion is a monotonically decreasing function of this parameter.
Since we want an upper bound on the Holevo information, we
obtain a lower bound on this parameter. First, consider γ̄ G,1

12
defined as follows:

γ̄ G,1
12 =

∫
dqArG(qA)qA

∫
d pArG(pA)

∫
dqB Tr [N (�W |α(qA, pA)〉〈α(qA, pA)|�W )q̂B] (C32)

=
∫

dqArG(qA)qA

∫
d pArG(pA)

∫
dqB Tr

[
N

(∑
i, j

di j (qA, pA)|φi〉〈φ j |
)

q̂B

]
(C33)

=
∫

dqArG(qA)qA

∫
d pArG(pA)

∑
i, j

di j (qA, pA)
∫

dqB Tr [N (|φi〉〈φ j |)q̂B] (C34)

=
∑
i, j

∫
dqArG(qA) qA

∫
d pArG(pA)di j (qA, pA)

∫
dqB Tr [N (|φi〉〈φ j |)q̂B] (C35)

=
∑
i, j

fi j

∫
dqB Tr [N (|φi〉〈φ j |)q̂B], (C36)

where di j (qA, pA) = 〈φi|α(qA, pA)〉〈α(qA, pA)|φ j〉 and fi j = ∫
dqA

∫
d pArG(qA)rG(pA)qAdi j (qA pA). We can write γ12 defined in

(50) as

γ12 =
∑
s,t

qAs r
(
qAs

)
r
(
pAt

)
Tr

[
N

(∣∣α(qAs , pAt

)〉〈
α
(
qAs , pAt

)∣∣)q̂B
]

(C37)

=
∑
s,t

qAs r
(
qAs

)
r
(
pAt

)
Tr

[∑
i, j

bi j (s, t )N (|φi〉〈φ j |)q̂B

]
(C38)

=
∑
i, j

∑
s,t

qAs r
(
qAs

)
r
(
pAt

)
bi j (s, t ) Tr [N (|φi〉〈φ j |)q̂B] (C39)

=
∑
i, j

gi j Tr [N (|φi〉〈φ j |)q̂B], (C40)
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where bi j (s, t ) = 〈φi|α(qAs , pAt )〉〈α(qAs , pAt )|φ j〉 and gi j =∑
s,t qAs r(qAs )r(pAt )bi j (s, t ). We can then express γ̄ G,1

12 in
terms of γ̄12 as follows:

γ̄ G,1
12 =

∑
i, j

fi j

gi j
gi j Tr [N (|φi〉〈φ j |)q̂B] (C41)

� z γ12, (C42)

where z = mini, j | fi j

gi j
|. Let us now define γ̄ G,2

12 as

γ̄ G,2
12 =

∫
dqArG(qA)qA

∫
d pArG(pA) Tr[(I − �W )

× |α(qA, pA)〉〈α(qA, pA)|] Tr[|u〉〈u|q̂B]. (C43)

We can calculate the above term numerically.
We can now combine (C42) and (C43) to obtain the fol-

lowing lower bound on γ̄ G
12 = γ̄ G,1

12 + γ̄ G,2
12 :

γ̄ G
12 � zγ12 +

∫
dqArG(qA)qA

∫
d pArG(pA) Tr[(I − �W )

× |α(qA, pA)〉〈α(qA, pA)|) Tr(|u〉〈u|q̂B]. (C44)

This concludes the proof. �
Corollary 1. Let ρ = ∑

x rX (x)|αx〉〈αx|, where

αx = qAs + ipAt√
2

, (C45)

rX (x) = rQA (qAs ) rPA (pAt ), (C46)

θNS =
∫

dx rG(x)|αx〉〈αx|, (C47)

where rG(x) is the P function for a thermal state with mean
photon number NS , and s, t ∈ {1, . . . , m}. If

√
χ2(ρ, θ (NS )) �

ε2 and Eve’s attack UA′→B′E ′ fulfills the constraints in Sec. III,
then,

γ̄ G
11 = γ11, (C48)

γ̄ G
22 � γ22 + γ22

∥∥ρ (− 1
2 )
∥∥2

∞ε, (C49)

γ̄ G
12 � zγ12, (C50)

where �W = ∑m2

i=1 |φi〉〈φi| and |φi〉, with i ∈
{1, . . . , m2}, forms an orthonormal basis for W =
Span{|α1〉, |α2〉, . . . , |αm2〉}, and

z = min
i, j

∣∣∣∣∣
∫

dqA
∫

d pArG(qA)rG(pA)qAdi j (qA, pA)∑
s,t qAs r

(
qAs

)
r
(
pAt

)
bi j (s, t )

∣∣∣∣∣, (C51)

with di j (qA, pA) = 〈φi|α(qA, pA)〉〈α(qA, pA)|φ j〉 and
bi j (s, t ) = 〈φi|α(qAs , pAt )〉〈α(qAs , pAt )|φ j〉.

Proof. In Proposition 2, choose |u〉 to be in the kernel of q̂
(for example, a position-squeezed vacuum state that converges
to a position eigenstate). �

In Proposition 2, we obtain a lower bound on γ̄ G
12 and upper

bound on γ̄ G
22. Now, we can follow the steps stated in Sec. V

to obtain an upper bound on χ (B; E )U (θ (NS )). Consider a state

σABEE ′ = Tr [UA′→BEE ′ (ψ (n̄))AA′ ], where |ψ (n̄〉AA′ is TMSV
as defined in (69). Let the covariance matrix of σAB be[

γ̄ EB
11 I2 γ̄ EB

12 σZ

γ̄ EB
12 σZ γ̄ EB

22 I2

]
. (C52)

We can use the “PM to EB” mapping defined in Sec. V B
to obtain bounds on parameters γ̄ EB

11 , γ̄ EB
12 , and γ̄ EB

22 of state
σAB from bounds on γ̄11, γ̄12, and γ̄22. Then, invoke the Gaus-
sian extremality theorem to state that the Holevo information
χ (B; E )U (θ (NS )) is maximized by a Gaussian state with the
covariance matrix given in (C52). By combining the upper
bound obtained on χ (B; E )U (θ (NS )) with (C6), we obtain an
upper bound on χ (B; E )U (ρ).

The method outlined above does succeed in obtaining a
security proof for discrete-modulation protocols with no de-
pendence on the parameters c1 and c2. However, as of now it
seems that this method is numerically intensive.
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