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Quantum-enhanced sensing has a goal of enhancing a parameter sensitivity with input quantum states, while
quantum illumination has a goal of enhancing a target detection capability with input entangled states in a
heavy noise environment. Here we propose a concatenation between quantum-enhanced sensing and quantum
illumination that can take quantum advantage over the classical limit. First, phase sensing in an interferometry
is connected to a target sensing via quantum Fisher information. Second, the target sensitivity is investigated in
noisy quantum-enhanced sensing. Under the same input state energy, for example, N-photon entangled states can
exhibit better performance than a two-mode squeezed vacuum state and a separable coherent state. Incorporating
a photon-number difference measurement, finally, the noisy target sensitivity is connected to a signal-to-noise
ratio which is associated with a minimum error probability of discriminating the presence and absence of the
target. We show that both the target sensitivity and the signal-to-noise ratio can be enhanced with increasing
thermal noise.

DOI: 10.1103/PhysRevA.103.012411

I. INTRODUCTION

Quantum-enhanced sensing (QES) takes quantum advan-
tage over classical strategies via input entanglement and
squeezing [1–3]. For a single-parameter sensing, a parameter
sensitivity is lower bounded by the inverse of quantum Fisher
information (QFI) [4] which provides maximum information
we can extract in a small change of the parameter, where the
mean value of the parameter is equal to the true value of the
parameter. According to input states, the sensitivity of a phase
is lower bounded by the standard quantum limit (1/

√
N) with

coherent states or by the Heisenberg limit (1/N) with NOON
states and squeezed states, where N is a mean photon number
of an input state. In a noisy scenario, we can explore noisy
quantum-enhanced sensing [5] as well as quantum illumina-
tion (QI) [6–8] that discriminates the presence and absence of
a target. For a QI which detects the target with entangled states
in a heavy noise environment, the target is simply modeled
by a beam splitter in the laboratory. Using entangled states,
we can enhance the possibility of detecting the target even
if there is no entanglement in the output modes. Specifically,
two-mode squeezed vacuum (TMSV) states can exhibit quan-
tum advantage over classical states in QI [7] with no output
entanglement, where it was not shown how to achieve the
quantum advantage with any measurement setup.

QI using an input TMSV state was first implemented
with direct photon counting on output modes [9], where the
signal-to-noise ratio (SNR) of the TMSV state was higher
than the SNR of a correlated thermal state. Regarding a
specific measurement setup, Guha and Erkmen proposed a
measurement scheme with an optical parametric amplifier that
achieves a half of the bound [10]. It was implemented by
Zhang et al. [11], showing 20% improvement of the SNR over
optimal classical setup. Later, Zhuang, Zhang, and Shapiro
proposed another measurement scheme [12] in which sum-

frequency generation with feed forward can achieve the bound
asymptotically. In addition to those works, there were several
investigations on the QI both theoretically [13–28] and exper-
imentally [29–33].

Both QI and QES take quantum advantage with input
entangled states, but the former can achieve it without out-
put entanglement [7] and the latter can do it with output
entanglement [34]. Moreover the QI is based on quantum dis-
crimination and the QES is based on quantum estimation [3].
Although they exhibit different characteristics, the QI and the
QES can be connected quantitatively by a target sensitivity. In
Fig. 1(a), we draw a schematic for concatenating QI and QES.

II. EQUIVALENCE BETWEEN DIFFERENT
PARAMETER SENSITIVITIES

The most well-known QES is to estimate a phase with an
unbiased estimator whose mean value is equal to the true value
of the phase, where the phase sensitivity is induced by a path
length difference. Including a 50:50 beam splitter, we show
that the phase sensing can be equivalent to a target sensing
with a low reflectivity via QFI. For pure states, the QFI is
given by

H = 4

[(
∂ab〈ψx|

∂x

)(
∂|ψx〉ab

∂x

)
−

∣∣∣∣ab〈ψx|∂|ψx〉ab

∂x

∣∣∣∣
2]

,

where |ψx〉ab = Ûab(x)|ψ〉ab. First, we look into the target
which is replaced by a beam splitter. A general beam splitting
operation [35,36] is represented by

B̂ab(θ, ϕ) = exp

[
θ

2
(â†b̂eiϕ − âb̂†e−iϕ )

]

≈ exp[η(â†b̂eiϕ − âb̂†e−iϕ )] ≡ B̂ab(η, ϕ), (1)
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FIG. 1. (a) Schematic for quantum illumination (QI) via
quantum-enhanced sensing (QES), which consists of three steps.
(b) (Step 1) Equivalence between sensing a phase (φ) and sensing
a target reflectivity (η � 1) via quantum Fisher information. (Step
2) Noisy QES in Fig. 2, and (Step 3) Noisy QES is adapted for QI
which is based on a target detection with SNR in Fig. 3.

where η = sin(θ/2) is the reflectivity of a beam splitter, and
ϕ is the phase difference between the transmitted and re-
flected fields. Assuming θ � 1, the beam splitting operation
is approximated as B̂ab(η, ϕ). Applying the beam splitting op-
eration on a two-mode input state as |ψη〉ab = B̂ab(η, ϕ)|ψ〉ab,
we derive the QFI

H = − 4[ ab〈ψ |(â†b̂eiϕ − b̂†âe−iϕ )2|ψ〉ab

+ | ab〈ψ |(â†b̂eiϕ − b̂†âe−iϕ )|ψ〉ab|2]. (2)

At ϕ = π/2, the QFI is given by H = 4[〈(â†b̂ + b̂†â)
2〉 −

|〈â†b̂ + b̂†â〉|2]. We can derive the same QFI formula for
sensing a phase in interferometry, as shown in Fig. 1(b).
A two-mode input state impinges on a 50:50 beam splitter,
and then experiences a phase shifter with an opposite sign
on each arm. Using the 50:50 beam splitting operation of
â† → 1√

2
(â† − ie−iϕ b̂†) and b̂† → 1√

2
(b̂† − ieiϕ â†), we derive

the output state

|ψφ〉ab = eiφ(â†â−b̂†b̂)B̂ab

(π

2
, ϕ + π

2

)
|ψ〉ab

= B̂ab

(π

2
, ϕ + π

2

)
eiφ(â†b̂eiϕ−âb̂†e−iϕ )|ψ〉ab, (3)

where we employ the unitary relation of the beam splitting
operation, B̂†

abB̂ab = B̂abB̂†
ab = Î . Then, the associated QFI be-

comes the same as Eq. (2). In an ideal scenario, thus, sensing
a phase (φ) is equivalent to sensing a target (η � 1) via QFI.
Given a unitary operation Ûab(x) = eixÔab , in general, we can
derive the similar relation if the other unitary operation is
transformed into Ûab(y) = ÂeiyÔab , where Â is independent
of a parameter y. The sensitivity of x is equivalent to the
sensitivity of y by their QFI formula.

When one of the input modes is a coherent state such as
|ψ〉ab = |α〉a|
〉b, the QFI of Eq. (2) is given by

H|α〉a|
〉b = 4
[〈b̂†b̂〉 + 2|α|2�X 2

�+π/2

]
, (4)

where �X 2
�+π/2 = 〈X̂ 2

�+π/2〉 − |〈X̂�+π/2〉|2 is the variance of

a quadrature operator X̂�+π/2 = (b̂e−i� − b̂†ei�)/i
√

2. Note
that α = |α|eiθ and � = θ − ϕ. Since the optimal condition
of the other input mode is antisqueezed in the direction of
� + π/2, it is best to inject a squeezed vacuum state in the
input mode b [37]. When one of the input modes is a vacuum
state such as |ψ〉ab = |0〉a|
〉b, the QFI is given by 4〈b̂†b̂〉
such that the optimal condition is proportional to the mean
photon number of the other input mode. The best thing is to
inject a coherent state in the input mode b.

III. NOISY QUANTUM-ENHANCED SENSING

Including thermal noise and loss, we manipulate the target
sensitivity in noisy quantum-enhanced sensing. For mixed
states, we utilize the QFI formula [38] that is given by H =∑

nm
2|〈φn|(∂ηρη )|η=0|φm〉|2

(λn+λm ) , where (∂ηρη ) is the derivative of the
output state ρη. λm and |φm〉 are the eigenvalues and the eigen-
states of ρη=0, respectively. Note that a higher QFI represents
a better target sensitivity. In Fig. 2(a), we insert a thermal state
into the input mode b as a thermal noise effect, and one of the
output modes is discarded. Based on the QFI of η (� 1) [18],
we consider N-photon entangled states [39] which are given
by the formula

∑N
n=0 an|N − n, n〉ac, where

∑N
n=0 |an|2 = 1.

We describe the generation scheme of the N-photon entangled
states in Appendix A. In the constraint of a total input state
energy, we show that N-photon entangled states can beat the
performance of a TMSV state regardless of the amount of
thermal noise. The gain in the QFI of the N-photon entangled
state versus the QFI of the TMSV state increases with N ,
where the coefficients of the N-photon entangled states are
optimized.

The QFI of the N-photon entangled state is derived as

HN = 4

1 + Nb

N−1∑
n=0

(n + 1)a2
n+1a2

n

a2
n + a2

n+1

( Nb
1+Nb

) , (5)

where Nb is the mean photon number of thermal noise. At
Nb = 0, all the photons of the N-photon entangled state are
located on the signal mode as |N, 0〉ac which is an optimal
state for the vacuum noise. In a range of N � 4, we obtain
that numerically the QFI of the N-photon entangled state is
larger than the QFI of the TMSV state, irrespective of Nb. The
QFIs of a coherent state and a TMSV state are given by HC =

2Ns
2Nb+1 and HTMSV = 2Ns

(Nb+1)[1+( Ns
Ns+2 )( Nb

Nb+1 )]
respectively, where

Ns = 〈n̂a + n̂c〉 is the total input mean photon number. Since
the TMSV state and the separable coherent state (|α〉a|α〉c)
are equally distributed in both signal and idler modes, the
QFI of the N-photon entangled state is twice of the QFI of
the other states at Nb = 0. In Fig. 2(b), we observe that, at
〈n̂a + n̂c〉 = 4, the QFI of a four-photon entangled state is
about 1.24 (1.04) times larger than the QFI of the separable
coherent (or TMSV) state at Nb = 10. The corresponding
coefficients are given in Appendix B. Correspondingly, the
mean photon number of the signal (〈n̂a〉) decreases from 4 to
3 with Nb whereas that of the idler (〈n̂c〉) increases from 0 to 1.
This implies that, given a same input state energy, asymmetric
entangled states can show better performance than symmetric
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FIG. 2. (a) Noisy quantum-enhanced sensing on a target reflec-
tivity. O represents an optimal measurement, and ρth is a thermal
noise with mean photon number Nb. Under the constraint of input
energy 〈n̂a + n̂c〉 = N , we show (b) the gain in the QFI as a function
of Nb: a 4-photon entangled state versus a TMSV state (red curve
with squares), or a separable coherent state (black curve with circles)
that is considered as a reference state. (c) Gain in the QFI as a
function of N from the N-photon entangled state, at Nb = 10, which
is almost the saturating point.

entangled states in the target sensitivity. At Nb = 10, which is
almost the saturation point of the QFIs, the gain in the QFI
of an N-photon entangled state over the QFI of the separable
coherent (or TMSV) state increases with the number N , as
shown in Fig. 2(c).

The target sensitivity is lower bounded by �η � 1/
√

mH ,
where H is the QFI and m is the photon flux. Thus, actual
enhancement is represented with the QFI multiplied by the

photon flux. Under the same photon flux, e.g., m = 10 000,
for comparison the amount of gain is obtained as m(HN −
HTMSV) = 6000 at N = 32 and 400 at N = 4. The enhance-
ment increases with the photon flux.

Since the QFI of the N-photon entangled state requires the
corresponding correlated measurement that is derived with the
symmetric logarithmic derivative of ρη calculated at η = 0
[38], it is hard to implement in a laboratory. In the next part,
we propose a feasible measurement setup to connect target
sensitivity and target detection.

IV. SENSING A TARGET WITH A SPECIFIC
MEASUREMENT SETUP

We consider an implementable measurement setup for tar-
get sensitivity and target detection in a noisy environment.
The target sensitivity is simply evaluated with the error prop-
agation relation �η =

√
�M(η)2/| ∂M(η)

∂η
|, where �M(η)2 =

〈M̂2〉 − 〈M̂〉2 and 〈M̂〉 = M(η). The target detection is defined
as SNR ≡ [M(η) − M(0)]/[

√
�M(η)2 +

√
�M(0)2]. Com-

bining both formulas, we derive the following relation:

SNR = M(η) − M(0)

�η
∣∣ ∂M(η)

∂η

∣∣ +
√

�M(0)2
. (6)

Given a M(η), we observe that the SNR is inversely propor-
tional to �η. We can infer that the better the target sensitivity
is, the more probable the target detection is.

The SNR is associated with a minimum error probability
of distinguishing between the presence and absence of a tar-
get. In the Gaussian regime, the minimum error probability
is given by e−MRG/2

√
πMRG [10], where M (	 1) is the

number of pairs for returned and idler modes, and RG =
(n1 − n0)2/2(σ0 + σ1)2 is the error exponent. n1 (n0) is the
mean photon number of the presence (absence) of the target.
σ1 (σ0) is the standard deviation of the presence (absence)
of the target. In our non-Gaussian regime, we simply define
the error exponent as RnG ≡ (n1 − n0)2/(σ0 + σ1)2 ≡ SNR2,
where SNR = √

RnG we call an effective SNR.
We assume that an input thermal noise is separately dis-

tributed after a beam splitting operation as ρ
(a)
th (η2Nb) ⊗

ρ
(b)
th ((1 − η2)Nb) in the condition of η2Nb � 1, which satisfies

the Gaussian Rényi-2 mutual information [40] of the output

thermal noise being I2 = ln [1 + 2η2(1 − η2) N2
b

1+2Nb
] ≈ 0.

In Fig. 3(a), we consider a photon-number difference mea-
surement after combining the reflected signal and the idler by
a 50:50 beam splitter, whose transformation is given by d̂† →

1√
2
(b̂† + eiϕ ĉ†) and ê† → 1√

2
(ĉ† − e−iϕ b̂†). Using the photon-

number difference measurement, we can distinguish the
presence of a target from the absence of one, distinctly. In the
absence of the target, the output state (ρ (b)

th ⊗ tra[|ψ〉ac〈ψ |]) is
always observed as M(η) = 〈b̂†ĉe−iϕ + ĉ†b̂eiϕ〉 = 0, in which
the measurement observable M̂ = n̂d − n̂e is transformed into
(b̂†ĉe−iϕ + ĉ†b̂eiϕ ) by the reverse 50:50 beam splitting opera-
tion. In the presence of the target, we measure the interference
terms in the modes b and c. However, there is an exception that
M(η) = 0 can indicate the presence of the target with an input
pure two-mode Gaussian state having zero first moments,
since the off-diagonal elements of the output covariance
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FIG. 3. (a) Measurement setup, (b) target sensitivity, and
(c) signal-to-noise ratio for the reflected signal and the idler modes,
as a function of the mean photon number of thermal noise: a
four-photon entangled state (blue curve with circles) and a sep-
arable coherent state (red curve with squares) at η = 10−3 and
〈n̂a + n̂c〉 = 4. The 50:50 beam splitter results in the transformation
d̂† → 1√

2
(b̂† + ĉ†) and ê† → 1√

2
(ĉ† − b̂†).

matrix have the relations [41] 〈X̂bX̂c〉 = −〈P̂bP̂c〉 and 〈X̂bP̂c〉 =
〈P̂bX̂c〉 = 0. The measurement observable is reformulated
with the corresponding position and momentum oper-
ators, 〈b̂†ĉe−iϕ + ĉ†b̂eiϕ〉 = 〈(X̂bX̂c + P̂bP̂c) cos ϕ + (X̂bP̂c −
P̂bX̂c) sin ϕ〉. For that reason, we do not consider a TMSV state
under the photon-number difference measurement.

Based on the photon-number difference measurement, we
explore whether entangled states can exhibit better perfor-
mance than a separable coherent state. For example, we
consider a four-photon entangled state in comparison with
the separable coherent state, at the low reflectivity of η =

10−3. For the target sensitivity, the four-photon entangled state
initially deteriorates with Nb but improves from Nb ≈ 0.5,
as shown in Fig. 3(b). Meanwhile the performance of the
separable coherent state deteriorates with Nb. For the SNR,
correspondingly, the four-photon entangled state exhibits a
similar tendency, as shown in Fig. 3(c). With increasing ther-
mal noise, at 〈n̂a + n̂c〉 = 4, the mean photon number of the
signal (〈n̂a〉) decreases from 4 to 3 whereas that of the idler
(〈n̂c〉) increases from 0 to 1. The corresponding coefficients
are given in Appendix B.

The positive contribution of thermal noise is explained as
follows. After interaction of the coherent state with thermal
noise by a beam splitter and then tracing out the one of the
output modes, there is no correlation in the final state, while
the final mean photon number is a sum of the transmitted
thermal noise and the reflected coherent state. However, for
N-photon entangled states, there is correlation in the final
state, while the final mean photon number is a product of the
transmitted thermal noise and the coefficients of the reflected
initial state. Due to the final state correlation and quadratic
terms of the final mean photon number, the transmitted ther-
mal noise contributes to enhance the sensitivity and the SNR
in the regime of Nb � 0.5. Therefore, N-photon entangled
states can enhance not only the target sensitivity but also the
target detection capability with increasing thermal noise. Note
that there is a similar behavior of enhancing phase sensitivity
with increasing thermal noise [42,43].

V. SUMMARY AND DISCUSSION

We made a connection between quantum-enhanced sens-
ing and quantum illumination by starting with a scenario in
which the phase sensitivity can be equivalent to the target
sensitivity at low reflectivity. Including thermal noise and
loss, we showed that the target sensitivity can be more en-
hanced with input of N-photon entangled states than with a
TMSV state. Asymmetric entangled states exhibited better
performance than the symmetric entangled states. By using
a photon-number difference measurement after a 50:50 beam
splitter, we found that the target sensitivity can be proportional
to the target detection, resulting in both being enhanced with
increasing thermal noise.

For the N-photon entangled states, there was a discrepancy
between the QFI and the sensitivity with the error propagation
relation (�η). �η is enhanced with increasing thermal noise
but the QFI decreases with it. Since only the first-order field
operation of the beam splitter was counted in the derivation
[18] as (∂ηρη )|η=0 ≈ tra[(â†b̂ − b̂†â), |ψ〉ac〈ψ | ⊗ ρ

(b)
th ] in the

QFI formula, we could not observe the effect of the high-order
interference in the output state. However the �η included the
higher-order field operations of the beam splitter, such that we
could observe the effect of the high-order interference in the
output state.

Our SNR results show that thermal noise in a target detec-
tion can be beneficial when η � 1. It is therefore interesting
to apply the SNR scenario to quantum ghost imaging [44]
and quantum-limited loss sensing [45] which consider input
entangled states in heavy noise environments. As a further
study, our measurement scheme can be modified even to uti-
lize TMSV states.
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FIG. 4. Generation scheme: (a) four-photon entangled state, (b)
N-photon entangled state. BS stands for beam splitter. We do not
inject any photon in the additional input modes. There is no click
event in the additional output modes.
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APPENDIX A: GENERATION SCHEME OF N-PHOTON
ENTANGLED STATES

We propose a generation scheme of N-photon entangled
states. Previously, two-photon entangled states have been gen-
erated with two beam splitters and two single-photon states
[46]. Both single-photon states are impinged on a beam split-
ter, and then one of the output modes goes through a beam
splitter with no detection in an additional mode. Based on this
idea, first, we describe how to produce four-photon entangled
states in Fig. 4(a). Two two-photon states are impinged on
a beam splitter, and then each output mode goes through a
beam splitter with no detection in an additional mode. After
that, one of the output modes goes through another beam
splitter with no detection in the additional mode. The final out-
put state is given by |4-photon〉ac = ∑4

n=0 C4−n,n|4 − n, n〉ac,
and the success probability is derived as Ps = ∑4

n=0 |C4−n,n|2.
C4−n,n is a function of four different reflectivities of the beam
splitters. Note that the coefficients are not normalized. For
N-photon entangled states, in Fig. 4(b), we inject N − n and
n photons into a beam splitter, and then the output two-mode
state goes through sequentially N − 1 different beam splitters
with no detection in the additional modes. The final output
state is given by |N-photon〉ac = ∑N

n=0 CN−n,n|N − n, n〉ac,
and the success probability is derived as Ps = ∑N

n=0 |CN−n,n|2.

)b()a(

)d()c(

FIG. 5. Absolute values of coefficients optimized for QFI and
SNR using a four-photon entangled state, as a function of the mean
photon number of thermal noise (Nb): |a0| (blue dot), |a1| (black
square), |a2| (green diamond), |a3| (purple triangle), |a4| (red inverted
triangle). (a) The rate of the coefficients for QFI, and (b) the cor-
responding mean photon number in the input mode a. (c) The rate
of the coefficients for SNR, and (d) the corresponding mean photon
number in the input mode a.

The coefficients are determined by the different reflectivities
of the N beam splitters. The success probability depends on
the coefficients of the N-photon entangled state that we want
to generate.

APPENDIX B: ABSOLUTE VALUES OF COEFFICIENTS
OPTIMIZED FOR QFI AND SNR

In Fig. 5, we show the absolute values of coefficients which
are optimized for QFI and SNR using four-photon entangled
states

∑4
n=0 an|4 − n, n〉ac. Note that �η has shown the same

coefficients as the SNR. At Nb = 0, there exists only the coef-
ficient a0. At Nb > 0, the coefficients start with a descending
order as |a0| > |a1| > |a2| > |a3| > |a4|. With increasing Nb,
the |a0| decreases while the absolute values of the other co-
efficients increase. At 0 < Nb < 2, the values of |a0| and |a1|
cross over. In Fig. 5(a), we note that the coefficient |a4| has
nonzero values with increasing Nb. Based on the optimized
coefficients, we calculate the mean photon number in the
input mode a as a function of Nb. With increasing Nb, the
mean photon number 〈n̂a〉 decreases from 4 to 3, as shown
in Figs. 5(b) and 5(d). It is almost saturated at Nb = 10. From
the above optimization, we find that more photons are sent to
the input mode a than the other mode c in Figs. 2 and 3. This
implies that, given the same input state energy, asymmetric
entangled states can show better performance in the target
sensitivity and the target detection.
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