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Quantum networking with short-range entanglement assistance
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We propose an approach to distribute high-fidelity long-range entanglement in a quantum network assisted by
the entanglement supplied by auxiliary short-range paths between the network nodes. Entanglement assistance
in the form of shared catalyst states is utilized to maximize the efficiency of entanglement concentration
transformations over the edges of the network. The catalyst states are recycled for use in adaptive operations
at the network nodes and replenished periodically using the auxiliary short-range paths. The rate of long-range
entanglement distribution using such entanglement assistance is found to be significantly higher than possible
without using entanglement assistance.
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I. INTRODUCTION

Long-range entanglement in a quantum network [1] en-
ables promising applications ranging from unconditionally
secure communications [2] and loophole-free tests of quan-
tum nonlocality [3] to a network of quantum clocks [4] and
quantum-enhanced interferometry [5]. The entanglement gen-
erated initially in such networks is short range, that is, in the
form of entangled states on edges between neighboring nodes.
Subsequently, long-range entanglement may be obtained be-
tween two remote nodes by identifying a path over the primary
entangled edges and connecting them via entanglement swap-
ping operations [6] at the intermediate nodes such as in the
quantum repeater [7] approach.

A quantum network should be seen as more than an in-
terlaced collection of linear quantum repeaters. The latter
utilize local quantum operations at the network nodes aided
by classical communication (LOCC), such as filtration [8] or
entanglement distillation [9], to distribute entanglement over
long distances. Yet, existing repeater protocols do not fully
exploit the entanglement along auxiliary short-range paths
between the nodes of the network that may be afforded, for
example, by a dynamic topology [10], heterogenous links
involving different degrees of freedom of the flying qudits
[11], or load sharing in the quantum data plane of the network
[12]. The inefficient utilization of short-range entanglement
in a quantum network hinders high-fidelity long-range entan-
glement distribution where modest rates limit the quantum
advantage of the potential applications.

In this work we propose an approach to efficiently utilize
short-range entanglement assistance for high-fidelity long-
range entanglement distribution in a quantum network. Here,
auxiliary short-range paths supply catalyst states shared be-
tween network nodes that enable a transformation of the
entanglement assisted local operations and classical commu-
nication (ELOCC) class [13]. This class of operations allows
more general entanglement transformations in the network
than LOCC. We utilize a catalytic ELOCC transformation

(catalysis) to concentrate the entanglement content of primary
low-fidelity states on network edges with a higher success
probability compared to LOCC. Hence, a small number of the
primary states are required to obtain a state with a high fidelity
to a Bell state that is necessary for long-range entanglement
distribution.

Catalysis is a one-shot procedure and if it succeeds the
catalyst state is recovered intact along with the desired Bell
state creation. The same catalyst state may be reused up to an
expected number of times determined by the catalysis success
probability. If the procedure fails, no Bell state is obtained
and the catalyst state is lost as well. For sustained long-range
entanglement distribution the primary states are continuously
generated over the edges along the path connecting the remote
nodes in a quantum repeaterlike manner. Whereas, the stock of
catalyst states needs to be replenished only periodically using
the auxiliary short-range paths between neighboring nodes
allowed by the topology of the network (see Fig. 1).

Our approach therefore goes beyond the linear repeater
paradigm and establishes a way of quantumly aggregating
the entanglement resources provided by short-range paths in
a quantum network. Together with its resource-efficient and
one-shot feature, this can significantly enhance the long-range
entanglement distribution rate between remote nodes in the
network compared to when no auxiliary short-range entangle-
ment assistance is available.

The paper is organized as follows. In Sec. II we describe
the theory of entanglement catalysis. Next, in Sec. III we
describe the model for the network edges, catalytic trans-
formations over the network edges, and the rate of remote
entanglement distribution in the network. We conclude with
a summary of the results and open questions in Sec. IV.

II. ENTANGLEMENT CATALYSIS

In catalysis, two parties at network nodes A and B utilize
a shared entangled pure state |C〉 (the catalyst) to achieve
certain entanglement transformations forbidden using only
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FIG. 1. (a) Schematic of a quantum network. Yellow-colored
edges comprise the long-range entanglement distribution path con-
necting remote nodes A and E . Green-colored edges show available
auxiliary short-range paths between neighboring nodes. (b) An
ELOCC based long-range entanglement distribution path. Neighbor-
ing half-nodes share n copies of a state ρ on qubit pairs (ai, bi )i=n

i=1

(yellow spheres) and a catalyst state |C〉 stored on the qubit pair
(an+1, bn+1) (green spheres).

LOCC [14]. Rather than being consumed, the catalyst state
is recovered after the transformation, i.e.,

σ �→
LOCC

ρ

σ ⊗ |C〉 〈C| →
LOCC

ρ ⊗ |C〉 〈C| , (1)

where σ, ρ, |C〉 are bipartite states shared by A and B. More
generally, catalysis can increase the success probability of
even some probabilistic entanglement transformations com-
patible with LOCC [15]. The set of possible catalysts for a
desired transformation can be determined from the Schmidt
coefficients of the initial and final states [13]. For certain
pairs of pure states, σ = |ψ〉 〈ψ | and ρ = |φ〉 〈φ|, a catalyst
enabling a deterministic transformation, i.e., with Pcat(I →
F ) = 1, from an initial state |I〉 = |ψ〉 |C〉 to a final state
|F 〉 = |φ〉 |C〉 can be found. This is possible if and only if the
entanglement monotones [15], Ek (X ) := 1 − ∑k−1

j=0 λX
k , X =

I, F , that are functions of the ordered Schmidt coefficients,
λ̄X = (λX

1 � λX
2 � · · · � λX

d ), of the initial and final states are
nonincreasing,

Ek (I ) � Ek (F ) ∀k ∈ [1, d], (2)

where d is the larger among the dimensions of the initial and
final states.

For some pairs of |ψ〉 , |φ〉 no catalyst can make the
transformation |I〉 → |F 〉 deterministic, i.e., P(I → F ) �= 1,
but can still increase the success probability as compared to
just LQCC, i.e., Pcat(I → F ) > P(ψ → φ) [16]. The success
probability in this case is given by

Pcat(I → F ) = min
1�k�d

Rk (I, F ), (3)

where Rk (I, F ) := Ek (I )/Ek (F ), k ∈ [1, d] is the ratio of the
entanglement monotones of the initial and final states. In gen-
eral, catalysts fulfilling the inequality in Eq. (2) or maximizing
the right-hand side of Eq. (3) can be easily obtained using lin-
ear programming techniques [17]. Catalysis has been shown
to be more powerful than LOCC also for the case when σ and
ρ are genuinely mixed states [18], although no straightforward
criteria such as the inequality in Eq. (2) exists in this case.

Pure state probabilistic catalysis is already sufficient, how-
ever, to boost the long-range entanglement distribution rate
in a quantum network with assistance from the entanglement
along auxiliary short-range paths. We illustrate this in a case
where both the primary and catalyst states are two-qubit en-
tangled states, although in general they may have different
dimensions. We first motivate the form of the primary states
generated on the network edges followed by a description of
the catalysis process assuming availability of the catalyst. The
model of the communication channel over the network edges
accounts for polarization-dependent losses (PDL) in the chan-
nel which is an important mechanism affecting the quality
of the distributed remote entangled states as demonstrated by
much current interest in strategies [19–21] to mitigate PDL.
We then discuss how to obtain the said catalysts and demon-
strate the enhancement that entanglement assistance obtained
via auxiliary short-range paths can provide to the long-range
entanglement distribution rate.

III. ENTANGLEMENT DISTRIBUTION USING
SHORT-RANGE ENTANGLEMENT ASSISTANCE

A. Polarization-dependent losses over the network edges

Consider a source, S, of polarization entangled photon
pairs on an edge A-B along a path connecting two re-
mote nodes A and E in a quantum network as shown in
Fig. 1. S produces photon pairs in the state, |ψ+〉 = (|HV 〉 +
|V H〉)/

√
2, which travel through the connecting optical fibers

of length, L0, to heralded quantum memories, e.g., [22],
at A and B. However, due to PDL in the fiber and other
connecting elements the state vector of a single qubit in a
superposition state undergoes the transformation, ζ0 |H〉 +
ζ1 |V 〉 → ζ0(

√
tH |H〉 + √

1 − tH |0〉) + ζ1 |V 〉. That is, a hor-
izontally polarized photon gets effectively mixed with the
vacuum mode at a beamsplitter with transmittivity 0 < tH <

1, whereas a vertically polarized photon suffers no relative
loss. The state of the two quantum memories conditioned on
heralding, which we assume occurs with probability P0, is
therefore ρ = |α〉 〈α| with

|α〉 = √
α |HV 〉 + √

1 − α |V H〉 , (4)

where α = tL
H/(tL

H + tR
H ) and tL,R

H are the transmittivities of the
left and the right channels relative to the source. In general,
since α �= (1/2), the primary entanglement is in the form of
partially entangled states of fidelity, FL0 (ρ) = | 〈ψ+|α〉 |2 =
1
2 + √

α(1 − α) < 1.
A direct utilization of the states ρ of the form in Eq. (4)

to obtain a long-range entangled state, ρAE , via entanglement
swapping at intermediate nodes using Bell state measurements
and corrective unitaries based on the measurement results,
leads to a rapid decrease of the expected fidelity of ρAE .
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Assuming primary entanglement generation over each edge as
described above, the expected fidelity of ρAE approaches the
distillability threshold exponentially fast with the total length,
i.e., 〈ψ+| ρAE |ψ+〉 − 1

2 ∼ [α(1 − α)]N/2, where N = Ltot/L0

is the number of edges along the path. Since much higher
temporal resources are required for the entanglement manipu-
lation of lower fidelity states to obtain a high-fidelity state, the
rate of directly obtaining the latter over long range is greatly
suppressed. The fidelity of the entangled states over each edge
therefore needs to be enhanced before the entanglement con-
nections are made in order to achieve a reasonable long-range
entanglement distribution rate.

B. Catalytic entanglement transformations
over the network edges

An optimal catalytic transformation can efficiently provide
Bell states over the network edges utilizing a few copies of
the state ρ and one copy of a nonmaximally entangled cat-
alyst, |C〉 = √

c |HV 〉 + √
1 − c |V H〉 , 0.5 < c < 1. For this,

at least (n + 1)-qubit quantum memories are required at each
half-node so that n copies of the state ρ and one copy of the
catalyst shared with the neighboring node are available for
implementing the transformation,

ρ⊗n ⊗ |C〉 〈C| → |β〉 〈β| ⊗ |00〉 〈00|⊗(n−1) ⊗ |C〉 〈C| , (5)

with |β〉 = (|HV 〉 + |V H〉)/
√

2. The transformation concen-
trates the entanglement in n copies of the partially entangled
state ρ into a single maximally entangled state |β〉 in a
two-step process using adaptive unitary operations and mea-
surements dependent on the parameters α and c and one
round of two-way classical communication between the nodes
[14,15] and is probabilistic in general [16] (see Appendix B).

In step one, a temporary shared state |γ (n, α, c)〉 is de-
terministically obtained via a sequence of operations on the
initial joint state, |α〉⊗n |C〉, of qubits at A and B. The entries
of |γ (n, α, c)〉 can be obtained algorithmically from the set
of ratios, Rl (I, F ), l ∈ [1, 2n+1], and the entanglement mono-
tones, El (F ), for the initial and final states given by the
left- and right-hand sides of the transformation in Eq. (5),
respectively. Essentially, |γ (n, α, c)〉 is a state that maximizes
the success probability in Eq. (5) achievable using only lo-
cal measurements at either node. In step two, a generalized
measurement with two outcomes is performed at one of the
nodes on its portion of |γ (n, α, c)〉. Corresponding to one of
the measurement outcomes the state |β〉 ⊗ |00〉⊗(n−1) ⊗ |C〉
is successfully obtained with probability Pmax

cat (n, α, c). The
success (or failure) of the measurement is then relayed to the
other node. In the case of success, agents at A and B can utilize
the shared state |β〉 for entanglement swapping to extend its
range (if the adjacent edges on either side also report success)
and the catalyst state for further local entanglement concen-
tration operations. Whereas, in the case of failure they restart
the process of generating n copies of |α〉 and reobtaining the
catalyst, |C〉.

The success probability Pmax
cat (n, α, c) of the transformation

in Eq. (5) increases with n for fixed α and c, that is, for a
given initial state and choice of catalyst. However, generat-
ing and storing more copies of ρ is temporally and spatially
expensive. Further, the depth of the quantum circuit to imple-

ment the above steps at each network node scales as ∼2n+1.
Therefore, in a quantum network catalytic transformations
that require collective manipulations of a smaller number of
qubits are desirable. At least two copies of ρ are required for
any catalyst to boost Pmax

cat (n, α, c), compared to the optimal
LOCC success probability Pmax

LOCC(n, α) = 2(1 − αn) of the
transformation ρ⊗n → |β〉 〈β| ⊗ |00〉 〈00|⊗(n−1). Whereas,
for a large number of copies, n � n∗(α), where n∗(α) :=
�1/ log2(1/α), α ∈ [0.5, 1), catalysis is not needed as in
that case the same transformation can be achieved with cer-
tainty using LOCC without any catalyst. Accessing just a
few copies of the primary entangled states in the range n ∈
{2, . . . , [n∗(α) − 1]}, and utilizing the optimal two-qubit cat-
alyst |Copt(n, α)〉 = √

c0(n, α) |HV 〉 + √
1 − c0(n, α) |V H〉,

the probability Pmax
cat (n, α, c0) = (1 − αn)/[1 − c0(n, α)] can

be significantly higher than Pmax
LOCC(n, α). To quantify the in-

crease in efficiency due to catalysis, we define ηP(n, α, c) :=
Pmax

cat (n, α, c)/Pmax
LOCC(n, α). This ratio diverges when the opti-

mal two-qubit catalyst is used in Eq. (5) for poor quality pri-
mary entangled states, that is, ηP(n, α, c) ∼ 1/

√
n
√

(1 − α),
for c = c0(n, α) and as α → 1.

The catalyst state itself can be obtained from the resources
provided by the primary and auxiliary paths between the
relevant nodes (A, B in our case). It may be obtained deter-
ministically using a LOCC procedure if the paths provide pure
states that satisfy the criteria given by the inequality in Eq. (2),
or else it may be obtained only probabilistically. For example,
in our case, it turns out that the optimal two-qubit catalyst
|Copt(n, α)〉 in Eq. (5) is completely determined by α and n
with its Schmidt coefficient given by c0(n, α) = {1 + 3αn −
[(1 + 3αn)2 − 16α2n]1/2}/4αn, n � 2. Therefore, it suffices
to use ncat copies of |α〉, where αncat � c0(n, α), in order
to implement |α〉⊗ncat → |Copt(n, α)〉, with certainty using
LOCC—if the only resources available are the primary en-
tangled states ρ. Note that the minimum number of copies
needed to obtain the catalyst is determined by n and α since
ncat(n, α) � �log2 [c0(n, α)]/ log2(α).

If auxiliary paths i = 1, . . . ,Naux-path, each supplying
states |α(i)〉 between the nodes are available, then n(i)

cat �
�log2 [c0(n, α)]/ log2(α(i) ), copies of the states are respec-
tively enough to obtain a single copy of |Copt(n, α)〉. The
resources provided by distinct paths can also be combined
to obtain the catalyst. For example, a subset of states with
different multiplicities among the |α(i)〉 can provide the cat-
alyst deterministically if their product

∏
i |α(i)〉⊗mi

, mi ∈ N
satisfies the inequality in Eq. (2) relative to |Copt(n, α)〉. Of
course, more general catalysts (other than the optimal) [16]
may also be used for entanglement manipulation over the
network edges—the choice depends on the tradeoff between
the temporal resources expended to obtain the catalyst and the
entanglement distribution rate.

C. Rate of remote entanglement distribution in the network

The average temporal resource needed for every catalysis
attempt over a network edge is the statistical average of the
temporal resources needed for success and failure events, i.e.,

〈
TL0

〉 = Pmax
cat 〈Tpri〉 + (

1 − Pmax
cat

) 〈Tpri+cat〉 , (6)
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where 〈Tpri〉 and 〈Tpri+cat〉 are the average times to obtain
the primary entangled states and the primary entangled states
along with the catalyst, respectively. We assume that the pri-
mary entanglement generation takes much longer than the
local operation time at the nodes, which is typically the case.
The terms on the right-hand side of Eq. (6) also depend on
several parameters as we now explain. The catalysis success
probability Pmax

cat (n, α, c) clearly depends on the number of
copies, the primary entangled state, and the choice of catalyst
via n, α, c. Next, since the time to success of an entanglement
generation attempt is geometrically distributed, we obtain
〈Tpri〉 = n(T0/P0), where T0 = 2L0/c f , with c f the speed of
light in the fiber, and P0 are the average time required and
probability for primary entanglement generation.

The behavior of 〈Tpri+cat〉 depends on the availability
of auxiliary short-range paths between nodes A and B. If
the catalyst states are supplied exclusively by the auxil-
iary paths, then 〈Tpri+cat〉 = max{〈Tpri〉 , 〈Tcat〉} is the larger
among the primary entanglement generation time and the
catalyst generation time. With Naux-path auxiliary paths, for
each of which Pi, Ti, n(i)

cat are the entanglement generation
probability, entanglement generation time, and number of
states required to obtain the catalyst, respectively, we obtain
〈Tcat〉 = 1/

∑
i(n

(i)
catPi/ 〈Ti〉) � 1/Naux-pathmini(n

(i)
catPi/ 〈Ti〉). In

the limit of a large number of auxiliary paths, Naux-path �
1, the temporal resource needed to generate the catalyst is
less than the primary entanglement generation time, 〈Tcat〉 �
〈Tpri〉, therefore 〈Tpri+cat〉 = 〈Tpri〉. This is effectively the case
when the auxiliary paths can supply the catalyst faster than
they are consumed due to failure events which occur with an
average time of 〈Tpri〉 /(1 − Pmax

cat ). In the other limit, when
there are no auxiliary paths available, Naux-path = 0, in which
case the temporal resource needed to obtain the catalysts is
budgeted from the primary entanglement generation process.
Thus, in this limit the overhead of temporal resource needed
is additive, 〈Tpri+cat〉 = 〈Tpri〉 + 〈Tcat〉 = [n + ncat(n, α)]T0/P0.

The rate of long-range entanglement distribution in a
quantum network along a path where the edges use optimal
catalysis for entanglement concentration can be calculated as

R(N )
cat (n, α, c) = 1〈

TL0

〉
Z (N )

[
Pmax

cat (n, α, c)
] , (7)

where Z (N )(P) = ∑N
j=1

(N
j

) (−1) j+1

1−(1−P) j [23] is the waiting time
[24] to obtain successful events in all of the N edges that
comprise the path of length, NL0. On the other hand, in
a quantum network where the edges utilize the optimal
LOCC procedure to obtain Bell states, the rate is given by
R(N )

LOCC(n, α) = 1/ 〈Tpri〉 Z (N )[Pmax
LOCC(n, α)]. Note that both the

rates, R(N )
cat (n, α, c) and R(N )

LOCC(n, α), are independent of the
final fidelity (which is 1) but depend on the fidelity of the
primary entangled states through α.

The ratio of the two rates, η
(N )
R (n, α, c) :=

R(N )
cat (n, α, c)/R(N )

LOCC(n, α), estimates the enhancement due
to short-range entanglement assistance in the network.
It is especially amplified when the primary entangled
states are of poor quality and the optimal catalyst is
used in the transformation in Eq. (5), that is, as α → 1
and c = c0(n, α) (see Fig. 2). In this limit, when no
auxiliary paths are available the ratio of rates approaches

FIG. 2. Ratio of long-range entanglement distribution rate using
optimal catalysis to the rate using optimal LOCC for the transforma-
tion in Eq. (5) with n = 2 on N = 25 edges along a network path.
The brown (upper) curve shows the ratio using the optimal catalyst
of Hilbert space dimension 4 × 4 whereas the middle (orange) curve
shows the same ratio using the optimal catalyst of Hilbert space di-
mension 2 × 2 when, Naux-path � 1. The blue (lower, discontinuous)
curve shows the ratio with the optimal 2 × 2 catalyst for Naux-path =
0. Inset shows the nature of discontinuity; it occurs whenever the
number of copies of the primary entangled state needed to obtain the
catalyst jumps by 1.

η
(N )
R (n, α, c0) → (〈Tpri〉 / 〈Tcat〉)ηP(n, α, c0) ≈ 1. This is

because the temporal overhead to generate the catalysts
diminishes the advantage in rate due to the increase in the
entanglement concentration success probability through
catalysis. Whereas, in the same limit, α → 1, when a large
number of auxiliary paths are available the ratio diverges,
η

(N )
R (n, α, c0) → ηP(n, α, c0) ∼ 1/

√
n
√

(1 − α), for paths of
arbitrary length. In Fig. 2, the marginal enhancement observed
in the Naux-path = 0 and α �→ 1 regime (blue line) is due to
the fact that catalytic entanglement concentration involves the
collective manipulation of a slightly larger number of qubits
in each attempt, making it a bit more efficient.

IV. CONCLUSIONS

We have shown that catalysis based long-range entangle-
ment distribution in a quantum network works particularly
well under resource limited conditions, when only a small
number of copies of poor quality primary entangled states
are available. Its advantage is contingent upon many auxiliary
short-range paths providing the catalysts. In this approach the
spatial and temporal resources needed at the network nodes
are constant with respect to the total length of the path, and
the long-range entanglement is obtained in the form of high-
fidelity maximally entangled Bell states. We also note that the
identification of suitable catalysts and design of the adaptive
quantum circuit required for the catalytic transformation can
be fully automated using classical computational resources at
the nodes given an estimate of the primary entangled states.

In a quantum network, catalysis can enhance or enable
more general entanglement transformations beyond the pure
state case since mixed state entanglement transformations can
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also be catalyzed [18]. This is relevant when the decoherence
of the primary entangled states during storage or processing at
the nodes is taken into account. However, mixed state catalysis
does not improve the purification efficiency in the case in
which the decohered states are modeled as Werner states [25].
For other models of decoherence, where the final state is not
a Werner state, an interesting direction for further research is
to the understand the advantage that catalysis can provide for
output states of quantum channels relevant for long-range en-
tanglement distribution, e.g., the depolarizing and dephasing
channels [26]. In the future we will further address the follow-
ing questions: (1) Can catalysis be useful when only partial
state information is available? (2) Can catalysis be used in
networks to efficiently distribute multiparty entangled states,
such as the Greenberger-Horne-Zeilinger or W states [27]?

We believe the results obtained here will stimulate research
on the above mentioned questions and can facilitate develop-
ments in long-range entanglement distribution necessary for
the future quantum internet.

APPENDIX A: STEPS FOR CATALYTIC ENTANGLEMENT
CONCENTRATION

We first summarize the two steps needed to implement the
transformation in Eq. (5) of the main text.

In step one, a temporary shared state |γ (n, α, c)〉 which
majorizes the initial state |α〉⊗n |C〉 is obtained with unit prob-
ability via operations on the joint state of qubits, {ai}i=(n+1)

i=1

and {bi}i=(n+1)
i=1 , at A and B, corresponding to a sequence of

at most nT � (2n+1 − 1) T transforms [14] (e.g., nT = 5 for
n = 2). The entries of |γ (n, α, c)〉 are obtained algorithmi-
cally [15] from the set of ratios, Rl (I, F ), l ∈ [1, 2n+1], and
the entanglement monotones of the final state, El (F ), and
are known to the agents at both A and B. A circuit of depth
∼20nT comprising Toffoli, CNOT, single-qubit gates, and
single-qubit computational-basis measurements, implements
the operations corresponding to the successive T transforms
on two-dimensional subspaces of the (n + 1)-qubit Hilbert
space, ⊗i=(n+1)

i=1 Hai , at node A. The set of measurement results
is then conveyed as nT bits of classical data, m̄A ∈ {0, 1}nT ,
to the agent at B which determines the unitary it applies,
UB(α, c, m̄A). The latter can be implemented as a product
of unitaries on the corresponding two-dimensional subspaces
of ⊗i=(n+1)

i=1 Hbi , as a quantum circuit of depth ∼10nT using
the same set of basic gates. This completes the first step of
deterministically obtaining |γ (n, α, c)〉.

In step two, the agent at B performs a two-outcome, m1,2,
set of generalized measurements, MB,1(α, c) and MB,2(α, c),
on its portion of |γ (n, α, c)〉 and obtains the state |β〉 ⊗
|00〉⊗(n−1) ⊗ |C〉 if outcome m1 is obtained, which occurs
with probability Pmax

cat (n, α, c). The success (or failure) of the
transformation is then relayed to the agent at A via a single
bit of classical communication. In the case of success, agents
at A and B can utilize the shared state |β〉 for entanglement
swapping to extend its range (if the adjacent edges on either
side also report success) and the catalyst state for further local
entanglement concentration operations. Whereas, in the case
of failure they restart the process of generating n copies of |α〉
and reobtaining the catalyst state, |C〉.

APPENDIX B: OPERATIONS FOR CATALYTIC
ENTANGLEMENT CONCENTRATION

Here we demonstrate the local operations required at the
network nodes for catalytic entanglement concentration using
n = 2 copies of the primary entangled states ρ = |α〉 〈α| and
one copy of the optimal two-qubit catalyst state, |Copt(2, α)〉,
in Eq. (5) of the main text. We have derived the form of the
optimal two-qubit catalyst for general “n” elsewhere [16];
for n = 2 it is given by |Copt(2, α)〉 = √

c0(2, α) |HV 〉 +√
1 − c0(2, α) |V H〉, with c0(2, α) = {1 + 3α2 − [(1 +

3α2)2 − 16α4]1/2}/4α2. The forms of the unitaries and
measurement operators follow from results in [14,15].

All operations at neighboring nodes A, B are performed
on two-dimensional subspaces of three qubits at each of the
nodes. We use the binary code for the tensor product basis of
states on qubits a1, a2, a3 and similarly for b1, b2, b3, there-
fore,

|000〉A1A2A3
→ |1〉A ,

|001〉A1A2A3
→ |2〉A ,

|010〉A1A2A3
→ |3〉A ,

|011〉A1A2A3
→ |4〉A ,

|100〉A1A2A3
→ |5〉A ,

|101〉A1A2A3
→ |6〉A ,

|110〉A1A2A3
→ |7〉A ,

|111〉A1A2A3
→ |8〉A . (B1)

The state |α〉⊗2 |Copt(2, α)〉 in this basis is then given by the
vector (suppressing the arguments of c0 hereafter),

|I〉 = |α〉⊗2 |Copt(2, α)〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
α2c0√

α2(1 − c0)√
α(1 − α)c0√
α(1 − α)c0√

α(1 − α)(1 − c0)√
α(1 − α)(1 − c0)√

(1 − α)2c0√
(1 − α)2(1 − c0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B2)

The temporary state |γ [2, α, c0(2, α)]〉 is given by

|γ 〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
α2c0√

α2(1 − c0)√
(1 − α2)/2√
(1 − α2)/2

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B3)

whose Schmidt coefficients majorize those of the initial state.
Step one, as described in the main text, involves a sequence

of five T transforms to deterministically obtain |γ 〉 from |I〉
via the following transformations:

|I〉 T (1)
7-8→ |I1〉

T (2)
6-7→ |I2〉

T (3)
5-6→ |I3〉

T (4)
4-5→ |I4〉

T (5)
3-5→ |γ 〉 , (B4)
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where the four intermediate states |I1〉 ≺ |I2〉 ≺ |I3〉 ≺ |I4〉 which sequentially majorize the preceding state are as follows:

|I1〉⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
α2c0√

α2(1 − c0)√
α(1 − α)c0√
α(1 − α)c0√

α(1 − α)(1 − c0)√
α(1 − α)(1 − c0)√

(1 − α)2c0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

|I2〉⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
α2c0√

α2(1 − c0)√
α(1 − α)c0√
α(1 − α)c0√

α(1 − α)(1 − c0)√
(1 − αc0)(1 − α)

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

|I3〉⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
α2c0√

α2(1 − c0)√
α(1 − α)c0√
α(1 − α)c0√

(1 + α − 2αc0)(1 − α)
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

|I4〉⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
α2c0√

α2(1 − c0)√
α(1 − α)c0√
(1 − α2)/2√

(1 + α − 2αc0)(1 − α)/2
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B5)

The kth T transform, T (k)
i, j , involves unitaries and gener-

alized measurements on the 2 × 2 subspace (|i〉A , | j〉A) of
Ha1 ⊗ Ha2 ⊗ Ha3 and the corresponding subspace (|i〉B , | j〉B)
of Hb1 ⊗ Hb2 ⊗ Hb3 . The transformation |I〉 → |I1〉 is imple-
mented using the following steps. First, Alice (agent at A) and
Bob (agent at B) apply the local unitaries on the {|7〉A , |8〉A}
and {|7〉B , |8〉B} subspaces, respectively,

U (1)
A =

(
1/

√
2 1/

√
2

1/
√

2 −1/
√

2

)
, U (1)

B =
( √

c0
√

1 − c0√
1 − c0 −√

c0

)
.

(B6)

Alice then performs a generalized measurement using the
following operators on the {|7〉A , |8〉A} space:

M (1)
A,1 = 1A\{7,8}√

2
⊕ |7〉A 〈7| ,

M (1)
A,2 = 1A\{7,8}√

2
⊕ |8〉A 〈8| , (B7)

which form a complete set of measurements for Alice’s
systems since (M (1)

A,1)†M (1)
A,1 + (M (1)

A,2)†M (1)
A,2 = 1A. The mea-

surement result is then communicated to Bob who applies
1B in the case in which Alice obtains m(1)

1 and applies Ũ (1)
B

on the {|7〉B , |8〉B} subspace if m(1)
2 is obtained where [with

cos γ1 = (2c0 − 1)]

Ũ (1)
B =

(
cos γ1 sin γ1

sin γ1 − cos γ1

)
. (B8)

The transformation |I1〉 → |I2〉 is implemented similarly by
first applying local unitary transforms at Alice and Bob’s
stations,

U (2)
A =

(
1/

√
2 1/

√
2

1/
√

2 −1/
√

2

)
, U (2)

B =
( √

s
√

1 − s√
1 − s −√

s

)

(B9)

with s = α(1 − c0)/(1 − αc0). This is followed by the mea-
surement of local operators by Alice,

M (2)
A,1 = 1A\{6,7}√

2
⊕ |6〉A 〈6| ,

M (2)
A,2 = 1A\{6,7}√

2
⊕ |7〉A 〈7| , (B10)

and the measurement results communicated to Bob. If Alice
obtains m(2)

1 , Bob applies 1B, and if Alice obtains m(2)
2 , then

Bob applies [with cos γ2 = [2α − (1 + αc0)]/(1 − αc0)]

Ũ (2)
B =

(
cos γ2 sin γ2

sin γ2 − cos γ2

)
. (B11)

The transformation |I2〉 → |I3〉 is implemented similarly by
first applying local unitary transforms at Alice and Bob’s
stations,

U (3)
A =

(
1/

√
2 1/

√
2

1/
√

2 −1/
√

2

)
, U (3)

B =
( √

s
√

1 − s√
1 − s −√

s

)
,

(B12)

with s = α(1 − c0)/(1 + α − 2αc0). This is followed by the
measurement of local operators by Alice,

M (3)
A,1 = 1A\{5,6}√

2
⊕ |5〉A 〈5| ,

M (3)
A,1 = 1A\{5,6}√

2
⊕ |6〉A 〈6| , (B13)

and the measurement results communicated to Bob. If Alice
obtains m(3)

1 , Bob applies 1B, and if Alice obtains m(3)
2 , then

Bob applies [with cos γ3 = (α − 1)/(1 + α − 2αc0)]

Ũ (3)
B =

(
cos γ3 sin γ3

sin γ3 − cos γ3

)
. (B14)

The transformation |I3〉 → |I4〉 is implemented similarly by
first applying local unitary transforms at Alice and Bob’s
stations,

U (4)
A =

(
1/

√
2 1/

√
2

1/
√

2 −1/
√

2

)
, U (4)

B =
( √

s
√

1 − s√
1 − s −√

s

)
,

(B15)

with s = αc/(1 + α − αc). This is followed by the measure-
ment of local operators by Alice,

M (4)
A,1 = 1A\{4,5}√

2
⊕ cos δ |4〉A 〈4| + sin δ |5〉A 〈5| ,

M (4)
A,2 = 1A\{4,5}√

2
⊕ sin δ |4〉A 〈4| + cos δ |5〉A 〈5| , (B16)

with cos δ = {0.5 + 0.5
√

[4αc0 − (1 + α)]/(4αc0)}1/2 and
the measurement results communicated to Bob. If Alice ob-
tains m(4)

1 , Bob applies 1B, and if Alice obtains m(4)
2 , then Bob
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applies [with cos γ4 = (3αc0 − 1 − α)/(1 + α − αc0)]

Ũ (4)
B =

(
cos γ4 sin γ4

sin γ4 − cos γ4

)
. (B17)

Next, the transformation |I4〉 → |γ1〉 is implemented by
first applying local unitary transforms at Alice and Bob’s
stations,

U (5)
A =

(
1/

√
2 1/

√
2

1/
√

2 −1/
√

2

)
, U (5)

B =
( √

s
√

1 − s√
1 − s −√

s

)
,

(B18)

with s = 2αc0/(1 + α). This is followed by the measurement
of local operators by Alice,

M (5)
A,1 = 1A\{3,5}√

2
⊕ |3〉A 〈3| ,

M (5)
A,2 = 1A\{3,5}√

2
⊕ |5〉A 〈5| , (B19)

and the measurement results communicated to Bob. If Alice
obtains m(5)

1 , Bob applies 1B, and if Alice obtains m(5)
2 , then

Bob applies [with cos γ5 = [(4αc0)/(1 + α) − 1]],

Ũ (5)
B =

(
cos γ5 sin γ5

sin γ5 − cos γ5

)
. (B20)

This completes the process of deterministically obtain-
ing the shared state |γ 〉 between A and B using lo-
cal operations and multiple rounds of one-way classical
communication.

The sequence of operations (B6)–(B20) can, however, be
equivalently performed by completing all operations on Al-
ice’s side first and then communicating five bits of classical
data to Bob which determines the unitary that Bob applies.
For this, the generalized measurements (B7), (B10), (B13),
(B16), and (B19) are performed by unitarily interacting qubits
a1, a2, a3 with measurement qubits q(i), initialized in the |0〉
state, via unitaries U (i)

A,M , respectively, where

U (1)
A,M = 1A\{7,8}√

2
⊗ (HX ) + |7〉 〈7| ⊗ 1 + |8〉 〈8| ⊗ iY,

(B21)

U (2)
A,M = 1A\{6,7}√

2
⊗ (HX ) + |6〉 〈6| ⊗ 1 + |7〉 〈7| ⊗ iY,

(B22)

U (3)
A,M = 1A\{5,6}√

2
⊗ (HX ) + |5〉 〈5| ⊗ 1 + |6〉 〈6| ⊗ iY,

(B23)

U (4)
A,M = 1A\{4,5}√

2
⊗ (HX ) + |4〉 〈4| ⊗ (cos δ1 + sin(δ)iY )

+ |5〉 〈5| ⊗ [sin δ1 + cos(δ)iY ], (B24)

U (5)
A,M = 1A\{3,5}√

2
⊗ (HX ) + |3〉 〈3| ⊗ 1 + |5〉 〈5| ⊗ iY,

(B25)

where cos δ = {0.5 + 0.5
√

[4αc0 − (1 + α)]/(4αc0)}1/2. The
measurement qubits are then measured in the computational
basis to obtain five bits of classical data, m̄A ∈ {0, 1}5. The
complete sequence of unitaries applied by Alice is therefore
(with the earlier unitary, i.e., with smaller “i,” to the right)

i=5∏
i=1

U (i)
A,MU (i)

A . (B26)

The five bits of classical data is then conveyed to
Bob which determines the unitary that it applies to qubits
b1, b2, b3,

UB(α, c, m̄A) =
i=5∏
i=1

(
Ũ (i)

B

)mA,iU (i)
B . (B27)

The quantum circuit for each pair of unitaries U (i)
A,MU (i)

A in
expression (B26) has an approximate depth of 20. Step two
as described in the main text involves Bob measuring the
operators on qubits b1, b2, b3,

MB,1 = cos κ1 |1〉B 〈1| + cos κ2 |2〉B 〈2| + 1A\{1,2},

MB,2 = sin κ1 |1〉B 〈1| + sin κ2 |2〉B 〈2| (B28)

where cos κ1 =
√

(1 − α2)/[2α2(1 − c0)] and cos κ2 =√
[c0(1 − α2)]/[2α2(1 − c0)2]. If the outcome of Bob’s

measurement is m1 corresponding to MB,1, then they
obtain the postmeasurement state |β〉 ⊗ |C0〉 ⊗ |HV 〉 with
probability P(α) = (1 − α2)/[1 − c0(2, α)]. On the other
hand, if Bob obtains m2, then the attempt has been a failure.
In either case the outcome is conveyed to Alice so that
subsequent actions for long-range entanglement distribution
can continue.
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