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Quantum system compression: A Hamiltonian guided walk through Hilbert space
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We present a systematic study of quantum system compression for the evolution of generic many-body
problems. The necessary numerical simulations of such systems are seriously hindered by the exponential growth
of the Hilbert-space dimension with the number of particles. For a constant Hamiltonian system of Hilbert-space
dimension n with frequencies ranging from fmin to fmax, we show via a proper orthogonal decomposition that for
a run time T the dominant dynamics are compressed in the neighborhood of a subspace whose dimension is the
smallest integer larger than the time-bandwidth product � = ( fmax − fmin )T . We also show how the distribution
of initial states can further compress the system dimension. Under the stated conditions, the time-bandwidth
estimate reveals the existence of an effective compressed model whose dimension is derived solely from system
properties and not dependent on the particular implementation of a variational simulator, such as a machine
learning system, or quantum device, or possibly even specially adapting traditional methods of solving the
time-dependent Schrödinger equation. However, finding an efficient solution procedure is dependent on the
simulator implementation, which is not discussed in this paper. In addition, we show that the compression
rendered by the proper orthogonal decomposition encoding method can be further strengthened via a multilayer
autoencoder. Finally, we present numerical illustrations to affirm the compression behavior in time-varying
Hamiltonian dynamics in the presence of external fields. The essential time-bandwidth product is also simply
estimated for a wide class of physical systems, where typically localized high-frequency motion occurs at
or around each of the many particles, and with low-frequency dynamics associated with globally distributed
characteristic degrees of freedom. This estimate for the bandwidth has a generic character indicating the wide
significance of expected quantum system dynamics compression. We also discuss the potential implications of
the findings for machine learning tools to efficiently solve the many-body or other high-dimensional Schrödinger
equations.
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I. INTRODUCTION

Numerous recent studies [1–6] utilizing a flexible represen-
tation of a variational quantum state have been proposed based
on artificial neural networks (ANNs) for solving many-body
quantum problems. These studies have shown a favorable
polynomial scaling with respect to the system’s number of
particles. Such findings are consistent across many fields
[7–13]; despite system complexity in the underlying physics,
much of observed behavior is compressed, i.e., the dominant
dynamics is manifested in significantly lower dimensions.
Compression arises also in the search over the quantum con-
trol landscape as a favorable scaling of control complexity
[14,15].

By compression of quantum system dynamics we mean a
simulator that has these two features: (1) the simulator has a
reduced number of variables that do not scale exponentially
with the number of quantum particles (or, the number of
simulator variables is exponentially smaller than the Hilbert-
space dimension), and (2) the state error, upon using the
simulator, remains satisfactory for the intended purpose. In
this context, we present a time-bandwidth product which re-
veals the existence of a compressed system which satisfies the

stated features. Naturally the level of compression in point 1
above is inversely related to the degree of dynamical error
tolerated in point 2. The title of the paper can be under-
stood, since the compression occurs in the system’s Hilbert
space guided by particular characteristics of the Hamiltonian
involved as shown in the main body of the paper. The key
time-bandwidth product is reminiscent of “Hartley’s law” [16]
referenced in [17] in relation to optimal control complexity.
This potential compression of quantum dynamics depends
only on the system properties, including the range of the
eigenvalues of Hamiltonian, the simulation run time, and the
initial state. Though the compression is not dependent on the
particular method of simulation, achieving a similar level of
compression is expected to be dependent on the simulator
implementation. Additionally we show that the compression
rendered by proper orthogonal decomposition can be further
reduced via a multilayer autoencoder. We remark that the
compressibility analysis in this paper will mainly be carried
out for constant Hamiltonians as well as the autoencoder
technique for estimating the reduced dimensionality. Numer-
ical illustrations for time-varying Hamiltonian dynamics in
external (control) fields will also be presented to support the
pervasive nature of system compression behavior. Evidence
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further supporting this result comes from the tested Hamilto-
nians ranging from many-body coupled spin systems to those
chosen randomly.

The paper is written in a style of introducing concepts
along with the associated mathematical formulation as well as
clarifying numerical illustrations throughout the text to best
express the various aspects of quantum system compression
as they naturally arise. The paper is organized as follows:
Sec. II introduces the variational state problem, while Sec. III
describes the method of proper orthogonal decomposition
for obtaining linear variational states. Section IV focuses on
constant Hamiltonian dynamics with an example provided
in Sec. V. Sections VI and VII present the main theoreti-
cal results followed by particular numerical simulation tests
in Sec. VIII. The utilization of an autoencoder to enhance
compression is presented in Sec. IX. Additional numerical
illustrations for time-varying dynamics in external fields are
presented in Sec. X, and we present extensions on compres-
sion for unitary dynamics and for nonlinear frequency sweeps
in Sec. XI. A discussion of the findings in the paper is given
in Sec. XII. As remarked earlier, the time-bandwidth product
is crucial to determining the expected level of compression in
executing quantum system dynamics. Although the body of
the paper utilizes specific knowledge of various Hamiltonians
to establish the bandwidth, a general argument is presented in
Sec. XII for estimating the bandwidth even in highly complex
many-body systems. Finally, details of particular derivations
are given in the Appendices.

II. VARIATIONAL STATE

The goal is to simulate the quantum state ψt ∈ Cn for
t ∈ [0, T ] by a variational quantum state x(θt ) ∈ Cn, a func-
tion of a time-varying parameter θt ∈ Cm where m < n. We
refer to θt as the compressed state and to m as compression,
respectively. The effective “small volume in Hilbert space”
referred to in [8] and exposed in [9] is akin to the com-
pressed state discussed here. In a machine learning system,
such as a neural network, the “parameters” are the weights
that connect all the layers. These weighting parameters are not
necessarily the same as the compressed dimension or the as-
sociated state variables, though it is possible depending on the
simulator implementation. In this note we leave the simula-
tor parametrization and implementation unspecified and seek
to show that generally there are fewer effective compressed
states (m) than that of the full Hilbert space (n). Irrespective
of the implementation, it is assumed that the variational state
x(θt ) is a smooth function of the time-varying parameter vec-
tor θt , and, as a result,

ẋ(θt ) = G(θt )θ̇t , G(θ ) = ∇θx(θ ) ∈ Cn×m, (1)

where G(θt ) as indicated is a gradient matrix.

A. Variational formulations

In the most general case the system to be simulated is the
time-varying quantum system:

iψ̇t = Htψt , t ∈ [0, T ]. (2)

The data available for simulation are the initial state ψ0 ∈ Cn

and the time-varying Hamiltonian Ht ∈ Cn×n, a description
that encompasses a quantum system under a known control or
external field. The variational optimization problem that we
seek to solve is to minimize the following functional:

E [θ ] = 1

T

∫ T

0
‖ψt − x(θt )‖2

2dt . (3)

The qualifying phrase “seek to solve” is stated because the
actual state flow {ψt , t ∈ [0, T ]} is not available in the sim-
ulation context. If it were available then there would be no
need for a variational version unless one seeks to post facto
find a low-dimensional representation. In general, minimizing
E [θ ] is not possible without the actual state. As in [1] for
variational simulation, there is a means to query as necessary
the available data: the initial state ψ0 and the time-varying
Hamiltonian {Ht , t ∈ [0, T ]}. The variational problem is then
pragmatically posed to minimize a functional such as

E[θ ] = 1

T

∫ T

0
‖Ht x(θt ) − iG(θt )θ̇t )‖2

2dt . (4)

Depending on the context we will refer to E [θ ] or its inte-
grand as the state error, and to E[θ ] or its integrand as the
equation error. To construct a variational quantum simula-
tor in a classical device using only the available data (e.g.,
ψ0 ∈ Cn, {Ht ∈ Cn×n, t ∈ [0, T ]}) is equivalent to minimiz-
ing an equation error functional such as (4). This is clearly
a necessary surrogate for the ideal goal: minimizing the state
error (3).

B. Compression

If the variational solution is perfect then x(θt ) = ψt ,∀t ∈
[0, T ] from which it follows that both state and equation errors
(and associated functionals) are zero. As a consequence the
variational parameter θt must satisfy

G(θt )θ̇t + iHtψt = 0, x(θ0) = ψ0, t ∈ [0, T ]. (5)

These equations for finding θ̇t ∈ Cm with m < n are overde-
termined, i.e., more equations (n) than variables (m). As a
result, (5) will hold only if Htψt (or iψ̇t ) is a linear combi-
nation of the columns of G(θt ). In particular, a solution for θ̇t

to solve (5) will exist if and only if for t ∈ [0, T ]
[Im − �m(θt )]Htψt = 0,

�m(θt ) = G(θt )G#(θt ) ∈ Cn×n,
(6)

where G#(θt ) ∈ Cm×n is the pseudoinverse of G(θt ). Note that
properties of the pseudoinverse yield �m(θt )2 = �m(θt ), i.e.,
it is idempotent. Condition (6) is necessary and sufficient for
the variational state to provide a perfect simulation, i.e., x(θt )
and true state ψt are identical.

For a perfect simulation, and clearly for an imperfect but
very good simulation, especially with m � n, or perhaps more
importantly where m does not scale exponentially with the
number of particles as does n, the state flow ψt from (2)
must be inherently compressible. To understand the basic foun-
dations of quantum system compression for now we focus
on a time-invariant quantum system, meaning that Ht = H
is a constant matrix; the time-dependent extension will be
returned to in Sec. X. In addition we restrict attention to a
linear variational state, that is, the variational state gradient
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is a constant matrix: G(θt ) = M ∈ Cn×m, m < n. The intro-
duction of nonlinearity into the compression process will be
treated with an autoencoder in Sec. IX. Assuming that the
eigenvalues sweep linearly from their lowest to highest values,
we show that it is the system properties alone which allow the
state and equation error measures to show a favorable scaling
of compression m with system dimension n. Our analysis
provides a means to assess the compression range that might
be achievable from a more generally flexible variational state
parametrization, i.e., with a time-varying nonlinear gradient
G(θt ). As in numerous studies showing favorable compres-
sion, we are led to the assertion that a variational quantum
solution of a time-invariant quantum system is possible with
its compression dependent solely on the system parameters:
Hamiltonian eigenvalues, initial state, and simulation run
time.

However, the demonstrated existence of system compres-
sion shown in this paper still leaves the challenge to explicitly
exploit that for the performance of dynamical simulations
(i.e., especially for high-dimensional many-body situations)
based on (5), for example. A nascent illustration appears ev-
ident in a machine learning format utilizing artificial neural
networks [1–6]. The generality of these results to wide classes
of many-body quantum systems remains to be explored.
Furthermore, the extension of this compression to quantum
computers and especially quantum supremacy remains open
for speculation. Quantum supremacy is also likely application
dependent. But, in the case of simulating quantum dynamics
the existence of the compression appears to automatically be
discovered by utilizing the nonlinear transformation constitut-
ing ANNs, and one may speculate that for analogous quantum
computer simulations of dynamics to be efficient they would
need to inherently also exploit the compression.

III. LINEAR VARIATIONAL STATE

A common means of obtaining a linear variational state
is the method of proper orthogonal decomposition (POD) or
equivalently often referred to as principal component analysis
(PCA) [18]. There are several variants of POD; here we use an
unbiased version where the variational state is set to x(θt ) =
Mθt with gradient matrix M ∈ Cn×m where m < n [19]. The
optimization variables M and θt are selected to minimize a
state error functional chosen as (3):

minimize Epod = 1

T

∫ T

0
‖ψt − Mθt‖2

2dt,

subject to M ∈ Cn×m, θt ∈ Cm, t ∈ [0, T ]. (7)

The well known optimal solution is

θt = M†
mψt , Mm = arg min

M∈Cn×m
Tr(In − MM†)C[ψ], (8)

where Mm ∈ Cn×m is found via a singular value decomposi-
tion (SVD) of the n × n positive semidefinite “covariance”
matrix,

C[ψ] = 1

T

∫ T

0
ψtψ

†
t dt

= [Mm Mn−m]

[
Qm 0
0 Qn−m

]
[Mm Mn−m]†

, (9)

with singular values arranged (as usual) in descend-
ing order in Qm = diag(σ1(C), . . . , σm(C) and Qn−m =
diag(σm+1(C), . . . , σn(C)) and where [Mm Mn−m] ∈ U(n).
The resulting optimal (POD) variational state is

xt = �mψt , �m = MmM†
m ∈ Cn×n, (10)

which produces the minimum state POD error measure: the
sum of the smallest n − m singular values of the covariance
matrix, i.e.,

Epod = Tr(In − �m)C[ψ]) =
n∑

i=m+1

σi(C). (11)

Because the matrix Mm is part of a unitary matrix, its m
columns are orthonormal vectors in Cn and thus M†

mMm = Im.
The columns of Mm form a basis set for the compressed
state θt making �m idempotent, i.e., �2

m = �m. Combining
(10) with (4) we get the corresponding POD equation error
measure:

Epod = 1

T

∫ T

0
‖(Ht�m − �mHt )ψt‖2

2dt . (12)

A typical measure of model reduction error is the relative er-
ror in the cumulative sum of singular values of the covariance
matrix compared to the sum of all the singular values:

εm(C) = 1 −
m∑

i=1

σi(C)/
n∑

i=1

σi(C) =
n∑

i=m+1

σi(C). (13)

To predict compression quantitatively for a quantum system,
we make an obvious restriction as discussed next which leads
to the time-bandwidth product presented in Sec. VII. Later in
Sec. X we will discuss the compression effect with a time-
varying Hamiltonian and suggest how a compression estimate
can be obtained.

IV. TIME-INVARIANT HAMILTONIAN DYNAMICS

Consider a time-invariant Hamiltonian driving the quan-
tum dynamical system:

iψ̇t = Hψt , t ∈ [0, T ]. (14)

Since the Hamiltonian H ∈ Cn×n is constant, the standard
eigenvalue decomposition yields

H = V �V †

{
V ∈ U(n),
� = diag(ω), ω ∈ Rn.

(15)

Subsequently the state flow ψt can be expressed variously as

ψt = Ve−it�V †ψ0 = V ft ,

ft = [α1e−iω1t · · · αne−iωnt ]
T
,

α = V †ψ0,

(16)

where α ∈ Cn, ‖α‖2 = 1 is the projection of the initial state
onto the natural basis of the Hamiltonian. As shown in Ap-
pendix A, the singular values of the POD covariance matrix
(9) are identical with those of a positive semidefinite matrix
R ∈ Cn×n which has the decomposition

R = diag(α)Sdiag(α)†,

S = sinc(�),
�k� = (ωk − ω�)T/2, k, � = 1, . . . , n.

(17)
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We will refer to R as a “covariance” matrix and to S as the
“sinc” matrix with respective elements

Rk� =
{|αk|2, k = �,

(αkα
∗
� )sinc�k�, k �= �,

Sk� =
{

1, k = �,

sinc�k�, k �= �.
(18)

The corresponding normalized singular value errors in the
form of (13) for m = 1, . . . , n are

εm(R) = 1 −
m∑

i=1

σi(R),

εm(S) = 1 −
m∑

i=1

σi(S)/n, (19)

where the cumulative sum of singular value errors is normal-
ized by their respective singular value sums: Tr R = ‖α‖2

2 =
‖ψ0‖2

2 = 1 and Tr S = n. Though the calculation of the ele-
ments of R and S do not require any dynamical simulation,
to use these expressions necessitates obtaining an eigenvalue
decomposition of the system Hamiltonian, knowledge of the
initial state, and calculating the singular values of R and S. We
can, however, without doing any such decompositions, assert
some generic properties of compression. Before discussing
these, it is worthwhile to do an example.

V. EXAMPLE: TIME-INVARIANT HAMILTONIAN
SPIN SYSTEM

Consider the transverse-field Ising (TFI) nspin system with
Hamiltonian

HTFI = −h

nspin∑
i=1

σ x
i −

nspin−1∑
i=1

σ z
i σ z

i+1. (20)

This system was studied in [1]; here we use the same model
parameters and initial-state choices but only for a limited
number of spins. Figure 1(a) shows the eigenvalues of HTFI

with TFI parameter h = 2 for nspin ∈ {10, 12}, ergo, space
dimension n = 2nspin ∈ {1024, 4096}. The eigenvalues clearly
sweep uniformly from maximum to minimum and sum to
zero, thus forming two groups of n/2 positive eigenvalues and
n/2 negative eigenvalues with each group having the same
magnitudes: ω ∈ {−ω1, . . . ,−ωn/2, ω1, . . . , ωn/2}.

Figures 1(b) and 1(c) correspond to the two spin examples:
nspin ∈ {10, 12} each with run time T = 2. In each of the
(b) and (c) plots, the two subplots on the right show, re-
spectively, the root-mean-square (rms) values over t ∈ [0, T ]
of both state error and equation error, i.e., ‖ψ − x‖rms and
‖Hx − iẋ‖rms. [These are the square roots, respectively, of
Epod and Epod from (11) and (12).] The left subplots of (b)
and (c) show the the relative error in the cumulative sum of
singular values of the covariance matrix R (blue dots) and
the sinc matrix S (red dots), both calculated from (18). For
comparison with the rms error measures we use the square
root of the cumulative singular value errors of R and S from
(19), namely,

√
εm(R) and

√
εm(S). The error measures are

all computed for HTFI with h = 2, and for each of two initial
states: one fixed at the ground state of HTFI with h = 4 (blue

FIG. 1. TFI. All runs with h = 2 (20); run time T = 2, 10, and
12 spins [eigenvalues in (a)]; and two initial states: one at the ground
state of HTFI with h = 4 [blue dots and triangles in (b) and (c)] and
one randomly selected [green dots and triangles in (b) and (c)]. The
left subplots in (b) and (c) show the relative rms error [square root
of (19)] of the covariance matrix R (blue dots) and the sinc matrix
S (red dots) from (18) for compressions m = 1, . . . , 30. Lower right
subplots in (b) and (c) show errors for m ∈ {10, 15, 20, 25}.
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FIG. 2. Histograms of state errors. The log of the absolute values
of all elements of state error matrix (In − �m )C[ψ] from (11) for
n = 210 and for the selected compressions shown.

dots), and one with the initial state randomly selected (green
dots). (Only results for the ground-state initialization were
presented in [1].) As seen in Fig. 1 the selection of a random
initial state (green dots in the singular value plots and green
triangles in the error measure plots) increases the variational
compression to achieve the same relative model error, though
the increases are not dramatic. The sharp slope changes in the
rms errors near full compression are the result of reaching the
computational precision limit.

Figure. 2 displays the TFI data in histograms of log10
of the absolute values of all elements of state error matrix
(In − �m)C[ψ] from (11) for n = 210 and for the selected
compressions shown. The decrease in error magnitudes is
quite dramatic for compressions greater than 15. This value

is effectively predicted by the time-bandwidth product, i.e.,
� = ( fmax − fmin)T ≈ 14.

Clearly there is significant dynamic compression: not only
is the level small compared to the system dimension, more-
over, there is little increase in compression with increasing
number of spins. In both cases shown a compression of order
m = 25 suffices to produce very small state and equation
errors.

The compression order selections (m) are based on the
initial-state and system dynamics over the specified simula-
tion time interval t ∈ [0, T ] with T = 2. Figure 3(a) shows
what happens when the run time is extended to T = 4 for
compressions m ∈ {14, 21}. As expected, outside of the de-
sign range of t ∈ [0, 2] the state rms error as a function
of time dramatically increases. In Fig. 3(b) the initial state
differs from that used in the SVD of the covariance ma-
trix, and as a result the state rms error deteriorates over the
whole time interval. Two levels of initial-state perturbation are
shown: �ψ0 ∈ {0.01, 0.001}. For m = 14 there is no signifi-
cant change whereas for m = 21 the change is considerable,
more than a two-order-of-magnitude increase in error. The
difference in robustness to initial state may be attributed to
the nominal error magnitude, i.e., the state error for m = 14 is
much larger than that for m = 21, and hence the latter is more
sensitive to changes in the initial state.

VI. RUN TIME AND SINGULAR VALUE BOUNDS

In the previous examples the relative singular value error of
S, the sinc matrix, provides an upper bound on the errors of the
covariance matrix R, and these errors are close when the initial
state is random. This suggests that the efficacy of a variational
quantum state of a time-invariant quantum system (14) can be
obtained from the singular values of R (equivalently C) and

FIG. 3. Robustness of rms magnitude of POD error time responses. For the ten spin TFI system (20), (a) change to run time T = 4 from
variational states optimized for run time T = 2 and (b) small perturbations to initial state.
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the sinc matrix S (17) and (18). To see this we first examine
some qualitative properties at the extremes of run time T .

A. Run time

In the limit as the run time T goes to infinity the sinc matrix
approaches the identity; hence,

lim
T →∞

σ (R) = σ [diag(|α|2)]. (21)

The singular values of R become the sorted magnitudes of α,
the initial state expressed via the Hamiltonian eigenvectors.
These are the diagonal elements of R, and all the other ele-
ments tend to zero. Compression to m < n in this case requires
that the last n − m elements of α are much smaller than the
first m elements. At the opposite end, as the run time T goes
to zero, R → αα†; thus,

lim
T →0

σ (R) =
{

n∑
k=1

|αk|2, 0, . . . , 0

}
= {1, 0, . . . , 0}. (22)

Note that there is only one nonzero singular value at ‖α‖2 =
‖ψ0‖2 = 1. A reduction to a model with dimension 1 is cer-
tainly extreme, but expected. The message to take here is
that the dynamics becomes further compressed as run time
decreases. In effect, for small run times not very much of the
space gets filled out beyond where the state started.

The extreme run-time scenarios reflect the fact that since
α = V †ψ0, compression depends on how the initial state is
projected onto the eigenvectors of the Hamiltonian. In the
previous examples (Fig. 1) when the initial state is prepared
nearby the ground state, the error measure for R is signifi-
cantly smaller than for S because the initial state is localized
in the Hilbert space. For a random initial state we see that the
singular value errors for R and S are close since the initial state
now is more spread out.

B. Singular value bounds

More quantitative insights can be revealed using a standard
singular value inequality for the product of matrices. From
the relation of R and S (17), the singular values of R for each
k = 1, . . . , n are bounded by

σk (R) � min
{‖α‖2

∞σk (S), ‖S‖σ 2
k [diag(α)]

}
. (23)

Another well-known inequality follows, namely,

rank R � min{rank S, rank diag(α)}. (24)

This rank inequality is only useful if S has some zero singular
values and/or α has some zero elements. The latter can occur
when the initial state lies completely in a lower-dimensional
subspace, e.g., [20]. Though this is generally unlikely, as
observed in the previous spin system examples, compression
is possible because many singular values of R are nearly zero,
possibly driven by the localized initial state lying dominantly
in a low-dimensional subspace. For example, suppose that no
elements of α are zero and that σk (S) ≈ 0 for k > m with
m � n. Then σk (R) ≈ 0 for k > m, and thus m is the max-
imum variational compression. In this case the compression
order is bounded by the number of nonzero singular (or non-
small) singular values of S, the sinc matrix. This property is

clearly seen in the numerical results of Fig. 1 with the TFI
example. We see this in many other cases that we have run:
the sinc-matrix error bounds the covariance matrix error, i.e.,
εm(R) � εm(S), or, equivalently,

m∑
i=1

σi(S)/n �
m∑

i=1

σi(R). (25)

Both sides of this inequality are norms, specifically Ky Fan
m norms, respectively, of S/n and R. From the Ky Fan dom-
inance theorem [21] the above will hold for all m = 1, . . . , n
if and only if ‖S/n‖ � ‖R‖ for any norm invariant unitary
transformation. Only in very few cases have we seen this
behavior violated and then only slightly with no particular
pattern observed. Nevertheless, at the moment (25) remains
a sufficient condition for a general frequency sweep. For a
linear sweep approximation we can make stronger statements.

VII. LINEAR FREQUENCY SWEEP

In many quantum systems, such as just observed for the
spin system example, the eigenvalues of the Hamiltonian are
almost linear from minimum to maximum, or reasonably ap-
proximated as such over a large portion of the range (see
Fig. 1). Under the assumption of a linear sweep of eigenval-
ues, the sinc matrix S (17) becomes a symmetric (real) Toeplitz
matrix:

Slin = sinc�lin ∈ Rn×n,

�lin
kl = (ωk − ω�)T/2 =

(
k − �

n − 1

)
�π, k, � = 1, . . . , n,

� = (ωmax − ωmin)T/2π. (26)

The nondimensional variable �, referred to here as the “time-
bandwidth product,” will be seen to play the key role in
establishing an approximate upper bound on the variational
model order. A related measure was used in [22] in the devel-
opment of a coarse-grained approach to unitary dynamics.

The covariance matrix corresponding to Slin follows from
the form of (17):

Rlin = diag(α)Slindiag(α)†, (27)

in which Rlin is a Hermitian matrix but not generally of
Toeplitz form. The spin system results in Fig. 4 are of suf-
ficiently small size so that the singular values of the R, S,
Slin, and Rlin matrices can be directly calculated on a stan-
dard laptop. For large dimensions, this becomes infeasible.
Fortunately, even for very large n, the singular values of Slin

can be approximated by taking the digital Fourier transform
of a column of a related circulant matrix, for which there
are a number of versions, all resulting in asymptotic approx-
imations of the eigenvalues [23,24]. A similar procedure was
utilized in [25]. In the case here, with a very specific (sinc)
function forming the symmetric Toeplitz matrix elements, we
can appeal to a more direct result in [26,27] on the asymp-
totic distribution of the Toeplitz eigenvalues. As shown in
Appendix B, for large n the singular values of the Toeplitz
sinc matrix σi(Slin ), i = 1, . . . , n are well approximated by

σi(Slin ) ≈
{

(n − 1)/�, i < mTBW,

0, i � mTBW,
(28)
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FIG. 4. Normalized singular values of R, S, Slin, Rlin, and diag(α) for HTFI (20) with h = 2 for 10 and 12 spins and with initial states at
ground for h = 4 (a, c) and random (b, d). The rect function (dashed lines) is S̄lin from (31) with associated singular values as indicated by the
text boxes mTBW = 14 and 17.

where the index value mTBW, under the conditions of a linear
frequency sweep, is the level of compression:

mTBW =
⌈ n

n − 1
�

⌉
, � = ( fmax − fmin)T . (29)

The frequency spread is expressed here in Hz using f = 2πω.
The corresponding covariance error (19) is

εk (Slin ) = 1 −
k∑

i=1

σi(Slin )/
n∑

i=1

σi(Slin )

≈
{

1 − k/m k < mTBW,

0 k � mTBW.
(30)

Note that one could multiply the constant Hamiltonian H by a
and divide the run time T by a and get the same value for
mTBW. This is a trivial scaling for a constant Hamiltonian;
however, as we will see later (Sec. X), this simple scaling does
not apply for a time-varying Hamiltonian where mTBW is in-
terpreted differently to account for the observed compression.

At the compression level mTBW, the variational state errors
are either very small or rapidly decreasing for m > mTBW. For
quantum systems with n  1 we can take mTBW = ���. Let
S̄lin denote the ideal sinc matrix with exactly mTBW = ���
nonzero constant singular values:

σk (S̄lin ) =
{

n/�, k < ���,
0, k � ���. (31)
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Let R̄lin denote the corresponding covariance matrix:

R̄lin = diag(α)S̄lindiag(α)†. (32)

Application of the singular value bound (23) results in

σk (R̄lin ) � (n/�)σ 2
k [diag(α)], k < ���,

= 0, k � ���. (33)

This result ensures that for a linear frequency sweep and large
n the Ky Fan dominance theorem holds for the ideal pair
(R̄lin, S̄lin ), namely, σk (S̄lin/n) � σk (R̄lin ), because ‖α‖2

∞ �
1/n since ‖α‖2 = 1. Thus, for a linear sweep, the ideal relative
covariance error is bounded by the relative sinc error. Further,
if for all elements |αi|2 = 1/n, i = 1, . . . , n, then both the
singular values of R̄lin and S̄lin as well as their relative errors
coincide. This tendency was observed for random initial states
in the spin example and is seen more pointedly in the numeri-
cal simulations presented next.

Note that the time-bandwidth product mTBW is not inde-
pendent of the system dimension n. For example, the spin
system Hamiltonian (20) frequency range is linear in the
number of spins nspin, and since n = 2nspin , it follows that
mTBW = O(log10 n). More specifically,

mTBW = �(log10 n/ log10 n0)�0� (34)

where �0, n0 are chosen nominal values for comparison with
n � n0. For example, with n0 = 210 and m0 = ��0�, if n =
220 then mTBW = 2m0, or if n = 280 then mTBW = 8m0 and
so on. More generally, if the frequency range scales as a
polynomial function of the number of two-level particles, say
O(Nk ), then mTBW = O(log10 n)k ). Such behavior is still a
very favorable scaling with respect to the exponential scaling
of the system dimension with the number of quantum parti-
cles.

VIII. NUMERICAL RESULTS

A. TFI system

Figure 4 shows plots of the normalized singular values of
R, S, Slin, Rlin, and diag(α) for HTFI (20) with h = 2 for 10
and 12 spins and with two initial states: (a, c) at the ground
state for h = 4 and (b, d) random. Both R and S are calculated
using the actual (nonlinear) eigenvalue sweep of HTFI whereas
Slin uses a linear sweep over the same range. The text boxes
with mTBW = 14 and 17 show the ideal predicted compression
for the two spin cases assuming a linear frequency sweep.
The ratio 17/14 ≈ 1.21 follows the log scaling (34) with
log 4096/ log 1024 = 1.2 which obviously is the ratio of spins
12/10. For 80 spins the compression estimate increases by
a factor of 8 over ten spins to m = 112, dramatically low
compared to n = 280, and so on. The dashed line rect function
next to these boxes is the ideal singular value function given
by (B1): a constant until index k = m and then drops to zero
thereafter. The compression level where the singular values of
both S and Slin drop to essentially zero is almost identical to
that predicted by (29). Additionally, the actual singular values
of Slin follow those of the ideal S̄lin, tending more closely as n
increases from 1024 to 4096.

The singular values of the projected initial state (green
curves), labeled σk[diag(α)], show that a random initial state

FIG. 5. Singular values of snapshot matrix (35) for the HTFI

system with nspin ∈ {10, 14} each initialized from a random state.

is not the principle cause of compression because the state
elements are spread more uniformly throughout the space than
for an initial ground state which is confined.

The break points (i.e., compression level) where the singu-
lar values drop significantly as predicted by the sinc matrix S,
or the linear sweep matrix Slin, can differ, and exceed those
of the covariance matrix R (or Rlin). From a ground state,
the break points are generally smaller. They adhere closely
to S (or Slin) for a random initial state. The former is to be
expected considering that the sinc matrix, S, contains no in-
formation about any correlations with the initial state. We also
see that the linear frequency sweep approximation, resulting
in the symmetric Toeplitz matrix Slin and the corresponding
covariance Rlin, is in agreement with these findings.

B. POD via snapshot

Figure 5 shows a further comparison with nspin ∈ {10, 14}
where the singular values are computed from the “snapshot”
version of the covariance matrix (9):

� = [ψt1 · · · ψtK ] ∈ Cn×K (35)

with K = 200 uniformly spaced time samples over the same
simulation run time T = 2 as in the previous TFI examples.
This gives a sampling rate many times the maximum Hamil-
tonian frequency. For both spin settings the dynamics are
initialized with a random state. The singular values shown
are the squares of the singular values of the n × 200 snapshot
matrix �; these approximate those of the covariance matrix,
i.e., C([ψ]) ≈ (T/K )��†. The time-bandwidth predicted
compression levels mTBW ∈ {14, 20} are again validated by
the data and also follow the log scaling (34) for these spin
systems, i.e., compression ratio 20/14 ≈ 1.43 compared to
spin ratio 14/10 = 1.4.

C. Random Hamiltonians

We generated many random Hamiltonians from a variety
of distributions of elements. The results consistently confirm
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FIG. 6. Random Hamiltonians (a) n ∈ {1024, 4096} with nor-
malized run time T = 1. The upper left plot shows the classic
semicircular Wigner distribution of eigenvalues. The plot on the right
shows the sinc matrix compression error (19) which matches the
time-bandwidth product estimate. The lower left plot shows (nearly
linear) eigenvalue sweeps. (b) n = 2000, with the initial state con-
fined to a random selection of 15, 30, and 60 eigenvectors of the
Hamiltonian.

the compression level to be in the range predicted by the
time-bandwidth product. Figure 6(a) shows two instances of
Gaussian random Hamiltonians for n ∈ {1024, 4096}. The up-
per left plot clearly displays the classic semicircular Wigner
distribution of eigenvalues [28]. The sinc-matrix POD errors
(19) are shown in the right plot with normalized run time
T = 1. The resulting time-bandwidth compression levels are,
respectively, m = 15 and 29. These compression levels follow
the scaling of the frequency sweep engendered by the Wigner
distribution at O(

√
n): here 29/15 = 1.93 ≈ √

4096/1024 =

FIG. 7. Autoencoder with POD pre- and postprocessing.

2. Although not shown, the eigenvalue distribution for the spin
system (20) is not semicircular; rather, it is more Gaussian in
shape with small (finite) tails. These correspond to the sudden
twists at the ends of the frequency sweeps as seen in Fig. 1.
The Wigner distribution does not have these tails and thus only
slightly twists at the end, thereby resulting in a more linear
sweep.

As we have seen previously, additional compression oc-
curs whenever the initial-state distribution is near a subspace
spanned by a small number of Hamiltonian eigenvectors.
Figure 6(b) depicts a typical result with a Gaussian random
Hamiltonian of dimension n = 2000. For the three examples
shown, we confined the random initial states to be linear
combinations of 15, 30, and 60 randomly selected eigenvec-
tors of the Hamiltonian. (Of course no initial state would be
exactly so confined; this illustrates the effect.) As expected
the confinement of the initial state to a further compressed
subspace is seen in the middle plot where the sorted magni-
tudes of the unit vector (16) (α = V †ψ0) clearly drop to zero at
exactly 15, 30, and 60. The time-bandwidth product predicts
a maximum compression of mTBW = 32 which is confirmed
by the singular value errors shown in the lower plot. What
is noteworthy is that for the case of the initial state being
confined to a 60-dimensional subspace, the time-bandwidth
product bounds the covariance level compression and the true
covariance error—the same as esv(R)—begins to approach the
sinc matrix error. In other words, the “sinc” matrix singular
values dominate the onset of compression. A fully random
initial state will cause the covariance singular values to line
up with those of the sinc matrix which bounds the compres-
sion. As seen in the lower plot, as the initial-state subspace
dimension increases, the errors get larger and, as expected, do
not exceed the sinc matrix errors.

To emphasize this point, a variety of full length (i.e., n =
2000) random initial states were tested, and the compression
level matched that predicted by the time-bandwidth measure.
An interesting point is that the structured Hamiltonian many-
body cases reported earlier in the paper, and the extreme of
random Hamiltonians shown here, both displayed the same
characteristic compression behavior. This situation indicates
that the origin of the compression arises from the Hamiltonian
spectral bandwidth and not any other special features (e.g.,
many-body coupling character or patterns).

IX. FURTHER COMPRESSION WITH AN AUTOENCODER

We compare our findings using POD with a variational
model constructed from an autoencoder (AE) as depicted in
Fig. 7. This configuration is one of several variations for
seeking compression by combining an autoencoder with a
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TABLE I. Comparison of rms error ‖� − Xm‖fro/
√

K from POD
only and POD with AE (Fig. 7) for m = 5, 10, 15.

m POD only POD with AE

5 0.5452 0.0101
10 0.1717 0.0070
15 0.0121 0.0030
16 0.0044
17 0.0016

data-driven preprocessing procedure such as POD, e.g., [29].
By disconnecting the encoder and decoder the output becomes
X = MmM†

m� which is exactly the POD solution (10).
The autoencoder weights w ∈ Rp are selected so as to

minimize a weight dependent error, i.e.,

minimize E (w) = ‖� − X‖2
fro/K,

subject to X = Adec(w)(Z ) − MmZ,

Z = Aenc(w)(�) − M†
m�, (36)

where ‖ · ‖fro is the Frobenius norm, and � = [ψt1 · · · ψtK ] ∈
Cn×K is the data [snapshot (35)] at uniform sample times
�t . The weight dependent interconnection structure of the
encoder Aenc(w) : Cn → Cm, decoder Adec(w) : Cm → Cn,
and variational parameter dimension m < n are all specified
before employing the AE. That is, the AE is seeking to achieve
better predictive quality than POD for a given m value. This
utilization of the AE (i.e., a special form of machine learning
algorithm) can be viewed as bringing in a nonlinear feature
beyond linear use of M as in POD. The flexibility inherent
in the nonlinear encoding or decoding structure gives the AE
the potential to produce a smaller state error for the same
compression level m than that of POD which is restricted to a
linear encoder or decoder structure. Finally, unlike in a vari-
ational simulator, the input state flow is available, embedded
here in the snapshot matrix �.

Table I and Fig. 8 compare the POD-only state errors with
those from the POD with AE system. The input data com-
prise the snapshot matrix ψ ∈ C1024×200 from our previous
TFI system example with a random initial state. The table
shows that the POD-only rms error of 0.5452 at m = 5 is
reduced to 0.0101 with POD with AE, a value near to that
of POD only for m = 15 which has an rms error as shown
of 0.0121. At m = 10 and 15 the rms errors with POD with
AE are approximately those with POD only at m = 16 and 17,
possibly indicating the limit obtainable with this multilayer
autoencoder. Figure 8 highlights the large error reduction with
the addition of the AE.

The POD with AE mechanism achieves an error level com-
mensurate with the time-bandwidth product at mTBW = 14
for a compression m = 5 and 10. Such an error reduction
indicates the benefit of the inherent nonlinear variational AE
state. The fundamental reason that the AE, and the particular
configuration used here, can outperform POD remains an open
issue. That is, given that an AE, or any neural network, can
approximate most nonlinear functions, what is the character of
the AE transformation that has this property, i.e., compression
in this case?

FIG. 8. Histograms of log10 of the absolute value of all elements
of the state error matrix � − X (36). Upper: POD only for m =
5, 10, 15. Lower: POD with autoencoder for m = 5, 10.

X. COMPRESSION OF TIME-VARYING HAMILTONIAN
DYNAMICS

Consider the time-varying quantum system

ψ̇t = (H0 + ct H1)ψt , ψ0 ∈ Cn, t ∈ [0, T ], (37)

where the external field ct is independently, identically, and
uniformly distributed in [−cmag, cmag] at each of the K time
intervals in [0, T ]. The resulting state samples are stored in
the “snapshot” matrix:

� = [ψt1 · · · ψtK ] ∈ Cn×K , (38)

which is used to compute the sampled-data version of the
covariance matrix (9) via C = ��†/K . The dark thick (blue)
curves in Fig. 9 are the singular value errors εm(C) vs
compression level m from (13) for n = 128 with 100 tri-
als at K = 200 time samples for T = 2 and with each field
magnitude cmag = {0.1, 1, 10} with both H0, H1 ∈ C128×128

randomly generated, normalized to ‖H0‖ = ‖H1‖ = 10, and
held fixed throughout the 100 trials. The two light thin (pink)
curves are the singular value errors for one trial with n = 1024
at the two field magnitudes cmag = {1, 10} and again randomly
generated H0, H1 ∈ C1024×1024 and normalized also to 10. We
ran many cases at n = 1024; so as not to crowd the figure
we show two representative examples, and the rest fell in the
same range as the blue curves. What is interesting to note is
that there is compression in these cases and the levels do not
depend very much on the Hilbert-space dimension. They do,
however, depend significantly on the external field magnitude
and certainly the relative magnitudes of the Hamiltonians.
Fixing these at 10 for both n = 128 and 1024 shows this
effect. The results depicted are qualitatively similar to what
we expect for the time-invariant Hamiltonians and the com-
pression level predicted by the time-bandwidth product.
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FIG. 9. Linear-time-varying random field. ct , t ∈ [0, 2]. Dark
thick (blue) curves are POD errors (13) for n = 128 from 100
trials each at uniform random control with magnitude ranges
{±0.1,±1, ±10} from fixed random Hamiltonians normalized as
indicated. The two light thin (pink) curves are for n = 1024 from
one trial each with c = 10 and 1 and random Hamiltonians as pre-
viously normalized. Applying the autoencoder (Fig. 7) with POD at
compression level m = 15, ε15 = 0.0245 (upper diamond) results in
an error approximately 7 × 10−5 (lower diamond).

Though compression is clearly revealed by the POD pro-
cedure, it is based on a linear variational state. A nonlinear
variational state, such as one obtained from a neural network,
would have the potential for improvement. Applying the au-
toencoder of Fig. 7 with POD initiated at the compression
level m = 15, ε15 = 0.0245 (upper diamond) results in an
error approximately 7 × 10−5 (lower diamond), almost a two-
order-of-magnitude error reduction for the same compression
level.

Although a detailed mathematical analysis of the time-
dependent compression behavior remains to be determined,
we speculate here on how a time-bandwidth measure can be
developed for a time-varying quantum system such as (37).
Following the exposition and notation in [30], consider the
norm-bounded linear differential inclusion (NLDI):

iψ̇N
t ∈ HNLDIψ

N
t , ψN

0 = ψ0,

HNLDI = {Hδ = H0 + δH1 | |δ| � cmag}, (39)

where the set HNLDI ⊂ Cn×n. Any solution of (37) is also
a solution of the NLDI and in most cases the converse also
holds. As a result, many characteristics of all solutions of the
NLDI are inherited by all solutions of (37). Our speculation
is that if compression is one of these characteristics, then the
time-bandwidth product can be applied to the NLDI to estab-
lish the onset level of compression for (37). Table II shows the
results of using the worst-case frequency spread from HNLDI

to predict the onset of compression for (37). Though the

TABLE II. Comparison of POD compression error levels at 10−4

and 10−5 with predicted compression onset from the worst-case
spread of the eigenvalues of HNLDI (39) for system (37) with respect
to cmag ∈ {0.1, 1, 10} for 100 trials each for systems evolving from
(37) with dimension n = 128 and ‖H0,1‖ = 10.

Compression level

NLDI prediction POD error POD error
cmag max �eig{HNLDI} 10−4 10−5

0.1 7 10 13–15
1 10 17–19 22–26
10 65 44–52 58–67

predicted NLDI onset of compression is in the neighborhood
produced by POD, absent a more rigorous theoretical analysis
we leave this objective for a future study. One possible path
we will explore is using approaches based on robust control
theory for multiple uncertainties as applied in [31] for finding
the set of uncertain eigenvalues as might be characterized
by the time-varying nature of a Hamiltonian with multiple
time-varying fields.

XI. EXTENSIONS OF THE ANALYSIS

In this section we briefly discuss potential extensions of the
time-bandwidth product theory to (A) unitary dynamics and
(B) nonlinear frequency sweeps for constant Hamiltonians.

A. Unitary dynamics

The time-bandwidth product (29) also predicts the approx-
imate size of the compression of a variational simulation of
unitary dynamics:

iU̇t = HUt , U0 = In, t ∈ [0, T ]. (40)

For ν = 1, . . . , n let ut,ν ∈ Cn denote the columns of Ut . Each
column of the unitary evolves according to the same Hamilto-
nian system, i.e.,

iu̇t,ν = Hut,ν , u0,ν = εν, t ∈ [0, T ]. (41)

Since the initial unitary is the identity matrix, it follows that
the initial value of the νth column is εν ∈ Rn, a vector with
single nonzero element equal to one in the νth place. Let
Xt denote the variational unitary approximation with columns
xt,ν ∈ Cn, ν = 1, . . . , n. Using the Frobenius norm the state
(unitary) error is

E = 1

T

∫ T

0
‖Xt − Ut‖2

frodt =
n∑

ν=1

1

T

∫ T

0
‖xt,ν − ut,ν‖2

2dt .

(42)
As shown in Appendix C, under a linear sweep of Hamiltonian
eigenvalues, the previously defined sinc matrix bounds all the
singular values of each subsystem covariance, resulting in the
total error bound:

E ≈ Elin � n

(
1 −

m∑
i=1

σi(Slin/n)

)
. (43)
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FIG. 10. Two types of eigenvalue distributions with system dimension n = 1024: (a) from an XXZ spin chain exhibiting characteristic
piecewise constant variations, and (b) from a fictitious system with an exaggerated polynomial distribution.

As we have shown for compression of the quantum state
dynamics with a constant Hamiltonian, we see the same here,
i.e., for large n the singular values of Slin approach those of
S̄lin, and as in (30) the error tends asymptotically to zero,
thereby ensuring compression for a value of m not dependent
on the exponential growth of the Hilbert-space dimension with
the number of particles.

B. Nonlinear frequency sweeps

The more common case to expect from an arbitrary Hamil-
tonian is a nonlinear eigenvalue sweep (e.g., see Fig. 1).
Figure 10 presents two other types of eigenvalue spreads
and the corresponding singular value plots of the covariance
matrix C, the sinc matrix S, and the linear sinc matrix Slin.
The upper plot in (a) shows the eigenvalues from an XXZ spin
chain with Hamiltonian H = ∑

i σ
i
xσ

i+1
x + σ i

yσ
i+1
y + δσ i

zσ
i+1
z .

The characteristic feature of these eigenvalues is that they
are piecewise constant over varying intervals. With δ = 1.5
and with a random initial state, the lower plot in (a) shows
that the linear approximation gives a compression that is a
comparable range with that obtained from POD of a snapshot
matrix. On the right the upper plot in (b) shows a fictitious
eigenvalue distribution made from an exaggerated polynomial
where the eigenvectors are selected randomly to generate the
Hamiltonian. Though the linear approximation is clearly not
very good, the compression estimate remains in the range
predicted by the time-bandwidth product.

Though these circumstances violate the assumption lead-
ing to the time-bandwidth product analysis, the examples
presented earlier in the paper show that a nonlinear eigenvalue

sweep does not result in a serious problem: the predicted
compression from the linear eigenvalue sweep is in the
range computed from the actual system. To further support
this finding we propose to stretch the nonlinear eigenvalue
sweep engendered by an n-dimensional Hamiltonian into a
straightened out linear sweep over the same range. This is
accomplished by equating the path lengths of the two sweeps.

The path length of n nonlinear monotonically increasing
eigenvalues from ω1 to ωn is

d (ω) =
n−1∑
k=1

[(ωk+1 − ωk )2 + 1]1/2. (44)

If the sweep were linear then d (ωlin ) =
√

(�ω)2 + (n − 1)2

with �ω = ωn − ω1. To keep the same eigenvalue range with
the stretched linear sweep requires interpolating between the
stretched gaps in successive eigenvalues with an additional
n′ − n eigenvalues where

n′ = �1 + [d (ω)2 − (�ω)2]1/2�. (45)

For the two TFI frequency sweeps shown in Fig. 1 for
n ∈ {1024, 4096} the stretched system dimension increases
modestly to n′ ∈ {1029, 4101}. Since the compression m
scales logarithmically with dimension (34), the relative time-
bandwidth compression estimate is log10 n′/ log10 n − 1 ∈
{1.47 × 10−4, 7.03 × 10−4}. These changes are not visible
in Fig. 4 where the predicted compressions under the linear
sweep assumption are compared with the order where the
actual singular values become insignificant. Similarly for the
XXZ and polynomial eigenvalues shown in Fig. 10: n′

xxz =
1046 and n′

poly = 1047.
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XII. SUMMARY

The main result reported here is the introduction of the
time-bandwidth product:

� = ( fmax − fmin)T, (46)

which, for a quantum state evolving for time T with a constant
Hamiltonian with frequencies ranging from fmin to fmax, pro-
vides an estimate of compression to a reduced system whose
dimension is the nearest integer. We show that the predicted
compressed dimension is exact (in a well-defined asymptotic
sense) if the Hamiltonian frequencies (eigenvalues) range lin-
early when ordered from minimum to maximum. Since the
time-bandwidth product does not depend on the initial state,
it is, in effect, predicting the range of the worst-case level of
compression, or more precisely, where compression begins as
defined in the Introduction. Though every real system has a
nonlinear frequency sweep, numerous simulations of systems
with random (constant) Hamiltonians shown here do not vi-
olate the predicted approximate level of compression, i.e., no
order-of-magnitude changes. In general, the time-bandwidth
product is consistent with the level or onset of observed com-
pression.

The time-bandwidth product is of course not independent
of the Hilbert-space dimension. For spin systems com-
posed of two-level particles, the frequency range typically
scales linearly with the number of particles. As a result the
time-bandwidth estimated compression level scales logarith-
mically. More generally a polynomial scaling of frequency
range will still result in a compression that beats exponential
scaling.

A lower value of the predicted level of compression, and
sometimes significantly lower, is possible dependent upon
how the initial state is distributed amongst the Hamiltonian
eigenvectors. In particular, for a system with a random initial
state, the system dimension has little impact on the variational
compression, the main driver being the product of the fre-
quency sweep range and the simulation run time. In contrast,
for a specific initial state, such as one close to the system
ground state, the interaction with the Hamiltonian eigenvec-
tors plays a significant role in further reducing the variational
compression. We showed how this comes into play using a
related measure: if the initial state is predominantly in or
near a subspace spanned by a small number of Hamiltonian
eigenvectors, compression will be in the range of the initial
subspace dimension, lower than that indicated by the time-
bandwidth product. With enough run time, and with the initial
state not predominantly confined to a subspace, all of the
Hilbert space will eventually be populated. The good news
is that this upper dimension can only grow linearly with run
time: with a huge number of states the run time would have to
be very long to make such an impact.

A limitation of the time-bandwidth product is that it is
derived from a linear variational model. In contrast, a machine
learning system is built to implement a nonlinear transfor-
mation, and thereby potentially delivering a lower level of
compression with the same or smaller error. We demonstrated
this effect using an autoencoder. On the other hand, the time-
bandwidth product does reveal the existence of a useful level
of compression, indicating that with a machine learning sys-

tem to actually solve for the dynamics is an evolving area of
challenging research.

For a time-varying Hamiltonian, e.g., a system affected by
time-varying external fields, the time-bandwidth product is
not strictly applicable. Nevertheless, our preliminary analysis
based on differential inclusions in Sec. X as well as numerous
simulations show that compression still holds, though with
an expected dependence on the field strength. It also seems
reasonable to expect compression with a time-varying Hamil-
tonian to be worse than the time-invariant case, as the external
field can be thought of as moving the initial state around
through some portion of the specified Hilbert space. For a
reasonably posed control problem, even for an exponentially
large many-body system, it would normally not be expected to
define the goal for the control to move from one end of Hilbert
space to the other.

Various means were discussed for determining the time-
bandwidth product to determine the degree of compression
for any particular system. The essential procedure relied on
either the system’s dynamics appropriately sampled or, more
particularly, full knowledge of the Hamiltonian’s eigenval-
ues. Although the latter numerical determination would be
forbidding for a truly high-dimensional many-body quantum
system, a ready estimate of the bandwidth may be obtained
in the typical scenario of the physical system having local-
ized high-frequency components at or around the particles
involved, and low-frequency components corresponding to
wave-function states dispersed over the entire many-body sys-
tem. This scenario is typical of many realistic systems. For
example, in the case of the Ising nspin system widely used
throughout the paper, each spin has locally high-energy states
in the presence of an applied field and only weak coupling
between neighboring spins. In this circumstance, the highest
energy should be approximately proportional to nspin (i.e.,
actually ±nspin) with the frequency bandwidth expected to
scale as O(2nspin ). The latter result of the bandwidth scaling
is very close to that found numerically in the paper, varying to
some degree, depending upon the nature of the initial state of
the system and the desired level of accuracy of the dynamics;
the difference is inconsequential given that the Hilbert-space
dimension is exponentially large, n = 2nspin .

More generally, consider a large molecule, nanoparti-
cle, or arbitrary agglomeration of chemically bonded atoms.
In such circumstances, the highest-frequency motion in the
Born-Oppenheimer approximation (neglecting electronic ex-
citation, which can easily be included as well) typically
involves the vibrations between the nearest-neighbor chem-
ically bonded atoms, which include bound states and the
energy continuum corresponding to dissociation of one or
more chemical bonds. Any such physical situation with a
time-independent Hamiltonian would start with an initial state
corresponding to some finite energy of the system. In the
limiting case, the energy associated with the initial state is
sufficient to break every chemical bond in the sample. For
simplicity, assuming that the highest continuum frequency
limit reached by each dissociated bond has approximately
the same value O(ωmax), along with there being N pairs of
such strongly coupled bonds, the maximum frequency is es-
timated to be O(Nωmax). Similarly the lowest frequency may
simply be taken as zero or a small value [i.e., compared to
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O(Nωmax)] corresponding to various types of low-frequency
motion spread over the entire sample of atoms. Interestingly
in this case, considering the continuum being accessible, the
Hilbert space is infinite dimensional, yet the time-bandwidth
product specifying the compressed dynamics is estimated to
only be of dimension O(NωmaxT ). The compression found
here is dramatic (i.e., the same qualitative conclusion would
arise even if only one bond broke) and certainly essential for
considering any practical implementation of the dynamics,
whether that be by machine learning, a quantum device, or
possibly a clever use of more traditional methods of solving
the Schrödinger equation.

To summarize, an arbitrary large quantum many-body cou-
pled system with N ′ atoms [i.e., the number of bonds N is
expected to be O(αN ′) when α ∈ [2, 4]] is expected to have
an exponentially large Hilbert space (even possibly infinite in
size if the continuum is accessible), while the level of com-
pression is expected to approximately scale as O(NωmaxT ).
If the system was categorized as having a random structure,
and thus a random Hamiltonian, then ωmax should be replaced
by a suitable statistical average over the local high-frequency
values at or around each atom. Similar arguments should
also apply to time-dependent Hamiltonians with reasonably
bounded controls, as discussed in Sec. X. Thus, we may gen-
erally conclude that compression is not only expected, but also
essential, for the practical consideration of implementing any
form of complex many-body quantum dynamics simulation.

The time-bandwidth predicted compression in some ways
reveals that the Schrödinger equation is a giant variational
minimization machine within which is found a “discovery”:
compression. Returning to the second paragraph of the paper
with respect to points 1 and 2 there, one can also view the
system compression as an asymptotic result, where the for-
mulation presented in the paper and the numerical evidence
clearly indicate that a tolerable level of the onset of compres-
sion appears to typically set in at very low values of m with
m � n. That possibility is of course buried in the data that
go into any machine learning system. It would seem, then,
that a neural net quantum simulator would have to find a
compressed system, or else how could it simulate quantum
dynamics (with usefully small errors) without using a number
of parameters equivalent to the exponential size of the quan-
tum state? Though we have no proof at this time, the reports
of successful simulations of quantum many-body dynamics
with nonexponential scaling of neural network parameters
lend support to the time-bandwidth product prediction of the
existence of compression.
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APPENDIX A: SINGULAR VALUES OF R

Using the eigenvalue decomposition of the Hamiltonian
and state flow (15) and (16), the covariance matrix (9) can
be expressed as

C[ψ] = V FV †, F = 1

T

∫ T

0
ft f †

t dt ∈ Cn×n. (A1)

Because V is unitary, the singular values of the state covari-
ance matrix C (we drop the C[ψ] notation for clarity) are
identical to those of F :

⎛
⎝F = W

[
Qm 0
0 Qn−m

]
W †,

W = [Wm Wn−m], Wm ∈ Cn×m

⎞
⎠,

×
(

[Mm Mn−m] = VW
Mm = VWm ∈ Cn×m

)
. (A2)

The matrices Qm and Qn−m are diagonal and contain the sin-
gular values of C (or F ) in descending order [same as in (9)].
Since V,W ∈ U(n), the singular vectors of C are the columns
of the unitary product VW ∈ U(n) from which the first m
columns provide the basis for the variational model reduction
corresponding to the model error Tr Qn−m (11). An equivalent
expression for F is

F = diag(e−iωT/2)Rdiag(e−iωT/2)†,

R = diag(α)Sdiag(α)†, (A3)

with R and S as defined in (17) and (18). Since diag(e−iωT/2)
is a unitary, the singular values of F are the same as those of
R and also C.

APPENDIX B: SINGULAR VALUES OF Slin

Let TL ∈ RL×L be a real symmetric Toeplitz matrix whose
first column is generated by the series f̄L = { f�, � ∈ [0, L −
1]}. From [26], if the Fourier transform F (ω) = F ( f̄∞) sat-
isfies certain monotonicity conditions, then as L → ∞ the
eigenvalues of TL approach those of the Fourier transform
F (ω). The first column of the sinc matrix with a linear
sweep Slin (26) consists of the first n terms of the of the L-
length series s̄L = {sinc( π��

n−1 ), � ∈ [0, L − 1]}. With n fixed,
the Fourier transform of s̄∞ satisfies the aforementioned con-
ditions; i.e., from standard tables,

F (ω) =
∞∑

�=−∞
e−iω�sinc

(
�π�

n − 1

)

=
{

(n − 1)/�, |ω| � π�/(n − 1),
0, π�/(n − 1) < |ω| < π.

(B1)
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FIG. 11. Singular values of ideal (28) and Slin: (a) {n = 500, � =
100/π} and (b) {n = 3000, � = 300/π} with compression estimate

mTBW = �( n
n−1 )�� from (29).

Discretizing ω = 2πk/n, k = 0, . . . , n − 1, and then sorting
and grouping the absolute values of |F (ωk )|, we get the sin-
gular value (asymptotic in n) approximation (28). (In [27]
this type of asymptotic approximation was used for Toeplitz
eigenvalues.) Figure 11 compares the ideal (Fourier trans-
form) singular values (28) labeled svSft with those from the
linear sweep matrix Slin ∈ Rn×n labeled svS for two instances:
(a) {n = 500,� = 100/π} and (b) {n = 3000,� = 300/π}
with compression estimate mTBW = �( n

n−1 )�� from (29).

APPENDIX C: UNITARY COMPRESSION

Applying the POD method, mutatis mutandis, to each of
the n systems (41), with the variational compression fixed for
all at m, results in the optimal linear variational unitary as

Xt = [�1ut,1 · · · �nut,n], (C1)

where the rank-m matrices �ν = MνM†
ν ∈ Cn×n with each

Mν ∈ Cn×m formed as in (9) from the m singular vectors cor-
responding to the m largest singular values of each covariance
matrix:

Cν = 1

T

∫ T

0
ut,νu†

t,νdt . (C2)

The optimal (POD) state (unitary) error and the corresponding
R and S matrices are

E =
n∑

ν=1

Tr(In − �ν )Cν,

Cν = V diag(e−iωT/2)Rνdiag(eiωT/2)V †,

Rν = diag(αν )Sdiag(αν )†, αν = V †εν. (C3)

Here S is exactly the previously defined sinc matrix (17). The
error bound (43) follows directly.
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