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Estimating the gradient and higher-order derivatives on quantum hardware
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For a large class of variational quantum circuits, we show how arbitrary-order derivatives can be analytically
evaluated in terms of simple parameter-shift rules, i.e., by running the same circuit with different shifts of the
parameters. As particular cases, we obtain parameter-shift rules for the Hessian of an expectation value and
for the metric tensor of a variational state, both of which can be efficiently used to analytically implement
second-order optimization algorithms on a quantum computer. We also consider the impact of statistical noise
by studying the mean-square error of different derivative estimators. Some of the theoretical techniques for
evaluating quantum derivatives are applied to their typical use case: the implementation of quantum optimizers.
We find that the performance of different estimators and optimizers is intertwined with the values of different
hyperparameters, such as the step size or the number of shots. Our findings are supported by several numerical
and hardware experiments, including an experimental estimation of the Hessian of a simple variational circuit
and an implementation of the Newton optimizer.
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I. INTRODUCTION

Many algorithms for near-term quantum computers are
based on variational circuits [1–6], i.e., sequences of quantum
gates depending on classical parameters that are recursively
optimized for solving specific problems. Some of the most
important examples are the variational quantum eigensolver
(VQE) [1,7], the quantum approximate optimization algo-
rithm (QAOA) [8], and all variational implementations of
quantum machine learning algorithms [2,3,6,9]. In practice,
all these cases share the same workflow: A quantum com-
puter is used for measuring one or more expectation values
which are classically combined into some cost function to
be minimized. For example, the cost function could be the
expectation value of some given observable (VQE, QAOA,
etc.) or, as typical in quantum machine learning, some func-
tion which quantifies the distance between an ideal model and
its variational approximation. To minimize the cost function,
one can use different iterative methods which often require
estimation of derivatives of expectation values with respect to
the variational parameters of the circuit. The analytic gradient
of a quantum circuit can be experimentally evaluated using
the so-called parameter-shift rule [10–13], which allows im-
plementation of all gradient-based optimizers such as gradient
descent.

This work is structured in two main parts. In the first part,
we explore a variety of derivative estimators for quantum
circuits, seeking to understand and map out the effectiveness
of these different methods. Our first result is a generalization
of the analytic parameter-shift rule to derivatives of arbi-
trary orders including, as particular cases, the Hessian and
the Fubini-Study metric tensor [14,15]. Moreover, we ana-
lyze the analytic and finite-difference methods of estimating

derivatives from a statistical perspective, taking into account
the uncertainty which is unavoidable in any quantum compu-
tation involving a finite number of measurement shots.

In the second part of this work, we apply the theoretical
tools studied in the first part to implement several optimization
methods which require the experimental estimation of the
gradient and higher-order derivatives. Specifically we focus
on the Newton optimizer and the quantum natural gradient
optimizer. We also consider a diagonal approximation of the
Newton optimizer (borrowed from classical machine learning
[16]) which has a negligible overhead compared to gradient
descent but nonetheless is sensitive to the curvature of the cost
function with respect to individual parameters.

Our generalization of the parameter-shift rule is comple-
mentary to other approaches for evaluating derivatives of
quantum circuits. In Ref. [17] it was shown how to evaluate
the derivatives which are necessary to implement a VQE
algorithm in a quantum chemistry scenario. In Ref. [13] a
methodology for replacing direct measurements with indi-
rect ones was proposed, including an experimentally feasible
method for estimating the metric tensor. Very recently, dif-
ferent generalizations of the parameter-shift rule to arbitrary
gates [18,19] have been proposed which in principle could
be directly applied to extend the domain of applicability of
our results to arbitrary gates. Moreover, it is worthwhile to
mention that the same 0 and ±π/2 shifts which naturally
emerge in our analysis were also used in Ref. [20] for a
direct minimization of the cost function with respect to single
parameters.

This work is structured as follows. In Sec. II we set the
notation and define the derivative tensor. In Sec. III we derive
the higher-order parameter-shift rules. In Sec. IV the statistical
noise associated with analytic and finite-difference estimators

2469-9926/2021/103(1)/012405(15) 012405-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.012405&domain=pdf&date_stamp=2021-03-11
https://doi.org/10.1103/PhysRevA.103.012405


MARI, BROMLEY, AND KILLORAN PHYSICAL REVIEW A 103, 012405 (2021)

is studied. In Sec. V the implementation of second-order op-
timizers is considered within the context of parameter-shift
rules. Section VI focuses on investigating our findings in sim-
ulation and on hardware. We first give practical examples of
gradient and Hessian estimation and then we use these quanti-
ties to minimize the expectation value of a simple variational
circuit.1

II. SETTING

Most algorithms designed for near-term quantum com-
puters are based on the variational optimization of quantum
circuits [1–6]. A variational quantum circuit acting on n qubits
is a sequence of gates depending on a set of classical param-
eters θ = (θ1, θ2, . . . , θm) and producing a family of unitary
operations U (θ). Typically, the circuit is applied to a fixed
reference state |0〉 and the expectation value of a Hermitian
observable M is measured:

f (θ) = 〈0|U (θ)†MU (θ)|0〉. (1)

The expectation value given in Eq. (1) (or some cost func-
tion which depends on it) is usually optimized with respect
to the parameters θ. For example, if M is the Hamiltonian
of a system, we can approximate the ground-state energy by
minimizing f (θ). Many optimization methods require one to
estimate the gradient at each iteration. For more advanced op-
timizers (e.g., Newton’s method), one also needs the Hessian
matrix or higher-order derivatives.

In this work we are interested in evaluating derivatives of
an arbitrary order d , which we can cast as a tensor with d
indices j1, j2, . . . , jd whose elements are the real quantities

g j1, j2,..., jd (θ) = ∂d f (θ)

∂θ j1∂θ j2 · · · ∂θ jd

, (2)

where the gradient and the Hessian correspond to the par-
ticular cases with d = 1 and d = 2, respectively. A typical
structure of many variational circuits which can be executed
by near-term quantum computers is

U (θ) = VmUm(θm) · · ·V2U2(θ )V1U1(θ1), (3)

where Vj are constant arbitrary circuits, while Uj (θ j ) are rota-
tionlike gates, i.e., characterized by a generator Hj such that
H2

j = 1 (involutory matrix) and so

Uj (θ j ) = e−(i/2)Hjθ j = cos(θ j/2)1 − i sin(θ j/2)Hj . (4)

For example, all single-qubit rotations belong to this class.
More generally, Hj can be any multiqubit tensor product of
Pauli matrices.

Note that this class can be extended to general gates. A
possible method is to decompose a gate into a product of
rotationlike gates [18]. Another approach is to decompose an
arbitrary generator Hj into a linear combination of Pauli oper-
ators and then evaluating derivatives with respect to each term
using the stochastic method recently proposed in Ref. [19].

1Source code for the numerics and experiments in this paper is
available from [21].

III. PARAMETER-SHIFT RULES

The class of variational quantum circuits specified by
Eqs. (3) and (4) are commonly used and there exists a simple
parameter-shift rule to evaluate their gradients [10–13]. This
rule provides the gradient analytically by evaluating the circuit
with fixed shifts of π/2 in the parameters θ. We begin this
section by showing how the established gradient rule can be
generalized to arbitrary parameter shifts and then extend our
findings to higher-order derivatives such as the Hessian and
Fubini-Study metric tensor.

A. First-order derivatives: The gradient

From the previous identity, the unitary conjugation of an
arbitrary operator K̂ by Uj (θ j ) can always be reduced to the
sum of three terms

K̂ (θ j ) = Uj (θ j )
†K̂Uj (θ j ) = Â + B̂ cos(θ j ) + Ĉ sin(θ j ), (5)

where Â, B̂, and Ĉ are operators independent of θ j and involv-
ing only K̂ and Ĥj . Moreover, from the standard trigonometric
addition and subtraction identities, we can deduce that

d cos(x)

dx
= cos(x + s) − cos(x − s)

2 sin(s)
, (6)

d sin(x)

dx
= sin(x + s) − sin(x − s)

2 sin(s)
, (7)

which are valid for any s �= kπ , k ∈ Z. Differentiating both
sides of Eq. (5) and using Eqs. (6) and (7), we obtain a
parameter-shift rule which is valid at the operator level:

∂

∂θ j
K̂ (θ j ) = K̂ (θ j + s) − K̂ (θ j − s)

2 sin(s)
. (8)

Note that, even if the preceding expression looks like a finite-
difference approximation, it is actually exact and we can use
it to analytically estimate the gradient of expectation values
whenever the rotationlike property of Eq. (4) holds. Indeed,
the operator identity in Eq. (8) can be directly applied into
Eq. (1) to evaluate the jth component of the gradient. The
result is a family of parameter-shift rules

g j (θ) = f (θ + se j ) − f (θ − se j )

2 sin(s)
, (9)

where e j is the unit vector along the θ j axis.
Note that, in the limit s → 0, sin(s) can be approximated

by s and we recover the central-difference approximation for
the first derivative. On the other hand, for s = π/2 we obtain
the parameter-shift rule already studied in [10–13] and used in
quantum software libraries [22–26]. It is important to remark
that the formula in Eq. (9) is exact for any choice of s. Strictly
speaking, s cannot be a multiple of π because of the diverging
denominator; however, all the corresponding discontinuities
are removable.

B. Second-order derivatives: The Hessian

A useful property of Eq. (9) is that it can be iterated to get
higher-order derivatives. Applying the same rule twice, we get
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a similar formula for the Hessian,

g j1, j2 (θ) = [
f
(
θ + s1e j1 + s2e j2

) − f
(
θ − s1e j1 + s2e j2

)
− f

(
θ + s1e j1 − s2e j2

) + f
(
θ − s1e j1 − s2e j2

)]
× [4 sin(s1) sin(s2)]−1, (10)

which, for s1 = s2 = s, simplifies to

g j1, j2 (θ) = [
f
(
θ + s

(
e j1 + e j2

)) − f
(
θ + s

( − e j1 + e j2

))
− f

(
θ + s

(
e j1 − e j2

)) + f
(
θ − s

(
e j1 + e j2

))]
× [2 sin(s)]−2. (11)

Also in this case, for s → 0, we get the standard central-
difference formula for the Hessian. For s = π/2, we get an
analytic parameter-shift rule which is similar to the gradient
formula used in Refs. [10–13], but extended to the Hessian.
A formula equivalent to Eq. (11) for the particular case s =
π/2 was recently used in Refs. [17,27]. Particular attention
should be paid to the diagonal of the Hessian since for each
element two shifts are applied to the same parameter θ j . In this
case, two alternative choices for the value of s which appears
in Eq. (11) are particularly relevant. For the choice s = π/2
we get

g j, j (θ) = [ f (θ + πe j ) − f (θ)]/2, (12)

where we used that f (θ + πe j ) = f (θ − πe j ). Instead, for
s = π/4, we obtain

g j, j (θ) = [ f (θ + e jπ/2) − 2 f (θ) + f (θ − e jπ/2)]/2. (13)

Each of the two preceding formulas has alternative advan-
tages. The advantage of Eq. (12) is that it involves only two
expectation values and so it is more direct with respect to
Eq. (13), which is instead a linear combination of three terms.
On the other hand, the parameter shifts involved in Eq. (13)
are only ±π/2. This implies that all the elements of the full
Hessian matrix can be evaluated using only the same type of
±π/2 shifts and this fact could be an experimentally relevant
simplification. Moreover, in the typical scenario in which one
has already evaluated the gradient using the m pairs of shifts
f (θ ± π/2e j ), Eq. (13) allows us to evaluate the diagonal of
the Hessian with the extra cost of just a single expectation
value, i.e., f (θ). In Sec. V we show how this fact can be
conveniently exploited to replace the vanilla gradient descent
optimizer with a diagonal approximation of the Newton opti-
mizer, with negligible computational overhead.

C. Fubini-Study metric tensor

A second-order tensor which plays an important role in
quantum information theory is the Fubini-Study metric tensor
which for a pure variational state |ψ (θ)〉 can be expressed as

Fj1, j2 (θ) = −1

2

∂2

∂θ j1∂θ j2

|〈ψ (θ′)|ψ (θ)〉|2
∣∣∣∣
θ ′=θ

(14)

and corresponds to the real part of the quantum geometric ten-
sor (see, e.g., Appendix A1 of [28] for a detailed derivation).
For pure states and up to constant factors, Eq. (14) can also
be associated with other tensors such as the quantum Fisher
information matrix or the Bures metric tensor [15]. Since in

this work we only deal with pure states, we often refer to
Eq. (14) simply as the metric tensor.

Different from the Hessian, the metric tensor is not linked
to a particular observable M but is instead a geometric prop-
erty of a variational quantum state, which in our setting is
simply |ψ (θ)〉 = U (θ)|0〉. This tensor plays a crucial role in
the implementation of the quantum natural gradient optimizer
[28] and in the variational quantum simulation of imaginary-
time evolution [29].

Now we can make a useful observation: the metric tensor
in Eq. (14) can actually be seen (up to a constant factor) as the
Hessian of the expectation value f (θ) defined in Eq. (1), for
the particular observable M(θ′) = U (θ′)|0〉〈0|U (θ′). There-
fore, all the previous theoretical machinery that we have
derived for the Hessian applies also to the metric tensor and
we get the corresponding parameter-shift rule which is simply
the same as Eq. (11), where each expectation value is

f (θ) = |〈ψ (θ′)|ψ (θ)〉|2. (15)

The quantity |〈ψ (θ′)|ψ (θ)〉|2 is the survival probability of
the state |0〉 after the application of the circuit U (θ′)U (θ). This
probability can be easily estimated with near-term quantum
computers either with a SWAP test or more simply as the
probability of obtaining the 00 . . . 0 bit string after measuring
the state U (θ′)U (θ)|0〉 in the computational basis.

Substituting Eq. (15) into Eq. (11) and setting s = π/2 and
θ ′ = θ , we get the explicit parameter-shift rule for the metric
tensor:

Fj1, j2 (θ) = − 1
8

[∣∣〈ψ (θ)|ψ(
θ + (

e j1 + e j2

)
π/2

)〉∣∣2

− ∣∣〈ψ (θ)|ψ(
θ + (

e j1 − e j2

)
π/2

)〉∣∣2

− ∣∣〈ψ (θ)|ψ(
θ + ( − e j1 + e j2

)
π/2

)〉∣∣2

+ ∣∣〈ψ (θ)|ψ(
θ − (

e j1 + e j2

)
π/2

)〉∣∣2]
. (16)

As we discussed for the Hessian, also in this case the formula
for the diagonal elements can be simplified in two alternative
ways. The first formula, corresponding to Eq. (12), is

Fj, j (θ) = 1
4 [1 − |〈ψ (θ)|ψ (θ + πe j )〉|2]. (17)

The second equivalent formula, corresponding to Eq. (13), is

Fj, j (θ) = 1
2 [1 − |〈ψ (θ)|ψ (θ + e jπ/2)〉|2], (18)

where we used that |〈ψ (θ)|ψ (θ + e jπ/2)〉|2 = |〈ψ (θ)|ψ (θ −
e jπ/2)〉|2. We also comment that an efficient method for eval-
uating diagonal blocks of the metric tensor was proposed in
[28]. Moreover, an experimentally feasible methodology for
measuring the metric tensor was proposed in [13].

D. Arbitrary-order derivatives

The same iterative approach can be used to evaluate deriva-
tives of arbitrary order. In this case, for simplicity, we set
s = π/2 and we introduce the multiparameter shift vectors

k± j1,± j2,...,± jd = π

2

( ± e j1 ± e j2 ± · · · ± e jd

)
, (19)

where j1, j2, . . . , jd are the same d indices which appear
also in the derivative tensor defined in Eq. (2). These vectors
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represent all the shifts in parameter space that are gener-
ated by iterating the parameter-shift rule of Eq. (9) for j ∈
{ j1, j2, . . . , jd}. We explicitly introduce the set of all shifts
which are related to a derivative of order d:

S j1, j2,..., jd = {
k± j1,± j2,...,± jd ∀ choices of signs

}
. (20)

For example, for the Hessian formula given in Eq. (11)
evaluated as s = π/2, there are four possible shifts: Sj1, j2 =
{k± j1,± j2}. With this notation, the derivative tensor of order d
defined in Eq. (2) can be expressed in terms of the generalized
parameter-shift rule

g j1, j2,..., jd (θ) = 1

2d

∑
k∈S j1 , j2 ,..., jd

P (k) f (θ + k), (21)

where P (k) is the parity of a shift vector, i.e., the parity of
negative indices in Eq. (19).

How many expectation values are necessary to evalu-
ate the d-order derivative defined in Eq. (2)? This is given
by the number of elements in the previous sum, which is
|S j1, j2,..., jd | = 2d . When some of the indices are repeated, the
number of shifts can be further reduced, but we neglect this
fact for the moment. Taking into account that the derivative
tensor is symmetric with respect to permutations of the in-
dices, the number of distinct elements of a tensor of order
d is given by the combinations of d indices sampled with
replacement from the set of m variational parameters, corre-
sponding to the multiset coefficient (m + d − 1

d ). Therefore, the
total number of expectation values to evaluate a derivative
tensor of order d is bounded by

No. of expectation values � 2d

(
m + d − 1

d

)
= O(md ),

(22)

where in the last step we assumed m 	 d . In the opposite
regime d 	 m, each angle parameter θ j can be subject to
multiple shifts. However, because of the periodicity of f (θ),
for each θ j we have at most four shifts: 0,±π/2, π . Moreover,
from Eq. (5) it is easy to check that a π shift can be expressed
as a linear combination of the others,

f (θ ± πe j ) = f (θ + e jπ/2) + f (θ − e jπ/2) − f (θ), (23)

which means that only three shifts for each parameter are
actually enough: the trivial 0 shift and the two ±π/2 shifts.

From this simple counting argument we get another upper
bound

No. of expectation values � 3m, (24)

which is valid for any d . This implies an interesting fact: From
a finite number of 3m combinations of variational parameters
θ we can Taylor expand f (θ) up to an arbitrary order and so
we can actually evaluate f (θ) for all possible values of θ.

This fact may seem quite surprising; however, it simply
reflects the trigonometric structure of rotationlike gates. In-
deed, from Eq. (5) we see that K̂ (θ j ) is a linear combination
of three terms. Similarly, a full circuit with m parameters can
be expressed as a linear combination of 3m operators. There-
fore, a generic expectation value f (θ) is a linear combination
of different trigonometric functions weighted by 3m scalar

coefficients, a fact which was already noticed in Ref. [20].
In principle, these coefficients could be fully determined by
evaluating f (θ) at 3m different values of θ. In this work we
focus on the different combinations of the three specific shifts
of 0,±π/2 for each angle θ j . However, one could also obtain
similar results using any other choice of three nontrivial shifts
for each angle.

This concludes the first part of this work, in which we
derived several exact analytical results. However, if we really
want to apply Eqs. (9), (11), and (21) in a quantum experi-
ment, we have to take into account that each expectation value
on the right-hand side of these equations can be measured only
up to a finite precision and so the derivative on the left-hand
side can be estimated only up to a finite error.

IV. STATISTICAL ESTIMATION OF DERIVATIVES

The expectation value in Eq. (1) is a theoretical quantity.
In a real quantum computation with N measurement shots, we
can only estimate f (θ) up to a finite statistical uncertainty, i.e.,
what we actually measure is

f̂ (θ) = f (θ) + ε̂, (25)

with ε̂ a zero-mean random variable with variance σ 2 =
σ 2

0 /N , where σ 2
0 is the variance for a single shot which

depends on the specific details of the circuit and of the ob-
servable. The aim of this section is to take into account the
statistical noise which appears in Eq. (25). We consider this
problem within the theoretical framework of statistical in-
ference and we study different derivative estimators for the
quantities defined in Eq. (2). In particular, we are interested
in two main classes of estimators: one based on a finite-shot
version of the analytic parameter-shift rules derived in the pre-
ceding section and one based on a standard finite-difference
approximation. More precisely, the analytic estimator for a
derivative tensor of arbitrary order d is

ĝ(s=π/2)
j1, j2,..., jd

= 1

2d

∑
k∈S j1 , j2 ,..., jd

P (k) f̂ (θ + k), (26)

where we simply placed Eq. (25) into (21).
We can already make a preliminary comparison by con-

sidering the central-difference approximation which has a
very similar structure but involves an infinitesimal step size
h instead of s = π/2. In order to simplify the comparison
we express it using the same notation introduced in Eqs. (19)
and (20):

ĝ(h)
j1, j2,..., jd

= 1

(2h)d

∑
k∈S j1 , j2 ,..., jd

P (k) f̂ (θ + k2h/π ). (27)

It is evident that the only difference introduced in Eq. (27),
compared to (26), is that shifts have a step size h and that the
full estimator is scaled by h−d . This directly implies that, for
h < 1, the statistical variance of the central-difference estima-
tor is amplified by a factor of h−2d , which is a strong limitation
with respect to the analytic estimator. A more detailed analysis
of the statistical error characterizing the analytic and the finite-
difference methods will be presented later for the particular
case of the gradient (d = 1).
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A. Quantifying the error of a statistical estimator

In general terms, our aim is to find a good estimator
ĝ j1,..., jd (θ) which only depends on a finite number of mea-
surement shots and which should approximate the derivative
tensor g j1,..., jd (θ) defined in Eq. (2) well. As a figure of merit
for the performance of an estimator we can use its mean-
square error (MSE) with respect to the true value, which is

�(ĝ j1,..., jd ) = E
[(

ĝ j1,..., jd − g j1,..., jd

)2]
, (28)

where E(·) is the (classical) average over the statistical distri-
bution of the measurement outcomes. The performance of the
estimator can also be measured with respect to the full tensor
in terms of the total error,

�(ĝ) = E[‖ĝ − g‖2] =
∑

j1,..., jd

�
(
ĝ j1,..., jd

)
, (29)

which is simply the sum of the single-element errors.
Before considering specific derivative estimators, it is use-

ful to recall also the notions of bias and variance:

Bias
(
ĝ j1,..., jd

)
:= E

(
ĝ j1,..., jd

) − g j1,..., jd , (30)

Var
(
ĝ j1,..., jd

)
:= E

(
ĝ2

j1,..., jd

) − E
(
ĝ j1,..., jd

)2
. (31)

These two quantities correspond to different errors: The bias
represents a constant error which remains present even in
the limit of an infinite number of shots N → ∞, while the
variance represents statistical fluctuations which are due to a
finite N . It is well known that both effects can increase the
MSE, and indeed we have

�
(
ĝ j1,..., jd

) = Var
(
ĝ j1,..., jd

) + Bias
(
ĝ j1,..., jd

)2
. (32)

In the following sections we focus on the estimation of the
gradient, but a similar analysis can be extended to the Hessian
and higher-order derivatives.

B. Finite-difference gradient estimator

A general way of approximating the gradient is to use a
finite-difference estimator, which requires one to experimen-
tally measure expectation values for slightly different values
of the parameters. The most common finite-difference esti-
mators are the forward-difference and the central-difference
estimators, both well studied in classical numerical analysis
[30]. In this work we focus mainly on the central-difference
estimator because it has the same structure as the parameter-
shift rules derived in the previous section and so we can easily
make a comparison.

Given a fixed step size h > 0, the symmetric finite-
difference estimator for the jth element of the gradient can
be defined as

ĝ(h)
j = f̂ (θ j + h) − f̂ (θ j − h)

2h

= f (θ j + h) − f (θ j − h)

2h
+ ε̂+ − ε̂−

2h
, (33)

where we used Eq. (25) and ε̂± is the statistical noise asso-
ciated with f̂ (θ j ± h). In the right-hand side of Eq. (33) we
have the sum of two terms which are the finite-difference ap-
proximation and the statistical noise, respectively. Each term

introduces a different kind of error: One is linked to the finite
step size h and the other is linked to the finite number of shots
N . Such errors correspond to the bias and to the variance of
the estimator discussed in the preceding section. Indeed, from
Eqs. (30) and (31) we have

Bias
(
ĝ(h)

j

) = f (θ j + h) − f (θ j − h)

2h
− g j

= f3h2

3!
+ O(h3), (34)

Var
(
ĝ(h)

j

) = σ 2
0 (θ j + h) + σ 2

0 (θ j − h)

4Nh2
(35)

≈ σ 2
0

2Nh2
, (36)

where, in Eq. (34), we used the Taylor-series approximation
with f3 = ∂3 f (θ j )/∂θ3

j and σ 2
0 (θ j ± h) is the single-shot vari-

ance evaluated at θ j ± h. The step from Eq. (35) to Eq. (36) is
justified only if the following assumption holds.

Assumption 1. The variance of the measured observable
depends weakly on the parameter shift such that σ 2

0 (θ j + x) +
σ 2

0 (θ j − x) 
 2σ 2
0 for any value of x.

This assumption is usually a quite good approximation;
however, one can easily construct counterexamples in which
this is violated for large values of the shift. For this reason,
whenever a subsequent result depends on Assumption 1, it
will be explicitly stressed.

It is evident that the terms in Eqs. (34) and (36) have
opposite scaling with respect to the step size: For small h the
variance diverges, while for large h the bias dominates. This
trade-off implies that there must exist an optimal choice of h.

Substituting Eqs. (34) and (36) into Eq. (32) we get, up to
O(h6) corrections and within the validity of Assumption 1, the
MSE for an arbitrary step size

�
(
ĝ(h)

j

) 
 σ 2
0

2Nh2
+ f 2

3 h4

36
. (37)

Imposing the derivative with respect to h to be zero and as-
suming f3 �= 0, we get the optimal step size h∗ and the optimal
error

h∗ =
(

9σ 2
0

f 2
3 N

)1/6

∝ N−1/6 
 N−0.167, (38)

�
(
ĝ(h∗ )

j

) = 3

2

σ 2
0

2N
(h∗)−2 = 3

2

[
σ 2

0

2N

]2/3[
f 2
3

18

]1/3

∝ N−2/3 
 N−0.667, (39)

which are valid only for sufficiently large N (i.e., for suffi-
ciently small h∗). When the number of shots is small, the
optimal step h∗ can become so large that both the Taylor
approximation and Assumption 1 may not be valid any-
more, so we could observe deviations from the predictions of
Eqs. (37)–(39).

From a practical point of view, it is not straightforward
to determine the optimal step h∗ since it depends on the
third derivative f3. The situation is significantly simpler for
rotationlike gates where, from Eq. (5), we have that the third
derivative is equal to the first and so f3 can be replaced by
g j . However, as we are going to see in the following sections,
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in this case it is more convenient to use the parameter-shift
estimator. For the sake of completeness we comment that, by
repeating the same analysis for the forward-difference esti-
mator Ĝ(h)

j = [ f̂ (θ j + h) − f̂ (θ j )]/h, one gets similar scaling
laws but with different exponents,

�
(
Ĝ(h)

j

) 
 σ 2
0

2Nh2
+ f 2

2 h2

4
, (40)

h∗ =
(

2σ 2
0

f 2
2 N

)1/4

∝ N−0.25, (41)

�
(
Ĝ(h∗ )

j

) = σ 2
0

N
(h∗)−2 =

(
σ 2

0 f 2
2

2N

)1/2

∝ N−0.5, (42)

which are valid as long as the approximations in the Taylor
truncation and in Assumption 1 are justified.

It is notable that a similar trade-off for the choice of the
step size h was studied also in the field of classical numer-
ical analysis (see, e.g., [30,31]). In a classical computer the
error term ε̂ in Eqs. (25) and (33) is the roundoff error (or
machine epsilon) associated with the finite-precision repre-
sentation of real numbers. Optimizing the value of h was
particularly useful in the early days of classical computing,
because of the limited memory and computational resources
of that time. Nowadays, with current quantum computers, we
are in a similar situation: The statistical uncertainty of quan-
tum measurements and the limited number measurement shots
give rise to a quantum roundoff error, which is usually several
orders of magnitude larger than the classical counterpart. For
this reason, it is likely that many old problems of classical
numerical analysis will become relevant again in the context
of quantum computing.

C. Parameter-shift gradient estimators

In Sec. III we derived, for a large class of variational
circuits, an exact formula for the gradient which is given
in Eq. (9). For a finite number of shots, we can define the
corresponding parameter-shift estimator

ĝ(s)
j = f̂ (θ j + s) − f̂ (θ j − s)

2 sin(s)
= g j + ε̂+ − ε̂−

2 sin(s)
, (43)

where ε̂± is the statistical noise associated with the mea-
surement of f̂ (θ j ± s). Different from the finite-difference
estimator ĝ(h)

j presented in Eq. (33), ĝ(s)
j is unbiased because

in this case there is no finite-step error since Eq. (9) is exact.
Specifically, we have

Bias
(
ĝ(s)

j

) = 0, (44)

Var
(
ĝ(s)

j

) = σ 2
0 (θ j + s) + σ 2

0 (θ j − s)

4N sin(s)2
(45)

≈ σ 2
0

2N sin(s)2
. (46)

The step from Eq. (45) to Eq. (46) is justified only if Assump-
tion 1 is valid. The MSE of the partial-shift estimator is only
due to the statistical noise and, if Assumption 1 applies, this
is approximated by

�
(
ĝ(s)

j

) = Var
(
ĝ(s)

j

) ≈ σ 2
0

2N sin(s)2
. (47)

1. Parameter-shift rule with maximum shift (s = π/2)

The simple expression for the MSE [Eq. (47)] implies that,
under the validity of Assumption 1, the optimal shift s∗ is
the one which maximizes the denominator of Eq. (47), i.e.,
s∗ = π/2. This corresponds to the parameter-shift rule already
studied in the literature [10–13]. The explicit definitions of the
estimator and its MSE are

ĝ(s=π/2)
j = f̂ (θ j + π/2) − f̂ (θ j − π/2)

2

= g j + ε̂+ − ε̂−
2

, (48)

�
(
ĝ(s=π/2)

j

) = Var
(
ĝ(s=π/2)

j

)

= σ 2
0 (θ j + π/2) + σ 2

0 (θ j − π/2)

2N
(49)


 σ 2
0

2N
. (50)

2. Scaled parameter-shift gradient estimator

A simple way of further reducing the statistical error below
the value of Eq. (45) is to define a scaled parameter-shift
estimator, which is the same as Eq. (43) but scaled by a
multiplicative constant λ ∈ [0, 1]:

ĝ(λ,s)
j = λĝ(s)

j = λg j + λ
ε̂+ − ε̂−
2 sin(s)

. (51)

The effect of the scaling is to reduce the variance by a factor of
λ2. However, it has a cost: The new estimator is not unbiased
anymore. Indeed, we have

Bias
(
ĝ(λ,s)

j

) = (λ − 1)g j, (52)

Var
(
ĝ(λ,s)

j

) = λ2Var
(
ĝ(s)

j

)
, (53)

and so from Eq. (32) its MSE is

�
(
ĝ(λ,s)

j

) = λ2Var
(
ĝ(s)

j

) + (λ − 1)2g2
j . (54)

The error is quadratic with respect to λ and is minimized by

λ∗ = 1

1 + Var(ĝ(s)
j )

g2
j

, (55)

corresponding to the MSE

�
(
ĝ(λ∗,s)

j

) = λ∗�
(
ĝ(λ=1,s)

j

) = λ∗Var
(
ĝ(s)

j

)
(56)

or, equivalently, to

�
(
ĝ(λ∗,s)

j

) = (1 − λ∗)g2
j . (57)

Equation (56) shows that the scaled estimator is always more
accurate than the simple parameter-shift estimator of Eq. (48).
Equation (57) is also interesting since it implies that the rel-
ative MSE of ĝ(λ∗,s)

j is always less than 1 for any amount of
statistical noise and so for any N .

We envisage that this estimator could potentially be helpful
when faced with the so-called barren plateau phenomenon
[32], according to which the typical magnitude of the gradient
of a random circuit decays exponentially with respect to the
number of qubits. When the gradient is much smaller than
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the statistical estimation error [Var(ĝ(s)
j ) 	 g j], the optimal

scaling factor λ∗ can be much smaller than the vanilla value of
1. So, in this kind of noise-dominated regime, the scaled esti-
mator can be particularly advantageous if we wish to reduce
the mean-square error. Note also that from a practical point of
view, since λ∗ is a constant scalar, it can be simply absorbed
into a renormalization of the learning rate in most machine
learning optimizers. This observation could shed some light
on the practical applicability of machine learning algorithms
even when the gradient is so small that its estimation is domi-
nated by statistical noise.

D. Comparison between analytic and finite-difference
gradient estimators

Even if some generalization approaches have been pro-
posed [18,19], it is important to stress that all the parameter-
shift methods can be directly applied only to a class of circuits
(those involving involutory generators), while the operating
regime of the finite-difference method is more general. How-
ever, in all those cases in which both approaches could be
applied, which is the optimal one?

To give an answer to this question, it is important to look
for a fair comparison and to choose a reasonable figure of
merit. Since the parameter-shift rule involves two symmetric
shifts, it is reasonable to compare it to the symmetric-
difference estimator and not to the forward-difference one.
As a figure of merit we chose the MSE between the esti-
mated value and the true value of the gradient, i.e., Eqs. (28)
and (29).

As a first step, we are going to make a comparison between
ĝ(h)

j and ĝ(s)
j . Eventually, we will take into consideration also

the scaled parameter-shift estimator ĝ(λ,s)
j defined in Eq. (51),

which will be shown to outperform the other estimators, as-
suming the optimal weighting parameter is known.

1. Small step limit h → 0

In the small step limit h → 0, we notice that the finite-
difference estimator (33) is approximately equal to the
parameter-shift estimator (43) with s = h. Indeed, in this limit,
sin(h) 
 h and so

ĝ(h)
j

h→0−−→ ĝ(s=h)
j . (58)

We have already shown that, if the noise is independent of
the variational parameter, the MSE for the parameter-shift
estimator is minimized when s = π/2 [see Eq. (50)]. So, in
the small h limit, we have

�
(
ĝ(h)

j

) h→0−−→ �
(
ĝ(s=h)

j

)
> �

(
ĝ(s=π/2)

j

)
, (59)

where the last inequality is valid only under the validity
of Assumption 1. In this limit, for s = π/2 we get a large
improvement of the error since we have �(ĝ(h)

j )/�(ĝ(s=π/2)
j )

∝ 1/h2.

2. Finite step case with h � 1

For a noninfinitesimal h � 1, we have a similar result.
Indeed, for all h � 1, there always exists an sh such that

sin(sh) = h. Thus

�
(
ĝ(h)

j

) = �
(
ĝ(s=sh )

j

) + Bias
(
ĝ(h)

j

)2

� �
(
ĝ(s=sh )

j

)
, (60)

where in the first equality we used Eq. (32), the fact that ĝ(h)
j

and ĝ(sh )
j have equal variance, and that ĝ(sh )

j is unbiased.
So, also in this case, the parameter-shift rule has a smaller

error with respect to the finite-difference method. Further-
more, if Assumption 1 is valid, the estimator g(s=π/2)

j becomes

optimal since �(ĝ(s=sh )
j ) > �(ĝ(s=π/2)

j ).

3. Finite step case with h > 1

If h > 1, the problem is nontrivial. In this case, the variance
of the finite-difference estimator is smaller than the vari-
ance of the parameter-shift estimator for all values of s, i.e.,
Var(ĝ(h)

j ) � Var(ĝ(s)
j ). On the other hand, since h is large, the

bias of ĝ(h)
j can be large while ĝ(s)

j is unbiased. The trade-off
between the two effects determines which method minimizes
the MSE. Moreover, we should also consider that that Taylor
approximation which we used for the error analysis of the
finite-difference estimator is likely to be broken for h > 1.

It is however intuitive that when the statistical noise is
extremely large, the finite-difference formula in Eq. (33) for
h > 1 has a large denominator 2h which is able to attenuate
the statistical fluctuations more than the parameter-shift de-
nominator (which is equal to 2). So we may ask if by simply
adding a multiplicative constant λ ∈ [0, 1] to the parameter-
shift estimator we could always obtain a smaller error with
respect to the finite-difference method for all values of h and
for any value of the statistical noise. This is indeed true, as we
are going to show in the following section.

4. The scaled parameter-shift estimator is always optimal

We have just compared the error scaling of the analytic
and the finite-difference estimators. In this section, we instead
compare both methods with respect to the scaled parameter-
shift estimator defined in Eq. (51). In particular, we are going
to show that ĝ(λ∗,s)

j , where λ∗ is the optimal scaling parameter
given in Eq. (55), always has a smaller MSE when compared
to ĝ(h)

j or ĝ(s)
j .

Indeed, from Eq. (56) and since λ∗ � 1, we directly have

�
(
ĝ(s)

j

)
� λ∗�

(
ĝ(s)

j

) = �
(
ĝ(λ∗,s)

j

)
. (61)

Moreover, after recognizing that ĝ(h)
j = λhĝ(s=h)

j with λh =
sin(h)/h < 1, we have

�
(
ĝ(h)

j

) = �
(
λhĝ(s=h)

j

) = �
(
ĝ(λ=λh,s)

j

)
� �

(
ĝ(λ∗,s)

j

)
. (62)

Therefore, the scaled parameter-shift estimator ĝ(λ∗,s)
j is char-

acterized by a smaller mean-square error when compared to
both the finite-difference estimator ĝ(h)

j and the (nonscaled)

parameter-shift estimator ĝ(s)
j .

We stress that this result can be straightforwardly gen-
eralized also to high-order derivative estimators beyond the
gradient, by simply replacing the constant λh = sin(h)/h
which appears in Eq. (62) with λh = [sin(h)/h]d , where d is
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the order of the derivative tensor. Moreover, we also highlight
that this result is independent on the validity of Assumption 1.
However, if Assumption 1 holds, we can deduce the additional
fact that the scaled parameter-shift estimator with s = π/2 is
always the optimal choice since it minimizes the mean-square
error.

One may wonder why a scaled version of the finite-
difference estimator was not considered. The reason is that
it would be exactly equivalent to the scaled parameter-shift
estimator up to a renormalization of the scale factor λ. The
choice of scaling the parameter-shift estimator is however
more natural since in this case we have that, for a large number
of shots N , the optimal scaling λ∗ tends to the trivial limit
of 1.

As a final comment in this section, we note that the
forward-difference estimator was not considered in the above
comparison. On the one hand, the forward-difference esti-
mator has a bias that scales linearly with the step size h, as
opposed to h2 for the central-difference estimator considered
here. On the other hand, the forward-difference estimator can
be calculated with roughly half the number of shifted expec-
tation values. The forward-difference estimator may hence be
competitive for particular situations, depending on the curva-
ture of the cost function and on the choice of shot number and
step size.

V. FIRST- AND SECOND-ORDER OPTIMIZATION

In many variational algorithms and in quantum machine
learning problems, a loss function (which may depend non-
linearly on one or more expectation values) is minimized
with respect to the circuit parameters θ. For simplicity, in
this section we assume that our goal is to minimize a single
expectation value f (θ), associated with an observable M as
described in Eq. (1). More general scenarios can be treated
in a similar way, with only some classical overhead due to
the application of the chain rule for evaluating derivatives of
composite functions.

A. Gradient descent optimizer

One of the most common optimizers is gradient descent
(GD). According to this algorithm, the parameters are first
initialized with an initial (usually random) guess θ(0) and
then a sequence of updated configurations θ(1), θ(2), . . . , θ(T )

is recursively generated, hopefully converging to a minimum
of f (θ). At each iteration, the GD update rule is

θ(t ) = θ(t−1) − η∇ f (θ(t−1)), (63)

where η > 0 is a real hyperparameter usually called the learn-
ing rate. Note that this is essentially the same algorithm in
both the classical and quantum settings, so the only part of the
problem which is intrinsically “quantum” is the estimation of
the gradient. Indeed, GD is the default optimizer used in most
quantum machine learning software frameworks [22–26]. In
the previous sections of this work, we have studied different
methods of estimating the quantum gradient, including the
parameter-shift rule [10–13].

B. Newton optimizer

The generalization of the parameter-shift rule to higher-
order derivatives that we introduced in Eq. (21), and in
particular the analytic evaluation of the Hessian and the
Fubini-study metric tensor that we have discussed in the first
part of this work, can be directly exploited to implement
several second-order optimizers. Such methods are similar to
GD but in place of the first-order update rule of Eq. (63) they
have more advanced iteration rules, which take into account
also some information about the curvature of the objective
function (or of the quantum state) with respect to the varia-
tional parameters θ.

For example, the update rule of the Newton optimizer (see,
e.g., [30]) is

θ(t ) = θ(t−1) − η[H f (θ(t−1))]−1∇ f (θ(t−1)), (64)

where [H f (θ)]−1 is the inverse of the Hessian matrix, which
can be estimated using the associated parameter-shift rule
presented in Eq. (11). Since the Hessian is an m × m matrix,
at each iteration, the number of expectation values which need
to be estimated scales as m2.

C. Diagonal Newton optimizer

The computational cost of this method can be significantly
reduced if one approximates the full Hessian matrix with its
diagonal part such that the update rule for the jth element of
θ(t ) simplifies to

θ
(t )
j = θ

(t−1)
j − ηg−1

j, j (θ
(t−1))g j (θ

(t−1)), (65)

where we used notation of the derivative tensor of Eq. (2). The
computational cost of this optimizer, which was originally
introduced in classical machine learning [16], has a linear
scaling with respect to m and so it can be a competitive
alternative to GD. Moreover, the computational overhead of
this method with respect to the analytic GD optimizer is
negligible. Indeed, according to Eq. (13), the diagonal of the
Hessian can be evaluated with the same ±π/2 shifts which
would be measured anyway to estimate for the gradient.

D. Quantum natural gradient optimizer

A different second-order optimizer can be obtained from
the concept of quantum natural gradient [28]. The correspond-
ing update rule is very similar to Newton’s method, but here
the Hessian is replaced by the Fubini-study metric tensor
defined in Eq. (14):

θ(t ) = θ(t−1) − η[F (θ(t−1))]−1∇ f (θ(t−1)). (66)

As we have shown in Sec. III C, all the elements of metric
tensor Fi, j can be analytically estimated with the parameter-
shift rule derived in Eq. (16).

E. Regularization of second-order methods

All the previous second-order methods share the same
structure of the update rule θ(t ) = θ(t−1) − ηA−1∇ f (θ(t−1)),
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where A can be the Hessian, the metric tensor or some diago-
nal approximation. In the field of classical optimization, it is
well known that, if A is not positive definite, the optimizer can
converge to a maximum instead of a minimum [30]. More-
over, if one or more eigenvalues are close to zero, the norm of
the inverse matrix can be so large that the algorithm becomes
unstable. Therefore, it is common practice to regularize A in
such a way to make it sufficiently positive. For example, one
can replace A with A′ = A + ε1, for some positive parameter
ε > 0, which corresponds to shifting all the eigenvalues by
+ε. Alternatively, one can regularize each eigenvalue λk of
A by replacing it with λ′

k = max(λk, ε), without changing
the associated eigenvector. In our experiments we used the
previous method; however, from additional numerical simula-
tions (see Sec. 5 of the Appendix) we noticed that the second
method can be much more efficient since it only perturbs A in
the necessary subspace and keeps A invariant whenever it is
sufficiently positive.

Finally, we mention the approach which was recently pro-
posed theoretically in Ref. [27], where the inverse of the
maximum eigenvalue of the Hessian is used as a learning
rate. In the notation of our work, this approach could be
interpreted as a particular regularization method in which A
is replaced by A′ = max(λk )1. It is worth emphasizing that
Ref. [27] contains a comprehensive study of the spectrum of
the Hessian and its application for analyzing the landscape
of the cost function. This general analysis is beyond the aim
of our present work, which is instead more focused on the
experimental estimation of the Hessian and its usage in the
Newton optimizer.

We also highlight the detailed analysis of Ref. [33] in
which the error propagation associated with the matrix inver-
sion of A′ (the regularized Hessian or metric tensor) is studied
in the context of second-order optimization methods. Quite
interestingly, according to Ref. [33], second-order optimizers
have a relatively low sensitivity to the errors in the matrix ele-
ments of A′ and so they can still converge towards a minimum
even when the Hessian or the metric tensor is statistically
noisy. This fact is consistent with the experimental results
reported Sec. VI.

VI. NUMERICAL AND HARDWARE EXPERIMENTS

This section contains details of experiments run on simu-
lators and hardware. We use the PENNYLANE software library
[22] to construct a simple variational quantum circuit and ac-
cess its expectation value and gradient. The circuit is evaluated
using PENNYLANE’s built-in simulator as well as on hardware
by using integration with the IBM Quantum Experience to
execute on the ibmq_valencia and ibmq_burlington five-
qubit chips.

The circuit has five parameters θ = (θ1, θ2, θ3, θ4, θ5), as
shown in Fig. 1. It consists of a collection of single-qubit
Pauli-X rotations, an entangling block, and a measurement
of the Pauli-Z observable on the second qubit. The circuit
is chosen to provide a nontrivial gradient with a low depth
and the entangling block is set to match the topology of the
hardware devices. We use a fixed set of parameters θ, which
is detailed in the Appendix along with the resultant analytic
expectation value and gradient.

FIG. 1. Variational circuit run on a simulator and hardware to
investigate the findings in this paper.

A. Estimating the gradient

We now investigate the performance of gradient estimators
in the finite-shot setting, as discussed in Sec. IV. Figure 2(a)
shows how the MSE �(ĝ) scales with step size for the finite-
difference and parameter-shift estimators when expectation
values are estimated on a simulator with 103 shots. The MSE
is calculated over 103 repetitions and seen to coincide closely
with the theoretical predictions provided earlier. Note that
the finite-difference curve starts to diverge from the predicted
behavior for large step sizes due to the Taylor-series approxi-
mation breaking down in Eq. (34).

It is hence clear from the figure that the parameter-shift
method with s = π/2 is the best-performing estimator in this
setting. We investigate the relative performance of the two
gradient estimators further using simulations in the Appendix,
where we see that the parameter-shift method has the lower
MSE for N > 50 shots. For low shot numbers, the scaled
parameter-shift method mentioned in Sec. IV C 2 can also
be used.

Figure 2(b) compares the gradient estimators using the
ibmq_valencia device with 103 shots per expectation value.
The MSE is calculated over 16 repetitions due to limited
availability of the hardware. We observe qualitative behavior
similar to the simulator-based results in Fig. 2(a) but with the
MSE offset upward by roughly one order of magnitude, likely
due to systematic errors in the device.

B. Estimating the Hessian

We use the results presented in Sec. III B to measure the
Hessian matrix using the parameter-shift method. The Hessian
of the circuit in Fig. 1 is a (5 × 5)-dimensional symmetric
matrix with ten off-diagonal terms and five along the diagonal.
The parameter-shift method with shift s = π/2 was used to
estimate the off-diagonal terms, requiring measurement of 40
expectation values. The diagonal terms were estimated with
s = π/4, which required measuring 11 expectation values.
The exact value of the Hessian matrix is provided in the
Appendix, which also includes a simulator-based comparison
of the MSE for the Hessian when estimated using the finite-
difference and parameter-shift methods. The exact Hessian
matrix consists of a 4 × 4 block of nonzero terms and a final
row and column of zeros due to the expectation value being
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FIG. 2. Mean-square error for different choices of step size when
estimating the gradient using the finite-difference and parameter-
shift estimators with 103 shots used to evaluate expectation values.
The solid lines show the MSE, while the shaded regions illustrate
the range of values within one standard deviation. Plots compare the
estimators when run on (a) a simulator and (b) ibmq_valencia.
Additional gray lines are calculated from theoretical predictions:
The dashed lines show the expected behavior of the MSE and the
dotted vertical lines show the expected optimal choice of step size:
h∗ = 0.613 and s∗ = π/2.

independent of θ5. We estimated the Hessian matrix on hard-
ware using ibmq_valencia with N = 103. Figure 3 shows
the relative error for the 4 × 4 block, while the maximum
squared error for second derivatives including the θ5 term was
8.12 × 10−4.

From Fig. 3 one can deduce that off-diagonal terms tend
to have a larger relative error. Since most of the weight of the
exact Hessian is on the diagonal (see the Appendix), the error
on the off-diagonal terms may be due to statistical fluctuations
which have a larger impact on small matrix elements. How-
ever, given the limited amount of data, it is hard to distinguish
between the errors which are caused by the experimental de-
vice and those which just correspond to statistical fluctuations.

C. Optimization

The GD, Newton, and diagonal Newton optimizers dis-
cussed in Sec. V are now used to minimize the expectation
value f (θ) of the circuit in Fig. 1 when run on hardware
using the ibmq_valencia and ibmq_burlington devices.

0.12 0.54 0.76 0.05

0.54 0.25 0.52 0.04

0.76 0.52 0.16 0.13

0.05 0.04 0.13 0.13
0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIG. 3. Relative error for using the parameter-shift estimator to
approximate the Hessian matrix on the ibmq_valencia hardware
device. Only the upper left 4 × 4 block is considered, since the exact
Hessian is zero in the final row and column.

We select θ1 and θ2 as trainable parameters and leave θ3, θ4,
and θ5 fixed, as well as choosing a constant learning rate of
η = 0.4, as detailed in the Appendix.

A comparison of the performance of the GD optimizer
when using different shot numbers N to evaluate expectation
values is provided in Fig. 4(a). Figure 4(a i) shows the cost
function f (θ) evolving with the total number of circuit eval-
uations on the device, while Fig. 4(a ii) illustrates the path
taken by the optimizer through the θ1-θ2 space. The starting
point of the optimizer is (θ1, θ2) = (0.1, 0.15) and an exact
GD optimizer tends to the value (θ1, θ2) = (0, π ).

These plots highlight some interesting features of opti-
mization on hardware. We see that the minimum can be
approached even with a low shot number of N = 10, requiring
orders of magnitude fewer circuit evaluations from the device
than the N = 100 and N = 1000 cases. However, the N = 10
case is noisy and oscillates around the minimum point. This
suggests that an adaptive shot number N may be useful in
practice with a low shot number initially and an increase
in N as the optimizer approaches a minimum, as has been
discussed in recent works [34–36]. It is also important to note
that the optimizer is able to approach the expected minimum
even though the cost function available on the device is noisy,
indicating that the direction of the gradient is still an accessi-
ble signal. Nevertheless, the gradient direction is clearly still
prone to error: Note that in Fig. 4 the hardware-based paths
are different from the ideal simulated path.

Figure 4(b) shows the result of using the GD, Newton,
and diagonal Newton optimizers on hardware with N = 103

and with the same starting point of (θ1, θ2) = (0.1, 0.15).
The Newton optimizer requires evaluation of a (2 × 2)-
dimensional Hessian at each iteration step which is realized
with nine expectation value measurements, while the diagonal
Newton optimizer requires five expectation value measure-
ments per iteration step. This contrasts with the GD optimizer
which requires four evaluations per step. These differences are
factored into Fig. 4(b i), which plots the cost function f (θ) in
terms of the total number of circuit evaluations taken on the
device.
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FIG. 4. Comparison of optimizers with circuit evaluation performed on the ibmq_burlington and ibmq_valencia hardware devices.
The top row of plots (experiment A) focuses on the gradient descent optimizer for a varying number of shots N per expectation value
measurement, while the bottom row of plots (experiment B) compares different optimizers discussed in Sec. V when using N = 1000. (a i)
and (b i) Cost function f (θ) in terms of the total number of circuit evaluations on the device and (a ii) and (b ii) the path taken by the optimizer
through the θ1-θ2 space. In (a i) and (b i) the dashed lines give the cost function evaluated on hardware and the solid lines give the cost function
evaluated on an exact simulator with the same θ. The dotted line gives the analytic minimum of −0.874. In (a ii) and (b ii) the contrasting
white and purple circles highlight the maximum and minimum, while the dashed line in (a ii) is the path taken by the GD optimizer with access
to exact expectation values.

We observe a comparable performance between each of the
optimizers, but it is important to note that the learning rate
hyperparameter and the regularization method can change the
performance of each optimizer. One may also wonder why,
for a large number of circuit evaluations, GD seems to be
equivalent to or even better than second-order methods. The
supplementary theoretical analysis reported in the Appendix
suggests that this is strongly related to the choice of the
regularization method (see in particular Sec. 5). The dramatic
dependence of Newton optimizers on the regularization strat-
egy is a drawback which is well known in the field of classical
optimization [30]. This is a practical issue which must be
taken into account also in the quantum setting.

The paths taken by each optimizer are drawn in Fig. 4(b ii).
This highlights the key qualitative difference between the op-
timizers, which take paths based on the different information

they have available, such as the local curvature information
for the optimizers using the Hessian. Note that the diagonal
Newton optimizer tended to the (π, 0) minimum when eval-
uated on hardware. This behavior was due to the presence of
noise in the device: All optimizers tend to the (0, π ) minimum
with access to an ideal simulator, as shown in the Appendix.

The main scope of our experiments was to show the practi-
cal feasibility of GD in the regime of high statistical noise and
to give a proof-of-principle demonstration of second-order
methods on real hardware. Consistently with this scope, we
used a very simple circuit, but one should be aware that, in real
applications, the circuits are usually quite different (larger and
more structured). A quantitative and detailed benchmarking
of the different optimizers is left for future work. On this
subject, we mention the recent theoretical analyses reported
in Refs. [27,37].
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VII. CONCLUSION

We have derived a generalization of the parameter-shift
rule for evaluating derivatives of arbitrary order. We have
studied how such derivatives are affected by the statistical
noise which is due to a finite number of experimental mea-
surements, testing our predictions with numerical simulations
and real quantum experiments. We have also experimentally
tested how the generalized parameter-shift rules can be used
to efficiently implement second-order optimization methods
on near-term quantum computers.

The results presented in this work could pave the way to
interesting future research directions. For example, the strong
similarity between the classical round-off error and the quan-
tum statistical error, which naturally emerged in our analysis
of derivative estimators, is probably worth further exploration
and generalization. Moreover, the analytic second-order opti-
mizers, which in this work we tested with simple examples,
could be subject to a more systematic benchmarking analysis
in order to understand their competitive potential with respect
to first-order methods.
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APPENDIX: FURTHER DETAILS ON THE NUMERICS
AND HARDWARE EXPERIMENTS

1. Problem setting

We use a fixed set of parameters generated from the uni-
form distribution over the interval [0, 2π ],

θ = (2.739, 0.163, 3.454, 2.735, 2.641). (A1)

101 102 103 104 105

N

100

op
ti

m
al

st
ep

si
ze

finite-difference

parameter-shift

FIG. 5. Optimal step size for the finite-difference and parameter-
shift gradient estimators for a range of shot numbers N . The shaded
regions display the range of step sizes resulting in an MSE that is
within 20% of the minimum observed value, while the solid lines are
the medians of these regions. The dashed gray lines are the predicted
values for the optimal step size.
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FIG. 6. Mean-square error for different choices of shot number N
when using the finite-difference and parameter-shift estimators with
corresponding optimal choices of step size to estimate the gradient.
The solid lines show the results from simulation, while the dashed
gray lines are the predicted scaling. The dotted vertical line indicates
the crossover point between the two methods at N ≈ 50 shots.

Using an exact simulator, the expectation value, its gradient,
and its Hessian can be evaluated as

f (θ) = −0.794, (A2)

g(θ) = (−0.338, 0.130, 0.256,−0.342, 0), (A3)

H (θ) =

⎛
⎜⎜⎜⎝

0.794 0.055 0.109 −0.145 0
0.055 0.794 −0.042 0.056 0
0.109 −0.042 0.794 0.110 0

−0.145 0.056 0.110 0.794 0
0 0 0 0 0

⎞
⎟⎟⎟⎠.

(A4)

Note that the final element of the gradient vector is ex-
actly zero. Simulations were carried out in this paper using
the default.qubit device in PENNYLANE with a finite

10−1 100

step size

10−2

10−1

100

101

102

M
S
E

finite-difference

parameter-shift

FIG. 7. Mean-square error for different choices of step size when
estimating the Hessian using the finite-difference and parameter-shift
estimators with 103 shots used to evaluate expectation values on a
simulator. The solid lines show the MSE, while the shaded regions
illustrate the range of values within one standard deviation.

012405-12



ESTIMATING THE GRADIENT AND HIGHER-ORDER … PHYSICAL REVIEW A 103, 012405 (2021)

101 102 103 104 105

N

10−4

10−3

10−2

10−1

100

M
S
E

finite-difference

parameter-shift

FIG. 8. Mean-square error for different choices of shot number N
when using the finite-difference and parameter-shift estimators with
optimal choices of step size to estimate the Hessian. A power-law
fit to each line gives scalings of N−0.5013 and N−1.0008 for the finite-
difference and parameter-shift methods, respectively.

number of shots. Hardware evaluation was performed using
the qiskit.ibmq device in the PENNYLANE-QISKIT plugin.

2. Estimating the gradient

Figure 5 shows the optimal step size for both the finite-
difference and parameter-shift gradient estimators over a
range of shot numbers N used to measure expectation values
on simulator. In both cases, the gradient was estimated over
a fixed set of candidate choices for the step size and the one
with the smallest MSE was selected. The plots also contain
dashed lines illustrating the predicted value of the optimal step
size. For small N , the optimal step size for the finite-difference
estimator begins to deviate from the prediction. The reason
for this deviation is that, for small N , the optimal step size
h∗ is so large that the Taylor expansion around h 
 0 is not
valid anymore. Figure 6 shows the MSE for the gradient
estimators when using their optimal step sizes over a range of

shot numbers N . In both Figs. 5 and 6, the MSE is calculated
using 1000 repetitions.

3. Estimating the Hessian

Figure 7 illustrates the MSE when the Hessian is estimated
using the finite-difference and parameter-shift methods for
varying step sizes when expectation values are estimated on a
simulator with 103 shots and with 103 repetitions to calculate
the average. The parameter-shift estimator is calculated using
Eq. (11) and the finite-difference estimator of the Hessian is
taken to be [38]

ĝ(h)
j1, j2

(θ) = [
f
(
θ + h

(
e j1 + e j2

)) − f
(
θ + h

( − e j1 + e j2

))
− f

(
θ + h

(
e j1 − e j2

)) + f
(
θ − h

(
e j1 + e j2

))]
× (4h2)−1. (A5)

Figure 8 compares both estimators of the Hessian for varying
shot numbers N when each estimator uses the corresponding
optimal step size.

4. Second-order optimization

We minimize the expectation value f (θ) with θ =
(θ1, θ2, 3.454, 2.735, 2.641), where θ1 and θ2 are trainable
parameters. The analytic minimum is equal to

min
θ1,θ2

f (θ) = −0.874. (A6)

Extremal points occur alternately when θ1 and θ2 are multiples
of π .

In the results provided, ibmq_burlington was used when
investigating the GD optimizer and ibmq_valenciawas used
when investigating the Newton and diagonal Newton optimiz-
ers. A learning rate of η = 0.4 was adopted for all optimizers.
Figure 9 compares the GD, Newton, and diagonal Newton
optimizers with circuit evaluation on a noise-free simulator.
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FIG. 9. Comparison of different optimizers discussed in Sec. V with circuit evaluation performed on PENNYLANE’s noise-free
default.qubit simulator. (a) Cost function f (θ) in terms of the total number of circuit evaluations and (b) path taken by the optimizer
through the θ1-θ2 space. In (a) the dotted line gives the analytic minimum of −0.874 and in (b) the contrasting white and purple circles
highlight the maximum and minimum.
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FIG. 10. Comparison of different optimizers discussed in Sec. V with circuit evaluation performed on PENNYLANE’s noise-free
default.qubit simulator. (a) Cost function f (θ) in terms of the total number of circuit evaluations and (b) path taken by the optimizer
through the θ1-θ2 space. In (a) the dotted line gives the analytic minimum of −0.874 and in (b) the contrasting white and purple circles
highlight the maximum and minimum. With respect to the simulation of Fig. 9, in this case a different regularization method is used, as
discussed in the text.

5. Using a different regularization

As discussed in Sec. V E, one can use different regular-
ization methods. In the previous examples we used H( f ) →
H( f ) + ε1 with ε > 0, which in the specific cases of Figs. 9
and 4 was set to a relatively large value (ε = 1) to compensate
for the large negativity of the initial Hessian matrix. In Fig. 10,

instead we numerically simulate the same optimization prob-
lem but we use a different regularization method: We replace
each eigenvalue λk of H( f ) with max(λk, ε), without chang-
ing the corresponding eigenvectors. In this case the results
demonstrate a clear advantage of second-order optimizers
with respect to gradient descent.
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