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Quantum optimal control of multilevel dissipative quantum systems with reinforcement learning
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Manipulation and control of the complex quantum system with high precision are essential for achieving
universal fault-tolerant quantum computing. For a physical system with restricted control resources, it is a
challenge to control the dynamics of the target system efficiently and precisely under disturbances. Here we
propose a multilevel dissipative quantum control framework and show that deep reinforcement learning provides
an efficient way to identify the optimal strategies with restricted control parameters of the complex quantum
system. This framework can be generalized to be applied to other quantum control models. Compared with the
traditional optimal control method, this deep reinforcement learning algorithm can realize efficient and precise
control for multilevel quantum systems with different types of disturbances.
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I. INTRODUCTION

Precise and complete control of complex quantum systems
is the core to achieve quantum computation and quantum
information processing. The quantum control (QC) theory
provides a powerful tool to achieve high-precision control of
quantum dynamics. A QC problem can be phrased as finding
strategies of inducing complete transfer of population from an
arbitrary initial quantum state to the desired target state. An
optimal strategy to get a selected state of a finite-energy-level
quantum system is of primary importance for the control of
quantum dynamics. The theory for the design of such an
optimal strategy has been studied widely, such as in Lyapunov
quantum control [1,2], geometric control theory [3], and the
Pontryagin maximum principle [4]. Also, robust and optimal
strategies of QC are essential for many areas of physical sys-
tems from nitrogen-vacancy center experiments [5], to optical
systems [6], to superconducting qubits [7]. However, it is hard
to get a convincing result with traditional control theory if
there are some restricted conditions in the control system.
To manipulate more complicated systems, there have been
developed several numerical algorithms, like the gradient as-
cent pulse engineering (GRAPE) algorithm [8,9] and chopped
random basis (CRAB) [10,11]. Furthermore, the disturbance
of quantum dynamics is the main obstacle in implementing
scalable quantum computing [12]. To deal with the spin or
qubit decoherence, various strategies have been developed,
including quantum error correction [13–16], dynamical de-
coupling (DD) [17–19], and optimized control in protecting
quantum coherence [20–22]. One way to achieve optimal
control is to use an arbitrarily slow change of the dynamical
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parameters and the adiabatic theorem [23]. However, for a
multilevel system, these require several resources that also in-
crease exponentially with the size of the system. On the other
hand, when application to a typical realistic condition of an
open quantum system is considered, there are few analytical
or ansatz solutions available. To simplify those constraints, in
this paper we introduce a switch-on-off control problem with
dissipative dynamics. In particular, we discuss the dynamics
that are affected by dephasing and energy decay. These two
effects exist, to different degrees, in any practical attempt to
implement quantum control tasks in real physical systems
[24–27]. Those disturbance effects emerge from the interac-
tion of the system with the surrounding environment [28].

Quantum control theory has been recently applied with
success to the optimization of the dynamics of simple systems
[5,29–31] and quantum many-body systems [10,11,32,33].
With the progress of quantum control techniques and com-
puter science, the numerical algorithm gives us a robust and
efficient way to implement high-fidelity quantum control.
Among various control algorithms, reinforcement learning
(RL) has been attracting much focus. Reinforcement learning
has demonstrated remarkable abilities in board games [34–36]
and video games [37–39]. Recently it has also been widely
applied to a wide array of physics problems, such as quantum
state preparation [32,40], quantum gate control [41,42], quan-
tum error correction [43], and quantum metrology [44]. Those
successes naturally raise the question of how much quantum
control might benefit from the application of reinforcement
learning.

In this paper, we study a general quantum control model
of a finite-level system under disturbances. To explore the
optimal strategy of the control problem in this scenario, we
use the distributed proximal policy optimization (DPPO) algo-
rithm [45,46] to study this problem in this paper. The proximal
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policy optimization (PPO) algorithm has been successfully
used in robotics [47] and aircraft control [48]. Recently, it has
been applied in QC problems [49,50].

The rest of this paper is structured as follows. In Sec. II,
we briefly introduce the basic description of our quantum
control model. In Sec. III, we present the actor-critic model
of reinforcement learning and the DPPO algorithm used in
our paper. In Sec. IV, we present the methodology of our
method, the architecture of the neural network for our agent,
the interactive interface, as well as numerical results of tested
examples. Finally, in Sec. V, we draw our conclusions.

II. MODEL

We study a quantum system with a finite number of distinct
energy levels driven by a time-dependent external field whose
Hamiltonian reads

H = H0 + V (1)

with

H0 =
n∑

i=1

Ei|i〉〈i|, (2)

V (t ) =
n−1∑
i=1

γ (t )(|i〉〈i + 1| + |i〉〈i + 1|), (3)

where H0 is called the drift Hamiltonian and V (t ) is called
the control Hamiltonian in quantum control theory. The state
|i〉 is the ith eigenstate of H0 with eigenenergy Ei, n is the
number of the energy levels, and the time-dependent real
parameter γ (t ) is the coupling strength between |i〉 and |i + 1〉
for 1 � i � n − 1. Without loss of generality, we assume that
E1 � E2 � · · · � En. In particular, we assume H0 is regular,
where the energy levels Ei = i (i = 1, . . . , n). However, a
different distribution of eigenenergies may affect the perfor-
mance of control algorithms. So we present the effect of the
different distribution of eigenenergies on two examples in
Appendix D.

When our system weakly interacts with its environment, its
dynamics is described by the master equation of the Lindblad
type:

ρ̇ = − i

h̄
[H, ρ] +

∑
k

�k,n

(
Ak,nρA†

k,n − 1

2
{A†

k,nAk,n, ρ}
)

,

(4)
where Ak,n is the Lindblad operator associated with some
dissipative process with a decay rate �k,n for each k, and the
subscript n labels the type of dissipative process. {A, B} =
AB + BA denotes the anticommutator. Here we consider two
typical dissipative processes. One is the dephasing process,
whose Lindblad operator Ak,d = |k〉〈k| with an identical de-
phasing rate �k,d = �d for 1 � k � n. The other is the energy
decay process, whose Lindblad operator Ak,l = |1〉〈k| with an
identical energy decay rate �k,l = �l for 2 � k � n.

Our central task can be stated as follows. Initially, our
system is prepared in the ground state |1〉 of H0. By control-
ling the time dependence of the parameter γ (t ), we aim to
maximize the probability for our system to be in the highest
excited state n of H0 at a fixed time T .

For simplicity, we adopt the bang-bang control protocol.
We divide the total control time T into N periods with
the same duration δt = T/N . In the ith period with (i −
1)δt � t � iδt (1 � i � N), the coupling is either switched
on or switched off, i.e., γ (t ) = aiγ with ai ∈ {0, 1}. Then a
control strategy is specified by a series of binary numbers
{a1, a2, . . . , aN }. We aim to find out an optimal strategy to
maximize the fidelity

F (ρ(T ), |n〉〈n|) = 〈n|ρ(T )|n〉. (5)

It is worth pointing out that, since the size of the set of the
strategy space is 2N , it is impossible to get the optimal strategy
by exhaustively searching in the strategy space for a large N .

Note that we focus on a regime where γ is much smaller
than the energy gap En − E1, which implies that the proba-
bility of arriving at the state |n〉 at any time is very small
with the coupling always on. However, the optimal strategy
to improve the probability of arriving at the highest-energy
eigenstate of H0 with switching on and off the coupling V can
be understood as follows. First, we switch on the coupling V
for a short period from a lower-energy eigenstate to a higher-
energy eigenstate, then we switch off the coupling V to avoid
the effect of |i〉〈i + 1|. Furthermore, when the coupling V is
switched off, the free Hamiltonian H0 changes the state of the
system while keeping the energy invariant. Thus the energy of
the system can be increased by suitable arranges of switching
the coupling on and off.

In fact, we study the cases where the dimension of the
Hilbert space is 4, 6, 8, and 10 while we do not increase
the number of the control parameters, which brings a great
challenge to get an optimal strategy to arrive at the highest
eigenenergy state by a sequence of jumps |1〉 ↔ |2〉 ↔ · · · ↔
|n〉.

III. REINFORCEMENT LEARNING:
ACTOR-CRITIC MODEL

To find out the optimal strategy in our multilevel quantum
control problem, we adopt a modern reinforcement learning
method called the actor-critic model. In this section, we give a
short review of the actor-critic reinforcement learning model.

In traditional reinforcement learning, there are two dif-
ferent types of methods to implement artificial intelligence.
One includes the value-based methods (such as Q learning
[51]), where the agent learns the value function that maps each
state-action pair to a value. According to the value function,
the agent will take the action with the largest return value for
each state. It works well when the set of actions is finite. The
other type includes the policy-based methods (such as policy
gradients [52]), where we directly optimize the policy without
using a value function. It is efficient when the action space is
continuous or stochastic.

The reinforcement learning process is a finite Markov de-
cision process [52]. As shown in Fig. 1, a state St at time
t is transmitted into a new state St+1 together with giving a
scalar reward Rt+1 at time t + 1 by the action At with the
transmission probability p(St+1, Rt+1|St , At ).

For a finite Markov decision process, the sets of the states,
the actions, and the rewards are finite. In the value-based
methods, the goal is to maximize the total discounted return
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. . . St+1 St+2 St+3 St+4 St+5 . . .

Rt+1 Rt+2 Rt+3 Rt+4 Rt+5

At At+1 At+2 At+3 At+4 At+5

FIG. 1. A schematic diagram of a Markov decision process.

at time t :

Gt =
∞∑

k=0

�kRt+k+1, (6)

where � is the discount rate and 0 � � � 1. The policy π is
defined by the conditional probability π (a|s) of selecting an
action a for each state s. To estimate how good a policy π is,
two value functions are introduced:

qπ (s, a)
.= Eπ [Gt |St = s, At = a], (7)

vπ (s)
.= Eπ [Gt |St = s], (8)

where qπ (s, a) is called the state-action value function and
vπ (s) is called the state value function; Eπ denotes the prob-
ability expectation for all the actions in the process taken
following the policy π . Note that we have the following re-
lations:

qπ (s, a) =
∑

R

Rp(R|s, a) + �
∑

s′
vπ (s′)p(s′|s, a), (9)

vπ (s) =
∑
R,a

Rp(R|s, a)π (a|s) + �
∑
s′,a

vπ (s′)p(s′|s, a)π (a|s).

(10)

In addition, the advantage function is defined as Aπ (s, a) =
qπ (s, a) − vπ (s), which measures the advantage of an action
a with respect to the state s under the policy π .

In the policy gradient scheme, the objective is to maximize
the cumulant reward under a parametrized policy πθ :

J (πθ ) = Eπθ

[ ∞∑
t=0

�t R(st )

]
. (11)

The model-free policy gradient of the cumulant reward is
given by [53]

∇θJ (πθ ) ∝
∑

s

μ(s)
∑

a

Aπθ
(s, a)∇θπθ (a|s), (12)

where μ(s) is the probability of state s appearing in the
Markov process under the policy π . The above gradient can
be estimated by the score function estimator [54].

In this paper, we use a hybrid type of reinforcement learn-
ing method, called the actor-critic, whose protocol is shown
in Fig. 2. The agent has two parts: a critic that measures
how good the action taken is and an actor that controls how
our agent behaves. The actor builds a network to evaluate
the policy πθ , and takes an action for the current state of
the environment following the policy πθ . The critic builds a
network to evaluate the state value function vφ (s), which is
used to approximate Aπθ

(s, a) in Eq. (12). The critic improves
the value network according to the reward from the environ-
ment, and the actor improves the policy network according to

RL agent

Actor Network

Critic Network

Value

Environment

RewardState

Action

FIG. 2. A schematic diagram of the actor-critic model: at each
time step of training, the actor network of the agent proposes a
control action of At , and the environment takes the proposed action
and evaluates the quantum state for time duration δt to obtain the
reward, both of which are fed into the RL agent. The critic network of
the agent receives the reward and estimates the action’s value based
on the state.

a modified version of Eq. (12):

∇θJ (πθ ) ∝
∑

s

μ(s)
∑

a

Aφ (s, a)∇θπθ (a|s). (13)

In the actor-critic model, we get the advantage by building
a network, which is more efficient than by directly simulating
following the policy πθ . Besides, it improves the convergence
significantly to use the advantage function to replace the state-
action value function in evaluating the policy gradient [55].

In this work, we use the DPPO algorithm [46] to learn an
optimal policy under the policy gradient framework. The loss
function of DPPO reads

L(θ, φ) = Êπθold

[
min

(
rθold (a|s0, θ )Aφ (s0, a),

× clip
(
rθold (a|s0, θ ), 1 − ε, 1 + ε

)
Aφ (s0, a)

)]
,

(14)

where ε is a hyperparameter (ε = 0.2 in this paper). The
expectation Êπθold

indicates the empirical average over a finite
batch of samples under the policy πθold . The term rθodd (a|s, θ )
is defined as the ratio of likelihoods:

rθold (a|s, θ ) = πθ (a|s)

πθold (a|s)
. (15)

The clip function for c � d is defined as

clip( f (x), c, d ) =
⎧⎨
⎩

d if f (x) > d
f (x) if c � f (x) � d
c if f (x) < c.

(16)

The clip function for rθold (a|s, θ ) penalizes large changes be-
tween nearest updates, which corresponds to the trust region
of the first-order policy gradient. Based on the first-order trust
region search gradient descent, DPPO has a robust learning
process and can handle both discrete and continuous action
spaces. A detailed description of the DPPO can be found in
the Appendix C.
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πθ(S, A = 0)

πθ(S, A = 1)

Vφ(S)

S

FIG. 3. The architecture of the actor-critic neural network for the
agent. The actor and the critic share the same architecture of hidden
layers (green). The actor network has an action head (blue) to output
the possible policy. The critic network has a value head (red) to
output the value of the given state.

IV. QUANTUM STATE CONTROL WITH ACTOR-CRITIC
LEARNING

A. Agent-environment interface

To implement the RL agent for our problem, we propose
an interactive interface between the RL agent and the physical
environment (Fig. 2) adapted to OpenAI Gym [56]. We have
used TENSORFLOW [57] and BASELINES [58] to implement the
learning algorithms with QUTIP [59,60] simulating the dynam-
ics of our control problem. The architecture of deep neural
network in our RL agent is shown in Fig. 3. In our quantum
control problem, the state at time t in the reinforcement learn-
ing is the state ρ(t ), which is expressed by its components:

st = {Re(ρ11(t )), Im(ρ11(t )),

Re(ρ12(t )), Im(ρ12(t )), . . . ,

Re(ρnn(t )), Im(ρnn(t ))}, (17)

where Re(ρi j (t )) and Im(ρi j (t )) are the real and the imaginary
parts of the component ρi j (t ), respectively. Our action space is
formed by a switchable control field at ∈ {0, 1}, which steers
our quantum state ρ(t ) to ρ(t + δt ) according to Eq. (4). After
evaluating the new state ρ(t + δt ) the agent obtains the single
step reward

Rt+1 = F (ρ(t + δt ), |n〉〈n|) − F (ρ(t ), |n〉〈n|), (18)

where F is the fidelity defined by Eq. (5).

B. Numerical results

We now apply the actor-critic RL approach to our quantum
state control problem with different settings, illustrating the
flexibility and efficiency of our RL agent. Here the different
settings include different numbers of energy levels for our sys-
tem, and different types of environments affecting our system.
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FIG. 4. The best fidelities (up) and strategy (down) of preparing
an excited state for the two-level control model with γ = 0.1. The
markers correspond to the algorithms RL (blue line) and greedy
(orange line). The time step is N = 110.

We give the numerical results of the best fidelity F in our
quantum state control problem from the deep reinforcement
learning. To show the effectiveness of our deep RL method,
we also calculate the fidelity with the greedy method and the
GRAPE algorithm. The greedy algorithm is used for finding
successful policies by performing local searches. The GRAPE
method looks at the direct gradient of the fidelity function. In
particular, to get better results, the GRAPE algorithm allows
for the coupling strength γ (t ) to take any value in the interval
[0, γ ]. We then present our analysis of the performance of our
deep RL algorithm against the two algorithms. Details of the
greedy algorithm can be found in the Appendixes.

1. Quantum state control without environments

In this section, we consider our quantum state control prob-
lem with a quantum system with negligible environments. In
other words, we assume that all the coefficients �k,n = 0.

In Fig. 4 we show the results of the optimal fidelity and
the corresponding strategy on our quantum state control prob-
lem with parameters {n = 2, γ = 0.1, T = 55, N = 110} in
Fig. 4. With 1500 episodes, our RL agent gets the optimal
fidelity FRL(T ) ≈ 0.999998, which is a little larger than the
fidelity FGreedy(T ) ≈ 0.999815 from the direct greedy algo-
rithm. While the difference of the fidelities between those two
methods is very small, the strategy in Fig. 4 is different for
about T > 45, which shows that our RL agent has learned a
globally optimized protocol in this task. Notice that for all
control tasks discussed in our paper, the time scale δt is always
0.5. A detailed optimal strategy of the greedy method can be
found in Appendix B.

We further apply our RL agent to the quantum state con-
trol problem in the multilevel Hilbert space. We give the
optimal fidelities in the cases with the dimension of Hilbert
space equal to 4, 6, 8, and 10 by the RL algorithm (red
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FIG. 5. Results from the three algorithms for different level con-
trol models. The horizontal and vertical axes of each panel denote
evolution time t and fidelity F . The fidelities for three different
methods with (a) 4, (b) 6, (c) 8, and (d) 10 level control models.
The corresponding coupling strengths with the different models are
γ = 0.8, 1.1, 1.4, and 1.9. The time steps with different control tasks
are N = 82, 86, 88, and 98.

dashed line), the greedy algorithm (blue solid line), and the
GRAPE algorithm (violet dot-dashed line), which are shown
in Figs. 5(a)–5(d). We find that the greedy algorithm becomes
less effective with the increase of the dimension of the Hilbert
space, but the RL algorithm and the GRAPE algorithm per-
form well in all cases. For example, when the dimension of the
Hilbert space varies from 4 to 10, the optimal fidelity from the
greedy algorithm varies from about 0.954 to about 0.411, but
the fidelity from the RL algorithm varies from about 0.993 to
0.954. While the GRAPE algorithm has the best performance
out of the three methods, the algorithm requires the fidelity
gradients at all times.

2. Quantum state control with environments

We now turn our attention to the behavior of our learning
strategy when applied to a nonideal scenario in which typical
realistic conditions are considered. In particular, we discuss
the results produced by the RL agent when the system is
affected by dephasing and energy decay.

In Fig. 6 we present our numerical results on
the control problem under dephasing dynamics. Fig-
ures 6(a)–6(d) show the results for dephasing rate√

�d = {0.05, 0.06, 0.07, 0.08, 0.09, 0.1}. In both cases,
our best results from the RL agent outperform the greedy
algorithm and even GRAPE. Also, with the energy-level
number getting higher, the differences of fidelities between
the three methods get larger.

Figure 7 shows the superior performance of the RL agent
versus the greedy and GRAPE algorithms during the time
evolution under the disturbance of energy decay. Similar to
the dephasing cases, the RL agent has successfully conquered
the control problem under energy decay dynamics. However,
for the greedy algorithm, it is impossible to get a convincing
result with a large energy decay rate in high-dimensional
control problems. In this scenario, we find that the RL agent

FIG. 6. Results from the three algorithms for different level con-
trol models under dephasing dynamics. The horizontal and vertical
axes of each panel denote dephasing rate

√
�d and fidelity F . Best

fidelity for three different methods of (a) 4, (b) 6, (c) 8, and (d) 10
level control models. Note that the Hamiltonian is the same as shown
in Fig. 5.

successfully learns to adapt to overcome the disturbance of
energy decay in multilevel control problems.

To further understand the results shown in Figs. 6 and 7,
we take examples from

√
�d ,

√
�l = 0.1 and plot the cor-

responding trajectories of the fidelity in Figs. 8 and 9. We
realized that the RL agent yields different policies according
to the types of environments: one only has to learn how to
quickly control the state to the target and decide whether to
place the control sequence at the beginning or the end of the
control. As shown in Fig. 8, the best strategy is to quickly
drive the initial state to the final state at the start of the control,
since the environment cannot change the energy of the system.
While in Fig. 8 the strategy becomes opposed as previously

FIG. 7. Results from the three algorithms for different level
control models under energy decay dynamics. The horizontal and
vertical axes of each panel denote energy decay rate

√
�l and fidelity

F . Best fidelity for three different methods of (a) 4, (b) 6, (c) 8, and
(d) 10 level control models. Note that the Hamiltonian is the same as
shown in Fig. 5.
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FIG. 8. Results from RL agent and GRAPE strategies for differ-
ent high-level control models with

√
�d = 0.1. The horizontal and

vertical axes of each panel denote evolution time t and fidelity F .
The evolution of fidelity with the RL agent and GRAPE control of
(a) 4, (b) 6, (c) 8, and (d) 10 level control models.

shown, the agent learns to avoid a complex control strategy to
maintain the target state but to get at the end of the control,
because the energy of the system is decaying. The trajectory
of GRAPE shows there indeed are many local minima in the
control landscape. However, the RL agent can use those local
minima to find optimal strategies.

V. CONCLUSION

We propose a quantum control framework for multilevel
dissipative quantum control optimization. The RL method is
capable of finding the control protocol that has high-fidelity
of a finite-dimensional quantum control problem under dis-
turbances and is superior to the traditional greedy method
and GRAPE algorithm. Moreover, the RL method can accom-

FIG. 9. Results from RL agent and GRAPE strategies for differ-
ent high-level control models with

√
�l = 0.1. The horizontal and

vertical axes of each panel denote evolution time t and fidelity F .
The evolution of fidelity with RL agent and GRAPE control of (a) 4,
(b) 6, (c) 8, and (d) 10 level control models.

modate switch-on-off pulse shapes, which would be hard for
traditional gradient methods.

Although the control problems dealt with the different dy-
namics optimization tasks, the RL agent can find high-fidelity
solutions with a single set of algorithmic hyperparameters.
This suggests that learning the control landscape can be per-
formed with minimal expert knowledge about the physical
problem.

Our results, therefore, suggest that the RL-based methods
can be powerful alternatives to commonly used algorithms,
capable of finding control protocols that could be more effi-
cient in practical complex quantum control problems. Also,
the RL agent can be used to control experimental quantum
devices. The present approach is flexible enough to be applied
to different physical systems, such as qubit-cavity systems,
weak measurements, and quantum error correction. We expect
that our work would extend the deep learning techniques to
deal with more practical quantum control problems in the near
future.
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APPENDIX A: OPTIMAL LYAPUNOV QUANTUM
CONTROL (GREEDY) METHOD

As the first trial, we consider a greedy way to get the
optimal strategy. Greedy algorithms are used for finding suc-
cessful policies because the algorithms are fast in converging
on successful solutions when performing local searches. To
describe the greedy method more intuitively, we use the opti-
mal Lyapunov quantum control theory [1,2,61] to analyze the
relationship between the strength of the control field and the
control fidelity.

In Lyapunov quantum control, the control field is deter-
mined by a Lyapunov function f , which will decrease with
time. The evolution of the control protocol is determined
by Eq. (4). Furthermore, we assume the system satisfies the
requirement for a Lyapunov function, f � 0 [62]. The Lya-
punov function can be defined as

f = Tr(|n〉〈n|ρ). (A1)

The time derivative of the Lyapunov function is given by (with
[H0, |n〉〈n|] = 0)

ḟ = Tr
(
|n〉〈n|

(
− i

h̄
[H0 + V, ρ] + L(ρ)

))

= Tr(L(ρ)|n〉〈n|) − i

h̄
Tr(ρ[|n〉〈n|, γ (t )Hc]),

(A2)

where L(ρ) = ∑
k �k (AkρA†

k − 1
2 {A†

kAk, ρ}) and Hc =∑n−1
i=1 (|i〉〈i + 1| + |i〉〈i + 1|). It is clear that ḟ � 0, which

ensures the decreasing of the Lyapunov function. So the
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FIG. 10. Schematics of the DPPO algorithm. Data collection and
gradient calculation are distributed over workers, labeled as “agent
i.” Then the weights of the RL agent update synchronously. The
environments are labeled as “Env i.”

control function γ (t ) satisfies

Tr(L(ρ)|n〉〈n|) � γ (t )
i

h̄
Tr(ρ[|n〉〈n|, Hc]). (A3)

Let

C = Tr(L(ρ)|n〉〈n|),
D = i

h̄
Tr(ρ[|n〉〈n|, Hc]). (A4)

In our problem, the control function γ (t ) always switches
between two values, so the mathematical expressions of the
control fields are as follows:

γ (t ) =

⎧⎪⎨
⎪⎩

γ if D � 0,C > 0
0 if D � 0,C � 0
0 if D < 0,C > 0
γ if D < 0,C � 0.

(A5)

APPENDIX B: TWO-LEVEL CASE WITHOUT
DISSIPATIVE DYNAMICS

Consider a two-level system governed by the following
Hamiltonian:

H = −ω

2
σz + γ σx, (B1)

where we set h̄ = 1. ω is the level spacing of the system, and
γ = γ (t ) denotes the control field. Assume that the aim is to
steer the system from an arbitrary state |ψ0〉 = cos( γ0

2 )|0〉 +
eiφ sin( γ0

2 )|1〉 to state |1〉 (target state), where |1〉 is the excited

state of the system, and |0〉 is the excited state. Define a
positive operator

Pe = I − |0〉〈0| = |1〉〈1|. (B2)

The Lyapunov function can be written as

fe = Tr(Peρ) (B3)
with

ρ = |ψ〉〈ψ |, |ψ〉 = a(t )|0〉 + b(t )|1〉. (B4)

The Lyapunov function fe represents the overlapping between
the function I − |0〉〈0| of target state |1〉〈1| and the actual state
of the system. The time derivative of the Lyapunov function
can be calculated as follows [with the abbreviations a = a(t ),
b = b(t )]:

ḟe = Tr(Peρ) = Tr
(
−iPe

[
−ω

2
σz + γ σx, ρ

])
= Tr

(
−iPe

[
−ω

2
σz, ρ

])
+ Tr(−iPe[γ σx, ρ])

= 2γ Im(−ab∗).

(B5)

If fe � 0 for all times, fe would monotonically decrease with
time under the control; meanwhile, the system is asymptoti-
cally steered into the target state |1〉. Using the method of the
greedy algorithm, the control field γ (t ) takes values

γ (t ) =
{
γ (Im(−ab∗) < 0)
0 (Im(−ab∗) � 0). (B6)

With the optimal Lyapunov control, the time evolution of
the two-level system can be analytically calculated. In a basis
spanned by {|0〉, |1〉}, the total Hamiltonian can be expressed
as

H =
√

ω2

4
+ γ 2

(− cos(θ ) sin(θ )
sin(θ ) cos(θ )

)
(B7)

with θ defined by

tan θ = 2 f

ω
.

The eigenvalues of the Hamiltonian H are

E± = ±
√

ω2

4
+ γ 2 (B8)

and the corresponding eigenvectors are given by

|E+〉 = − cos
θ

2
|0〉 + sin

θ

2
|1〉,

|E−〉 = sin
θ

2
|0〉 + cos

θ

2
|1〉.

The time-evolution operator can be calculated to be

U = exp(−iHt ) =
(

e−iE−t cos2 θ
2 + e−iE+t sin2 θ

2
1
2 (e−iE+t − e−iE−t ) sin θ

1
2 (e−iE+t − e−iE−t ) sin θ e−iE−t sin2 θ

2 + e−iE+t cos2 θ
2

)
. (B9)
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In the absence of a control field [i.e., γ (t ) = 0], we have θ =
0. The time evolution operator reduces to a diagonal form,

U =
(

e
iωt
2 0

0 e
−iωt

2

)
.

Assume that the initial state of a two-level system is

|ψ0〉 = cos
(γ0

2

)
|0〉 + eiφ sin

(γ0

2

)
|1〉 = a0|0〉 + b0|1〉.

With different parameters γ0 and ψ , |ψ0〉 can represent an
arbitrary pure state. Let the target state |1〉 correspond to
the south pole on the Bloch sphere. Since Im(−a0b∗

0) =
− sin φ sin γ0

2 , the first control field is calculated as

γ (t ) =
{
γ (Im(−ab∗) < 0), (0 < θ < π )
0 (Im(−ab∗) � 0), (π � θ < 2π, θ = 0).

(B10)

Assume that this control would last until time τ ; i.e., the
duration of this control is τ . With this control, the state evolves
to

|ψτ 〉 =
[(

e−iE−t cos2 θ

2
+ e−iE+t sin2 θ

2

)
cos

γ0

2

+ 1

2

(
e−iE+t − e−iE−t

)
sin θeiφ sin

γ0

2

]
|0〉

+
[

1

2
(e−iE+t − e−iE−t ) sin θ cos

γ0

2

+
(

e−iE−t sin2 θ

2
+ e−iE+t cos2 θ

2

)
eiφ sin

γ0

2

]
|1〉

≡ aτ |0〉 + bτ |1〉. (B11)

From the design of the control law, we find that a control
field would last until Im(−aτ bt au∗) changes sign. Then τ can
be given by solving Im(−aτ bt au∗) = 0. Meanwhile, the sign
of Im(−aτ bt au∗) determines the next control field. Simple
algebra shows that

Im(−aτ b∗
τ ) = 1

2 (sin(2E−τ )(cos θ sin γ0 cos φ

+ sin θ cos γ0) + sin γ0 sin φ cos(2E−τ )).

(B12)

APPENDIX C: DISTRIBUTED PROXIMAL POLICY
OPTIMIZATION

The actor-critic algorithm combines the advantages of
policy-based and value-based methods, while the PPO al-
gorithm [45,46] based on the actor-critic algorithm aims to
optimize policy update. The central idea of proximal policy
optimization is to avoid having too large a policy update which
is proposed by trust region policy optimization (TRPO) [63].
The underlying idea of such improvements thereby is limiting
the magnitude of updates to θ by imposing constraints on
the difference between πθ old and πθ in order to prevent catas-
trophic jumps out of optima and achieve a better convergence
behavior.

One main novelty hereby lies in the introduced loss of
DPPO:

LCLIP(θ ) =Et [min (rt (θ )At (s, a) ,

clip (rt (θ ), 1 − ε, 1 + ε)At (s, a))],
(C1)

FIG. 11. Results from the three algorithms for four-level control
model with the Hamiltonian of case (i) under disturbances. The
horizontal and vertical axes of each panel denote noise rate

√
�k,n and

fidelity F . (a) Dephasing dynamics and (b) energy decay dynamics.

where Et and At (s, a) are the expectation over time steps and
the advantage at time t , respectively. If rt (θ ) > 1, the action
is more probable in the current policy than the old policy; if
rt (θ ) > 1 is between zero and 1, the action is less probable for
the current policy than for the old one.

As consequence, a new objective function from Eq. (11)
could be

LCPI (θ ) = Êt

[
πθ (a|s)

πθ old (a|s)
At (s, a)

]
= Êt [rt (θ )At (s, a)].

(C2)
However, without a constraint, if the action taken is much
more probable in our current policy than in our former, this
would lead to a large policy gradient step and as a conse-
quence an excessive policy update.

So the PPO algorithm took a new objective function to clip
the estimated advantage function if the new policy is far away
from the old policy [Eq. (C1)]. The loss function poses a lower
bound on the improvement induced by an update and hence
establishes a trust region around πθold . The hyperparameter θ

controls the maximal improvement and thus the size of the
trust region.

Algorithm 1: Distributed Proximal Policy Optimization

Randomly initialize critic network Vφ (s) and actor
πθ (a|s) with weights φ and θ ;

for iterat ion ∈ {1, 2, . . . ,C} do
for actor = 0, . . . , N do

Initialize s0;
Run policy πθ

T
δt times, collecting {st , at , Rt+1};

Estimate advantages At = ∑
t ′>t γ t ′−t Rt ′ − Vφ (st );

Estimate V̂t = At + Vφ (st );
end
πθold ← πθ

for j ∈ {1, . . . , M} do
JPPO(θ ) = [min (rt (θ )At , clip(rt (θ ), 1 − ε, 1 + ε)At )];
Update θ by a gradient method with respect to JPPO;

Jcritic(φ) = −Et (V̂t − Vφ (st ))
2
;

Update φ by a gradient method with respect to Jcritic (φ)
end

end

In order to improve the efficiency of the learning process,
a distributed version of the PPO algorithm (DPPO) [45] is
implemented in our calculation (Fig. 10). Algorithm 1 shows
the pseudocode for the DPPO.
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FIG. 12. Results from the three algorithms for four-level control
model with the Hamiltonian of case (ii) under disturbances. The hori-
zontal and vertical axes of each subfigure denote noise rate

√
�k,n and

fidelity F . (A): dephasing dynamics (B): energy decay dynamics.

APPENDIX D: THE EFFECT OF DISTRIBUTION OF
EIGENENERGIES

In the main text we use a regular distribution of eigenen-
ergies to test our algorithm. However, a different distribution
of eigenenergy would affect the performance of the algorithm.
The effect of the distribution of eigenenergies was examined
for two example cases: (i) the eigenenergy Ei is extracted
from the uniform distribution with E1 = 0.40252154, E2 =
0.68846289, E3 = 0.8557115, and E4 = 0.25471114 and (ii)
the eigenenergy Ei has degenerated in the middle with E1 = 1,
E2 = E3 = 2, and E4 = 3.

As Figs. 11 and 12 show, the performance of the three
algorithms is affected by the different energy distributions.
However, the GRAPE algorithm and our algorithm still main-
tain superiority over the greedy algorithm. This is consistent
with what we discussed in the main text.

TABLE I. Training hyperparameters.

Hyperparameter Values

Neurons in actor network {1024, 1024, 1024, 1024}
Neurons in critic network {1024, 1024, 1024, 1024}
Actor numbers, N 12

Batch size a

PPO clipping ε 0.2
Learning rate 0.0001b

Update steps, M 15
Reward decay, � 0.85
Total episode, C c

aThe same as the time steps.
bWith the Adam algorithm.
cDifferent for various tasks.

APPENDIX E: HYPERPARAMETERS AND LEARNING
CURVES

Our RL agent makes use of two deep neural networks to
approximate the values for the possible actions of each state
and the optimal policy. Each network consists of four layers.
All layers have rectified linear unit (ReLU) activation func-
tions except the output layer which has linear activation. The
hyperparameters of the network are summarized in Table I.

All algorithms are implemented with PYTHON 3.6, and
have been run on two 14-core 2.60-GHz CPUs with 188 GB
memory and four GPUs.
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