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Quantum coherence measures based on Fisher information with applications
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Recently various ways to quantify coherence of a quantum state have been proposed. In this paper, several
reliable quantum coherence measures based on quantum Fisher information (QFI) are presented. For pure states,
this coherence measure is equivalent to that based on skew information, while for mixed states, we first define
two natural coherence measures via QFI and find that the two definitions are exactly identical. By virtual of
the special structure of qubit, we show that the mutual unbiased bases’ (MUBs) qubit coherence is constrained
only by the length of the Bloch vector. Then we provide upper bounds of the coherence measure with respect to
any given basis and lower bounds in the case of a set of MUBs for both pure states and mixed states of arbitrary
dimension. Finally, we investigate the connection between our coherence measures and quantum metrology,
thereby providing an operational meaning for these coherence measures.
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I. INTRODUCTION

Quantum coherence is one of the most fundamental fea-
tures in quantum system that is not present in classical world.
As an important quantum resource [1], it plays key roles
in a variety of applications ranging from reference frames
[2–4], quantum thermodynamics [5–9], to biological systems
[10,11].

In the standard frameworks of resource theory of coherence
[1], the free states or incoherent states are the states that are
diagonal in a fixed basis of a d-dimensional Hilbert space
H , and the free operations are incoherent operations whose
Kraus operators map incoherent states to incoherent states.
Therefore the coherence is not a property of state alone but is
defined with respect to a given measurement basis. It also has
been suggested that a suitable measure of coherence should
satisfy several criteria (see details in Sec. II). Based on these
frameworks, several coherence measures have been proposed
to meet the above requirements [1,12–19]. In particular, Giro-
lami [20] introduced the K-coherence measure, an intuitive
quantifier for coherence, based on Wigner-Yanase skew infor-
mation [21]. However, this quantifier does not satisfy one of
the key features for any reasonable coherence measure, that
is, it may increase under the selective incoherent operations.
Actually, it is indeed a measure of asymmetry rather than
a measure of coherence [22]. Fortunately, this drawback is
soon remedied via simply replacing the observable by the
corresponding spectral decomposition [23,24].

The quantum Fisher information (QFI) is the cornerstone
of modern quantum metrology. It gives the ultimate precision
bound on the estimation of a parameter encoded in a quantum
state known as the Cramér-Rao bound [25]. The QFI has been
also used in the description of criticality and quantum phase
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transitions [26], estimation of the speed limits for quantum
computation [27], and detection of the entanglement in a com-
posite system [28]. It is well known that both Wigner-Yanase
skew information and QFI are natural generalizations of the
classical Fisher information. Therefore, a similar problem will
arise if one quantifies coherence directly by QFI itself [29].
Most recently, in the context of quantum thermodynamics,
coherence cost and distillable coherence, which determine the
rate of conversion of coherence in a standard pure state to
general mixed states, and vice versa, are studied in Ref. [30].
Those authors find that, surprisingly, coherence cost of any
state is determined by its QFI. Hence, a novel operational
interpretation of this central quantity from the perspective of
quantum metrology is revealed [30]. In this paper, we further
investigate the QFI and propose several legitimate coherence
measures based on it. For pure states, in view of the equiva-
lence of QFI and Wigner-Yanase skew information, we define
the coherence measure as in Refs. [23,24]. We give the upper
bound of the coherence measure with respect to any given ba-
sis, while for mixed states, we propose two natural coherence
measures based on QFI and find that the two definitions are
exactly identical, as the quantum Fisher information can be
written as the convex roof of the variance [31,32]. This finding
ensures that our two coherence measures for mixed states are
bona fide.

Another question is whether there exist complementary
relations for different sets of basis. In Ref. [33] the authors
examined this question for the case of mutually unbiased
bases (MUBs), with respect to two well-known coherence
measures based on l1 -norm and relative entropy [1]. They
found that, for the l1-norm coherence measure, there exists
an exact tradeoff relation for the qubit and a more general
bound determined by quantum and classical purity, while
for the relative entropy coherence measure, they obtained
a nontrivially upper bound [33]. For our coherence mea-
sures, using the well-known equality [34] and inequality [35]
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regarding the index of coincidence, we derive lower bounds
of the MUBs’ coherence, which means that there is a tradeoff
within different sets of basis for our coherence measures.
Finally, in view of the fundamental role which QFI plays in the
quantum metrology, we find that our coherence measures can
serve as the direct bound on the uncertainty of the estimated
phase. In particular, this bound is tighter than the result in
Ref. [23], which in turn imposes our coherence measures an
operational meaning.

II. PRELIMINARIES

A. Framework of resource theory of coherence

We first review some elementary concepts about coherence
measures [1]. Given a fixed basis B = {|i〉}, the set of inco-
herent state I is the set of state with diagonal density matrices
with respect to this basis. Let C be a measure of coherence,
then C(ρ) must satisfy the following: (C1) C(ρ) � 0 for any
quantum state ρ and equality holds if and only if ρ ∈ I.
(C2) C(ρ) is monotonic under incoherent completely positive
and trace-preserving mapping. (C3) C(ρ) is monotonic under
selective incoherent measurements on average, and (C4) C(ρ)
is nonincreasing under mixing of quantum states (convexity).
Note that coherence measures that satisfy conditions (C3)
and (C4) imply condition (C2). The most relevant class of
free operations for the theory of coherence is that of inco-
herent operations [1], which are characterized as the set of
trace-preserving completely positive maps admitting a set of
Kraus operators {Kn} such that

∑
n K†

n Kn = I , and for all n and

ρ ∈ I, KnρK†
n

trKnρK†
n

∈ I.

B. Quantum Fisher information

Quantum Fisher information [25] places the fundamental
limit to the accuracy of estimating an unknown parameter,
playing a paramount role in quantum metrology. Accurately,
assuming that we start from ρ as initial state and A as a
Hermitian operator, the state evolves to ρ(θ ) under the uni-
tary dynamics of a linear interferometer U = exp(−iAθ ). A
tight bound on the precision of the phase estimation is given
by the Cramér-Rao bound as δ2θ � 1

N F (ρ,A) , where N is the

repetition and F (ρ, A) = tr[ρθL2
θ ] is the quantum Fisher in-

formation with the symmetric logarithmic derivative (SLD) Lθ

defined by ∂θρθ = −i[A, ρθ ] = 1
2 (ρθLθ + Lθρθ ) [36,37]. The

QFI is intimately related to variance defined as V (ρ, A) =
trρA2 − (trρA)2. For a pure state, 4V (ρ, A) = F (ρ, A). Fur-
thermore, variance and QFI are dual in the sense that [31,32]

V (ρ, A) = max
{pi,|ϕi〉}

∑
piV (|ϕi〉, A) (1)

and

F (ρ, A) = 4 min
{pi,|ϕi〉}

∑
piV (|ϕi〉, A), (2)

where the max and min are taken over all pure state ensemble
decompositions. If we know the spectral decomposition

ρ =
∑

k

λk|k〉〈k|,

with {|k〉} an orthonormal basis, then the QFI can be evaluated
as [25]

F (ρ, A) =
∑

kl

2
(λk − λl )2

λk + λl
|Akl |2, (3)

where Akl = 〈k|A|l〉.

III. COHERENCE MEASURES VIA QFI AND
COMPLEMENTARY RELATIONS

In this section,we will propose several coherence measures
based on QFI and then investigate their properties and the
corresponding complementary relations.

A. Pure states

Given a preferred basis K = {|k〉} in n-dimensional Hilbert
space, the quantum coherence of a pure state |ϕ〉 is defined as

CF (|ϕ〉|K) =
∑

k

1

4
F (|ϕ〉〈ϕ|, |k〉〈k|). (4)

The constant 1
4 is in fact a metric-adjusted skew information.

It is clear that the above definition (4) is a bona fide coherence
measure that satisfies all the criteria [23], since for a pure
state, both the variance and QFI reduce to Wigner-Yanase
skew information, which is another generalization of clas-
sical Fisher information. Recall that the coherence measure
based on Wigner-Yanase skew is quantified by [23] C(ρ|K) =∑

k I (ρ, |k〉〈k|), where I (ρ, |k〉〈k|) = − 1
2 tr{[ρ 1

2 , |k〉〈k|]}2
is

the skew information subject to the projector |k〉〈k|. Further-
more, Eq. (4) has an explicit formula that can be rewritten as

CF (|ϕ〉|K) = 1 −
∑

k

|〈ϕ|k〉|4 = 1 −
∑

k

p2
k, (5)

where pk = |〈ϕ|k〉|2 denotes the probability of obtaining the
kth result when measuring the pure state |ϕ〉. Note that the
term

∑
k p2

k is called the classical purity [33], and in general,
it is never less than 1

n . Hence we have

CF (|ϕ〉|K) � 1 − 1

n
, (6)

where the upper bound is saturated by the maximally coher-
ence state |ϕ〉 = 1√

n

∑
k |k〉, which is uniformly constructed in

the preferred basis. In particular, considering a set of MUBs,
we can obtain a tight complementary tradeoff for coherence
measure (4). Recall that two orthonormal basis sets A and
B, for n-dimensional Hilbert space, are said to be MUBs if
their overlaps are constant, i.e., if |〈a|b〉|2 = n−1 for all a
and b [38]. In general, the maximal number of MUBs in n
dimensions is an open problem. For prime power n, there
exists a complete set of n + 1 MUBs.

Proposition 1. Let {K1,K2, . . . ,KM} be a set of MUBs in
n-dimensional Hilbert space. For any pure state |ϕ〉, we have

M∑
t=1

CF (|ϕ〉|Kt ) � M − 1 − M − 1

n
. (7)

Proof. Let pkt = 〈kt |ϕ〉〈ϕ|kt 〉 denote the probability of ob-
taining the kth result when projecting the state onto the t th
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MUB. Then a nice inequality was proved in Ref. [35] as

M∑
t=1

n∑
k=1

p2
kt
� trρ2 + M − 1

n
. (8)

Noting that
∑M

t=1 CF (|ϕ〉|Kt ) = M − ∑M
t=1

∑n
k=1 p2

kt
, we

complete the proof. �
Proposition 1 shows that, in spite of the trivially vanishing

lower bound of Eq. (5), if we consider the sum of values of
coherence with respect to a set of MUBs, there exists a tight
complementary tradeoff. This is analogous to the statements
that both the l1-norm and relative entropy coherence measures
have complementarities under MUBs [33]. Furthermore, if n
is a prime power, we certainly have n + 1 MUBs. In this case,
the inequality (7) becomes an equality,

M∑
t=1

CF (|ϕ〉|Kt ) = n − 1. (9)

Here we have used the well-known identity, namely, the index
of coincidence,

n+1∑
t=1

n∑
k=1

p2
kt

= 1 + trρ2, (10)

which was obtained by Ivanovic [34].

B. Mixed states

It has been shown that QFI itself is not a valid measure
of the coherence for a mixed state because it can increase
under an incoherent operation [29]. Consequently, in Ref. [39]
one remedied this problem by introducing an auxiliary inco-
herent operation before preparing the quantum states in the
definition of a coherence measure with respect to QFI for
pure states, and generalized it to mixed states via the convex
roof construction. However, along with the approach proposed
in Ref. [23] and the aforementioned coherence measure (4),
while for mixed states, we can also present two natural co-
herence measures based on QIF without involving the specific
quantum incoherent operation.

Definition 2 (Direct generalization of coherence measure
via QFI for a mixed state). The quantum coherence of state ρ

in preferred basis K = {|k〉} can be directly quantified by

CD
F (ρ|K) =

∑
k

1

4
F (ρ, |k〉〈k|). (11)

Definition 3 (Convex roof construction of coherence mea-
sure for a mixed state). The quantum coherence of state ρ in
preferred basis K = {|k〉} can be quantified by convex roof
construction,

CC
F (ρ|K) = min

{pi,|ϕi〉}

∑
i

piCF (|ϕi〉|K), (12)

where the minimization is taken over all pure state decompo-
sitions of the state ρ = ∑

i pi|ϕi〉〈ϕi|.
It was shown [40] that the function used to define the pure

state coherence measure (5) is real symmetric concave on
the probability simplex, and consequently, Eq. (12) must be
a coherence measure due to the convex roof construction. At

first glance, there is a big gap between the two definitions. The
former can be seen as a natural remedy of the drawback which
is presented in the original coherence measure with respect to
an observable [29]. The latter is the usual approach to deal
with the case of mixed states if there exists a well-defined
coherence measure for pure states [17,40]. It should be noted
that Definition 3 is strikingly different from that in Ref. [39],
in which they prepared the quantum state via a prior incoher-
ent operation. However, we observe that by taking advantage
of the extremal properties of the variance and QFI, our two
definitions are indeed equivalent.

Proposition 4. For any state ρ in preferred basis K = {|k〉},
CD

F (ρ|K) = CC
F (ρ|K).

Proof.

CC
F (ρ|K) = min

{pi,|ϕi〉}

∑
i

piCF (|ϕi〉|K)

= min
{pi,|ϕi〉}

∑
i

pi

∑
k

V (|ϕi〉, |k〉〈k|)

=
∑

k

min
{pi,|ϕi〉}

∑
i

piV (|ϕi〉, |k〉〈k|)

=
∑

k

1

4
F (ρ, |k〉〈k|)

= CD
F (ρ|K).

The fourth equality is from Eq. (2). �
It is of great interest to note that these two definitions,

though having different expressions, are essentially equiva-
lent. First, from the viewpoint of computation, we can avoid
the tedious optimization process in Definition 3 using Defini-
tion 2. In fact, CD

F (ρ|K) can be analytically derived by Eq. (3).
Second, this statement instead gives us an alternative way to
verify that the coherence measure in Definition 2 is also a
legitimate coherence measure for mixed states without any
prior preparation.

Theorem 5. CC
F (ρ|K) is a valid coherence measure.

Proof. We first show that it satisfies the condition (C1). It
is obvious that CC

F (ρ|K) � 0. If ρ is incoherent, then it can
be written as ρ = ∑

k pk|k〉〈k|. Thus CC
F (ρ|K) = 0 follows

from
∑

k pkV (|k〉, |k〉〈k|) = 0. On the other hand, if ρ is not
diagonal in the computational basis K = {|k〉}, then for any
decomposition ρ = ∑

k pk|ϕk〉〈ϕk|, there always exists at least
a state |ϕi〉 not in K. As a result, CC

F (ρ|K) > 0 follows from
V (|ϕi〉, |k〉〈k|) > 0. The convexity (C4) is from the convex
roof construction of CC

F (ρ|K). As mentioned in Sec. II A,
it is sufficient to verify the condition (C3). An incoherent
operation � is a completely positive trace-preserving map
such that

�(ρ) =
∑

n

KnρKn
†

with the Kraus operators Kn satisfying
∑

n Kn
†Kn = I and∑

n KnIKn
† ⊂ I. Let ρn = KnρKn

†

pn
and pn = tr[KnρKn

†]. For
a pure state, the monotonicity requirement of (C2) is satis-
fied obviously [23]. For a mixed state ρ, suppose that ρ =∑

i pi|ϕi〉〈ϕi| is the optimal decomposition that achieves the
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minimum in the definition CC
F (ρ|K), that is,

CC
F (ρ|K) =

∑
i

piCF (|ϕi〉|K).

It remains to prove that for incoherent operation �, there must
be

CC
F (ρ|K) �

∑
n

pnC
C
F (ρn|K).

Note that

ρn = KnρKn
†

pn

=
∑

i

pi

pn
Kn|ϕi〉〈ϕi|Kn

†

=
∑

i

pi

pn
pinρin,

where pin = tr[Kn|ϕi〉〈ϕi|Kn
†] and ρin = Kn|ϕi〉〈ϕi|Kn

†

pin
. Thus

pn = ∑
i pi pin, and it follows that

CC
F (ρ|K) =

∑
i

piCF (|ϕi〉|K)

�
∑

i

pi

∑
n

pinCF (ρin|K)

=
∑

n

pn

∑
i

pi pin

pn
CF (ρin|K))

�
∑

n

pnC
C
F

(∑
i

pi pin

pn
ρin|K

)

=
∑

n

pnC
C
F (ρn|K),

where the first inequality comes from the fact that the mono-
tonicity requirement of (C3) has been satisfied for the pure
state [23] and the last inequality is due to the convexity of
coherence measure. �

We now investigate if there exist restrictions on the degree
of the coherence when more than one basis is considered. In
order to demonstrate our approach explicitly, we start from
the case of the qubit. Recall that the Bloch representation of a
qubit is

ρ = I + −→r · −→σ
2

, (13)

where −→σ = (σx, σy, σz ) denotes three Pauli qubit observables
and −→r = (r1, r2, r3) is the corresponding Bloch vector. It
is known that the three Pauli matrices are mutually unbi-
ased, in the sense that the distribution of any one of these
observables is uniform for any eigenstates of the others.
Let {|±i〉〈±i|}, i = x, y, z be the corresponding eigenstates of
three Pauli matrices. From the definition of QFI, we have

F (ρ, |±x〉〈±x|) = trρL2
±x

, (14)

where L±x is the SLD that satisfies the following linear equa-
tions [41]:

−i[|±x〉〈±x|, ρ] = 1
2 {L±x , ρ} (15)

and

L±x = L†
±x

. (16)

For the sake of solving the equations, we introduce a set
of orthogonal basis in the Hilbert-Schmidt space as Ai =
{ I√

2
, σx√

2
,

σy√
2
,

σz√
2
}, i = 0, 1, 2, 3. Then the eigenstates can be

expanded with respect to Ai as

|±x〉〈±x| =
3∑

i=0

akiAi (17)

Substituting (13) and (17) into (15) and (16), and by
straightforward calculation, we have

r2σz − r3σy = {L+x , ρ} (18)

and

r3σy − r2σz = {L−x , ρ}. (19)

Assume that the corresponding SLDs are

L±x = c1σy + c2σz, (20)

Insert (20) into (18) and (19), we have L+x = −r3σy + r2σz

and L−x = r3σy − r2σz. Hence the direct generalization of co-
herence measure via QFI with respect to the σx is

CD
F (ρ|σx ) =

∑
±

1

4
trρL2

±x
= 1

2

(
r2

2 + r2
3

)
. (21)

The coherence measure via QFI with respect to the σy, σz

can be derived by similar calculation. According to the afore-
mentioned arguments, the complementary relations for MUBs
coherence can be given as follows.

Theorem 6. For any qubit density matrix ρ represented by
(13), we have ∑

i=x,y,z

CD
F (ρ|σi ) = ‖−→r ‖2. (22)

Clearly Theorem 6 sets a constraint on the usefulness of
the state as a coherence resource. There is a tradeoff about
coherence measure with respect to different sets of basis. The
equality (22) also indicates that the qubit coherence for a
given basis is constrained not only by the coherence of MUB,
but also by the length of the Bloch vector −→r . In particular,
for −→r = 0, i.e., the maximal mixed state, all coherence must
vanish. Note also that Eq. (22) is consistent with Eq. (9), since
for pure states, the Bloch vector satisfies ‖−→r ‖ = 1.

Actually, Eq. (21) provides us a method to derive the an-
alytical value of coherence measure via QFI. For arbitrary
dimension n, it is always difficult to solve Eqs. (15) and
(16) since the scale of equations will increase dramatically.
However, using the special form of Definitions 2 and 3 and
Eq. (4), we can evaluate the QFI coherence measure for a
mixed state for arbitrary dimensions.

Proposition 7. For arbitrary quantum state ρ and preferred
basis K = {|k〉}, we have

0 � CC
F (ρ|K) � 1 − 1

n
. (23)

The lower bound is saturated by the state that is diagonal
with respect to the preferred basis K = {|k〉}, while the upper

012401-4



QUANTUM COHERENCE MEASURES BASED ON FISHER … PHYSICAL REVIEW A 103, 012401 (2021)

bound is saturated by the maximally coherent mixed state that
is written as ρ = ∑

i pi|i+〉〈i+| with a fixed spectrum {pi},
where |i+〉 denotes a mutually unbiased basis with respect to
the preferred basis K = {|k〉}, i.e., |〈k|i+〉|2 = 1

n .
Proof. By Definition 3,

CC
F (ρ|K) = min

{pi,|ϕi〉}

∑
i

piCF (|ϕi〉|K)

= min
{pi,|ϕi〉}

∑
i

pi(1 −
∑

k

|〈k|ϕi〉|4)

= 1 − max
{pi,pik}

∑
ik

pi p
2
ik, (24)

where pik = |〈k|ϕi〉|2. The equality
∑

k pik = 1 for any i im-
mediately yields

1

n
� max

{pi,pik}

∑
ik

pi p
2
ik � 1,

where the lower bound is satisfied when all pik = 1
n for any

fixed spectrum {pi} and the upper bound is satisfied when for
any i, there is only one index k such that pik = 1. �

Furthermore, summing over Eq. (24) for a set of MUBs,
we have the following complementarity relation of coherence
measure via QFI.

Theorem 8. For an arbitrary n-dimensional quantum state
ρ and a set of MUBs {K1,K2, . . . ,KM}, we have

M∑
t=1

CC
F (ρ|Kt ) � M − M − 1

n
− trρ2. (25)

Proof. By Definition 3 again, we obtain

M∑
t=1

CC
F (ρ|Kt ) =

M∑
t=1

min
{pi,|ϕi〉}

∑
i

piCF (|ϕi〉|Kt )

=
M∑

t=1

min
{pi,|ϕi〉}

∑
i

pi(1 −
∑

kt

|〈kt |ϕi〉|4)

= M − max
{pi,pikt }

∑
ikt

pi p
2
ikt

= M − max
{pi,pikt }

∑
i

pi

∑
kt

p2
ikt

� M − M − 1

n
− trρ2. (26)

In the last step, we have used the fact that for any i,∑M
t=1

∑n
k=1 p2

ikt
� trρ2 + M−1

n . �

IV. APPLICATIONS IN QUANTUM METROLOGY

In Ref. [23] the author discussed how to relate the coher-
ence measure via skew information with a specific quantum
metrology scheme. In such a scheme, we can present a tighter
bound for quantum metrology by our coherence measure via
QFI.

The scheme is described as follows. For any n-dimensional
state ρ and preferred basis K = {|k〉}, one replaces parameter
θ and operator A by ϕk and |k〉〈k| in the Preliminaries, respec-
tively. Then based on quantum parameter estimation theory

[25], the uncertainty of estimated phase δϕk is limited by the
Cramér-Rao bound as

(δϕk )2 � 1

NF (ρ, |k〉〈k|) . (27)

In order to relate δϕk to the coherence measure via skew
information, one [23] considered the optimal variance which
achieves the Cramér-Rao bound,(

δϕ0
k

)2 = 1

NF (ρ, |k〉〈k|) . (28)

It was shown in Refs. [25,42] that this bound can always
be reached asymptotically by maximum likelihood estimation
and a projective measurement in the eigenbasis of the sym-
metric logarithmic derivative operator. Combining with the
inequality [43]

I (ρ, |k〉〈k|) � F (ρ, |k〉〈k|)
4

� 2I (ρ, |k〉〈k|), (29)

where I (ρ, |k〉〈k|) is the skew information, one obtained [23]

4NI (ρ, |k〉〈k|) � 1(
δϕ0

k

)2 � 8NI (ρ, |k〉〈k|). (30)

Summing Eq. (30) over k, it has [23]

4NC(ρ|K) �
∑

k

1(
δϕ0

k

)2 � 8NC(ρ|K), (31)

where C(ρ|K) = ∑
k I (ρ, |k〉〈k|) is the coherence measure

via skew information with respect to the preferred basis K =
{|k〉〈k|}. Subsequently, they defined

∑
k

1
(δϕ0

k )2 = 1
(
ϕ0

k )2 , and

used the fact that the practical measurement strategy cannot
be as ideal as we expect theoretically, i.e., δϕk � 
ϕ0

k , finally
yielding two relations as [23]

1

(δϕk )2
� 8NI (ρ, |k〉〈k|) (32)

and ∑
k

1

(δϕk )2
� 8NC(ρ|K). (33)

It is obvious that the lower and upper bounds in (32) and
(33) are not tight enough, since the derivations are based
on two premises of Eqs. (28) and (29). Here, following the
same scheme, and using coherence measure CD

F (ρ|K), we can
immediately present a more direct and tighter bound for the
above quantum metrology scheme.

Theorem 9. The uncertainty of the estimated phase can be
bound as

1

(δϕk )2
� NF (ρ, |k〉〈k|) (34)

and ∑
k

1

(δϕk )2
� 4NCD

F (ρ|K). (35)

Furthermore, according to Proposition 7, we have∑
k

1

(δϕk )2
� 4N

(
1 − 1

n

)
. (36)
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Proof. The statement follows from Eq. (27) and Definition
2. �

It is obvious that Eq. (35) sets a sharper bound than that
of (33) due to (29). That is to say, our coherence measure
CD

F (ρ|K) which is based on QFI is more intrinsically related
to quantum metrology.

V. CONCLUSION

In summary, we have presented several reliable coher-
ence measures via QFI which is the fundamental concept
of quantum metrology. We have shown that, for pure states,
this coherence measure is equivalent to that defined by skew
information [23], therefore it satisfies all the requirements for
quantifying coherence. By using the notable relations of the
index of coincidence [34,35], we have derived a tight comple-
mentary tradeoff under a set of MUBs. In the case that n is
prime power, we have obtained an equality, thus constraining
the usefulness of the state as a coherence measure in a given
basis. That is, if the coherence is minimal with respect to a
given basis, it must be larger than a quantity with respect to
another basis.

For mixed states, we first have proposed two natural co-
herence measures via QFI and then shown that these two
definitions are exactly identical because the quantum Fisher

information itself can be seen as the convex roof of the vari-
ance [31,32]. Furthermore, both of the coherence measures
are bona fide coherence measures satisfying all the criteria.
By the Bloch representation of a qubit, we have obtained
an analytical expression for the coherence measure in the
eigenbasis of three Pauli qubit observables. It is interesting
that the sum of the coherence measure is determined by the
length of the Bloch vector. The complementary relations for
an arbitrary dimensional mixed state under MUBs have also
been studied. In the end, due to the important role of QFI in the
quantum metrology scheme, we have related the uncertainty
of the estimated phase to our coherence measures. It sets a
tighter bound than Ref. [23] as expected, since the well-known
Cramér-Rao bound [25] is connected with QFI in a more
straightforward manner than skew information. Furthermore,
this relationship instead imposes our coherence measures with
an operational meaning.
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