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Electron-positron pair creation induced by two sequential short pulses
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The computational quantum field theory (CQFT) is applied to study the dependence of the total EPP number
on the time interval under the spatially localized double cosine-Gaussian pulse and the alternating-sign double-
Gaussian pulse. The total EPP number damply oscillates with the time interval, and the oscillation frequency
is about the energy gap (2mc2) for all of the scenarios. This characteristic oscillation of the total EPP number
is consistent with a formula, which is related to the amplitude mode in the BCS superconductors. Besides,
we find that the Ramsey interference effect is not responsible for the characteristic oscillation by studying the
double-Gaussian pulse with the same sign. Finally, when the favorable time interval is applied, the EPP number
is much larger than the sum of the EPP number obtained in two single pulses. The favorable time interval mainly
depends on the pulse duration and the carrier envelope phase (the quantity in cosine-Gaussian pulse).
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I. INTRODUCTION

The vacuum of the quantum electrodynamics is unstable
and can decay into the electron-positron pairs (EPPs) under
the strong enough external field. In 1951, the EPP creation
probability was calculated for a uniform electrostatic field by
Schwinger [1]. The critical field strength in the Schwinger
mechanism is Ec = 1018 V/m, which is still unreachable
nowadays. The electron-positron pairs can also be created by
the nonlinear Breit-Wheeler process, which has been tested
at the SLAC E-144 experiment [2]. In the experiment, the
high-energy photons are generated by colliding the electron
beam with a low-intensity laser (nonlinear compton scattering
process), and then the high-energy photons collides with the
laser to create the electron-positron pairs (nonlinear Breit-
Wheeler process). Due to the participation of the electron
beam, the pair creation at the SLAC experiment is not induced
by pure laser light. In recent years, the development of the
laser technology [3] stimulates the theoretical studies about
the nonlinear Breit-Wheeler process in intense short laser
pulses [4], which are usually simplified by the short electric
pulses [5].

Theoretical studies mainly aim at enhancing the EPP cre-
ation probability or lowering the threshold of the EPP creation
by studying the effects of the pulse parameters or constructing
the external field configurations. The nonlinear Breit-Wheeler
process induced by pure laser light might can be realized
experimentally in the foreseeable future, with the guidance
of the theoretical studies. Previous studies indicated that the
EPP creation are sensitive to the details of the external field.
On one hand, the EPP creation in a single pulse depends
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on the temporal pulse shape and the pulse parameters (i.e.,
the pulse strength, the pulse duration, or the CEP) [6–10].
On the other hand, the combination of several electric pulses
in the external field configuration is not equivalent to the
simple linear superposition of the action of each pulse. Some
new effects may occur in the combination field, such as the
interference effect in sequence of alternating-sign pulses, the
enhancement effect in the superimposition of a strong and
slow pulse with a weaker and fast pulse [11]. In addition, in
the combination field, not only the pulse parameters of each
pulse can affect the EPP creation, but the parameters between
the pulses also can affect the EPP creation, such as the time
interval between two adjacent pulses. The combination of
two spatially homogeneous pulses with a time interval has
been studied in some researches [12–16]. These researches
mainly study the momentum distribution of the electrons or
the positrons, and indicate that the momentum distribution
is sensitive to the time interval. A few results about the de-
pendence of the total EPP creation probability (W ) on the
time interval (δ) in Ref. [15]. The total EPP creation prob-
ability damply oscillates with the time interval in a nearly
constant period. The peaks and valleys in the W (δ) curve
manifest that the good value of the time interval can promote
the EPP production probability, while the poor time interval
suppresses the EPP creation. The sensitive dependence of the
EPP creation probability on the time interval motivates us to
make a further study. Since the temporal pulse shape [8–10]
and the spatial distribution [17] of the electric field both can
affect the EPP creation. In our work, the dependence of the
total EPP number on the time interval is comprehensively
studied under spatially localized double pulse. The spatial
distribution of the electric field pulses are chosen as the
Sauter electric field E (x) = V0/2W {1 − [tanh(x/W )]2}, i.e.,
the pulse is confined to a region of size 2W along the x di-
rection [21,22]. Furthermore, the double-Gaussian pulse and
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the double cosine-Gaussian pulse are both studied to distin-
guish whether the effect of the time interval depends on pulse
shape. The cosine-Gaussian pulse has subcycle structure, and
in which the turning points [6,12,18–20] are naturally exist,
while the Gaussian pulse is monocycle.

The paper is organized as follows. In Sec. II, the compu-
tational quantum field theory (CQFT) is briefly introduced. In
Sec. III, we study and discuss the dependence of the total EPP
number on the time interval under several external fields, in-
cluding the double cosine-Gaussian pulse, the alternating-sign
double-Gaussian pulse, and the double-Gaussian pulse with
the same sign. The effects of the pulse parameters (i.e., the
pulse duration, the pulse strength, or the CEP) and the pulse
shape are discussed. Furthermore, the dependence of the total
EPP number on the time interval is fitted by a formula. The
influence of the Ramsey interference effect on the dependence
of the total EPP number on the time interval is studied as
well. Finally, the EPP creation in double and single pulses is
compared. In Sec. IV, we make a conclusion.

II. THE THEORETICAL FRAMEWORK

Let us first describe the main idea of the numerical method.
To study the EPP creation process, the single particle quantum
mechanical description is not sufficient and the quantum field
theory is necessary to understand the particle creation and
annihilation. In our model the external field is uniform in
space except localized in the x axis, the time evolution of
the quantum field operator �̂(x, t ) is described by the Dirac
equation [23–27] (here and below we use the atomic unit).

i
∂

∂t
ψ̂ (x, t ) = [cσ1 px + σ3c2 + V (x, t )]ψ̂ (x, t ), (1)

where σ1 and σ3 are the Pauli matrices. The electric field is
described by the scalar potential V (x, t ). We focus on the x
axis, and the Dirac four component spinor wave functions can
be reduced to two (see, e.g., Refs. [26,27] for a more detailed
introduction).

The field operator satisfies the Dirac equation as well
as the time-dependent Heisenberg equation i∂�̂(t )/∂t =
[Ĥ, �̂(t )] [27–29]. The corresponding quantum field theo-
retical Hamiltonian Ĥ = �̂†hĤ , where h = cσ1 px + σ3c2 +
V (x, t ). The field operator can be expanded as

ψ̂ (x, t ) =
∑

p

b̂p(t )up(x) +
∑

n

d̂†
n (t )vn(x)

=
∑

p

b̂pup(x, t ) +
∑

n

d̂†
n vn(x, t ), (2)

where b̂p and d̂†
n are the particle annihilation and the antipar-

ticle creation operators, respectively. The subscripts p and n
represent positive and negative energy, respectively. The field-
free Hamiltonian h0 = cσ1 px + σ3c2 at t = 0, and its energy
eigenstates are up(x) (E � c2) and vn(x) (E � −c2). up(x, t )
and vn(x, t ) are respectively the time evolved eigenstates of
up(x) and vn(x), and their evolution satisfy the Dirac equation

[Eq. (1)]. The time evolution of the fermion annihilation and
creation operators are

b̂p(t ) =
∑

p′
b̂p′

∫
dxu∗

p(x)up′ (x, t )

+
∑

n′
d̂†

n′

∫
dxu∗

p(x)vn′ (x, t ), (3)

d̂†
n (t ) =

∑
p′

b̂p′

∫
dxv∗

n (x)up′ (x, t )

+
∑

n′
d̂†

n′

∫
dxv∗

n (x)vn′ (x, t ), (4)

respectively. The electronic portion of the field operator
ψ̂e(x, t ) ≡ ∑

p b̂p(t )up(x), and the total number of the created
EPPs is defined as

N (t ) =
∫

dx〈〈vac‖ψ̂†
e (x, t )ψ̂e(x, t )‖vac〉〉

=
∑

p

〈〈vac‖b̂†
p(t )b̂p(t )‖vac〉〉, (5)

where ‖vac〉〉 is the initial vacuum state, the double bars
and brackets are used to indicate that this is a state of the
second-quantised quantum field theory [27]. After some oper-
ator algebra and using the commutator relations [b̂p, b̂†

p′ ]+ =
δp,p′ [d̂n, d̂†

n′ ]+ = δn,n′ , the total EPP number can be ex-
pressed through the energy eigenstates of the field-free
Hamiltonian

N (t ) =
∑
p,n

|〈p|U (t )|n〉|2, (6)

where the usual quantum mechanical states are denoted by a
single bar and bracket. The time evolution operator U (t ) =
T̂ exp[−i

∫ t
0 h(t ′)dt ′] evolves the initial negative state |n〉

follows the single-particle Dirac equation. The total time
evolution from 0 to tmax is divided into NT intervals, �t =
tmax/NT with an order of 10−6a.u. The time evolution operator
in each time step can be written as

U (t + �t, t )

= T̂ exp

[
−i

∫ t+�t

t
(h0 + V (x, t ))dt

]

= exp

[
−i

∫ t+�t

t

V (x, t )

2
dt

]
× exp

[
−i

∫ t+�t

t
h0dt

]

× exp

[
−i

∫ t+�t

t

V (x, t )

2
dt

]
+ O(�t3)

� exp

(−iV �t

2

)
exp(−ih0�t ) exp

(−iV �t

2

)
+ O(�t3).

(7)

This is the split operator technique based on the third-order al-
gorithm [25,30–32]. Applying the fast Fourier transformation
between the spatial and momentum space, the time evolu-
tion operator is decomposed into NT consecutive actions. The
time-evolved state |n(t )〉 = U (t )|n〉 can be obtained, and then
the total EPP number N (t ) can be calculated out.
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FIG. 1. The temporal schematic picture of the double cosine-
Gaussian pulse (top) and the alternating-sign double-Gaussian pulse
(bottom).

The external field represented by the scalar potential is
Vi(x, t ) = V (x) fi(t )(i = 1, 2), where fi(t ) is the temporal
distribution and V (x) = V [1 + tanh((x − x0)/W )]/2 is the
spatial distribution, which indicates that the electric pulse is
confined in a range of about 2W along the x direction. The
double cosine-Gaussian pulse [V1(x, t )] and the alternating-
sign double-Gaussian pulse [V2(x, t )] are both combined by
two sequential pulses, with a time interval between the first
and the second pulses. The spatial distribution of the first pulse
and the second pulse are V (x). Furthermore, f1(t ) and f2(t )
are as follows:

f1(t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

e−(t−t01 )2/2T 2
1 cos[ω(t − t01) + χ1]

0 < t < 2t01

0 2t01 � t � 2t01 + τ

e−(t−t02 )2/2T 2
2 cos[ω(t − t02) + χ2]

2t01 + τ < t < tmax

, (8)

f2(t ) =

⎧⎪⎨
⎪⎩

e−(t−t01 )2/2T 2
1 0 < t < 2t01

0 2t01 � t � 2t01 + τ

−e−(t−t02 )2/2T 2
2 2t01 + τ < t < tmax

, (9)

where T1 and T2 are the pulse durations, and τ is the time
interval. V is the pulse strength, and in our model the strength
of the first pulse and the second pulse are the same. Further-
more, in the double cosine-Gaussian pulse, ω is the carrier
frequency, and σ = ωTi(i = 1, 2) is the number of the oscil-
lation cycles within the Gaussian envelope. χ1 and χ2 are the
CEP of the first pulse and the second pulse, respectively. In
our simulations, tmax = 0.003 a.u. The schematics of f1(t ) and
f2(t ) are shown in Fig. 1.

III. RESULTS AND DISCUSSION

We study the dependence of the total EPP number(N) on
the time interval (τ ) for both of the symmetric (T1 = T2)
and the asymmetric (T1 	= T2) cases of V1(x, t ) and V2(x, t ).
Finally, the dependence of the total EPP number on the time
interval under the double-Gaussian pulse with the same sign is
studied as well. For all of the field configurations, the effects
of the pulse parameters on the N (τ ) curve are discussed as

TABLE I. Values of pulse parameters.

Pulse parameter Parameter value

χ (χ1 χ2)a 0 π/4

V 1.5c2 2c2

T (T1 T2)
1

2
√

2c2

1√
2c2

2√
2c2

aχ1 and χ2 only for cosine-Gaussian pulse.

well. The parameter values that will be used in the following
studies are listed in Table I. Under these pulse parameters, the
Keldysh parameter γ = mcω/qE � 1, then the EPP creation
is in the multiphoton regime.

A. Double cosine-Gaussian pulse

In the double cosine-Gaussian pulse, the EPP creation pro-
cess depends on the pulse parameters, since the pulse strength
influences the photon density, the pulse duration determines
the number of cycles, and the CEP influences the turning
points. We study the dependence of the total EPP number on
the time interval for various pulse parameters. The symmetric
case is studied first. The dependence of the total EPP number
on the time interval under three sets of pulse strength and
pulse duration are shown in Fig. 2, when the CEP of the two
pulses are zero. Furthermore, the numerical data results are
fitted by a fitting formula.

As shown in Fig. 2, the dependencies of the total EPP
number on the time interval are almost exactly consistent
with the fitting formula Eq. (10) for different pulse strengths
and durations. The total EPP number oscillates at a constant
period, and its amplitude decays exponentially with the time
interval. The oscillation frequencies for all of the cases are
about 2c2 (ωNa = ωNb = ωNc = 2.01c2). Concerning the ef-
fects of the pulse strength and the pulse duration, on one hand,
the larger pulse strength brings a higher photon density, which

FIG. 2. The evolution of N (t = 0.003 a.u.) with τ in the symmet-
ric double cosine-Gaussian pulse. Three sets of pulse strength and
the pulse duration are chosen: (curve a) T1 = T2 = 1/

√
2c2, V =

1.5c2, (curve b) T1 = T2 = 1/
√

2c2, V = 2c2, and (curve c) T1 =
T2 = 1/2

√
2c2, V = 2c2. Furthermore, ω = 2

√
2c2, χ1 = χ2 = 0,

m = 1 a.u., and W = 3/c. The inset is the amplification of the results
from τ = 0 a.u. to τ = 0.0004 a.u.
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can enhance the EPP creation probability. Comparing curve
a with curve b, the amplitude of the total EPP number in
curve b is larger than that in curve a, this is consistent with
our analysis. Furthermore, the peaks and valleys in curve a
and curve b correspond one-to-one. This indicates that the
phase of the N (τ ) curve is independent of the pulse strength.
On the other hand, in the double-slit picture, the finite pulse
duration corresponds to a certain number of oscillation cycles,
i.e., σ = ωT . The σ cycles of each pulse correspond to σ slit.
Besides, the range of the frequency spectrum centered on the
carrier frequency decreases (increases) as the pulse duration
increases (decreases), which maybe affect the multiphoton
process [33]. Therefore the effects of the pulse duration on the
EPP creation are complicated. Comparing curve c with curve
b, the change of the duration affects both the amplitude and
the phase of the N (τ ) curve.

The oscillation of the total EPP number is analogous to the
oscillation of the superconductor order parameter detected by
the pump-probe pulse. The order parameter damply oscillates
with the time interval (time delay between the pump pulse
and the probe pulse), and the oscillation frequency equals to
twice of the superconductor gap (2�0) [34,35]. Additionally,
the Dirac vacuum and the BCS superconductor have more
similarities in nature. The Dirac vacuum [36] and the BCS su-
perconductor ground state [37,38] are particle-hole symmetry,
i.e., the negative energy eigenstates are all filled with electrons
in the Dirac vacuum (or cooper pairs in the BCS supercon-
ductor ground state), and the negative energy eigenstates are
all empty, with a energy gap between the positive continuum
and the negative continuum. The Hamiltonian of the BCS
ground state HBCS = εpσ3 + �0σ1 and the Hamiltonian of the
Dirac vacuum HD = cpσ1 + mc2σ3. HBCS and HD have a one-
to-one correspondence by applying a unitary transformation
U +HBCSU = εpσ1 + �0σ3, unitary matrix U can be chosen
as 1/

√
2(σ1 + σ3). Therefore the particle creation from the

Dirac vacuum and the BCS superconductors are governed by
the same equation [39]. A famous quote said by R.Feynman
is that “the same equations have the same solutions,” then the
same phenomenon can occur in different but similar systems,
e.g., the Sauter-Schwinger effect originating from the QED
can occur in materials governed by the same (Dirac) Hamil-
tonian [40]. Due to the various similarities between the BCS
superconductor and the Dirac vacuum, the fitting formula for
the oscillation of the total EPP number is referred to the
formula of the damp oscillation of the BCS superconductor
order parameter. The formula fitted the total EPP number
is

N (τ ) = D exp(−βτ ) sin(ωNτ + φ) + Ninf , (10)

here D is the amplitude, β is the decay factor, ωN is the
oscillation frequency, φ is the phase of the N (τ ) curve, and
Ninf is the asymptotic total created pair numbers at the long
time limit.

The CEP is an important parameter in few-cycle short
pulse, since it can influence the EPP creation probability or
the momentum distribution by changing the distribution of the
turning points [6,7]. The dependence of the total EPP number
on the time interval for four sets of pulse CEPs are shown
in Fig. 3, when the pulse strength and the pulse duration are

FIG. 3. The evolution of N (t = 0.003 a.u.) with τ in the sym-
metric double cosine-Gaussian pulse. Four sets of CEP of the first
pulse and the second pulse are chosen: (curve a) χ1 = χ2 = 0, (curve
b) χ1 = 0, χ2 = π/4, (curve c) χ1 = π/4, χ2 = 0, and (curve d)
χ1 = π/4, χ2 = π/4. Furthermore, V = 1.5c2, T1 = T2 = 1/

√
2c2,

ω = 2
√

2c2, m = 1 a.u., and W = 3/c. The bottom picture is the
amplification of the results from t = 0 to 0.0004 a.u.

fixed. The dependencies of the total EPP number with the time
interval are almost exactly consistent with Eq. (10) for all
of the cases. The oscillation frequencies of the N (τ ) curves
are about 2c2 (ωNa = ωNb = ωNc = ωNd = 2.01c2). As for
the effect of the CEP, we find that the CEP advance of the
first pulse causes the phase advance of the N (τ ) curve (e.g.,
φc − φa ≈ π/4), the CEP advance of the second pulse causes
a phase lag of the N (τ ) curve (e.g. φb − φa ≈ −π/4). the
phase advance (or lag) of the N (τ ) curve is equal to the
nonzero CEP, when the CEP of one of the two pulses is
nonzero. However, when the CEP of the two pulses are both
nonzero, the phase change of the N (τ ) curve is the superposi-
tion of the CEP effects brought by the two pulses. Especially,
if the CEP of the two pulses are nonzero and the same, the
phase of the N (τ ) curve is finally unchanged (e.g., φd =
φa = 1.196). Furthermore, the CEP of the pulse just affects
the phase and does not affect the amplitude of the total EPP
number.

The symmetric case of the double cosine-Gaussian pulse
is studied above. Then we study the asymmetric case. The
dependence of the total EPP number on the time interval
is shown in Fig. 4 for three sets of pulse parameters (pulse
strength and the first pulse duration), while the second pulse
duration is fixed and the CEP of the two pulses are zero. The
dependencies of the total EPP number on the time interval are
also almost exactly consistent with the fitting formula Eq. (10)
for all of the cases. Furthermore, the oscillation frequencies of
the N (τ ) curves are about 2c2(ωNa = ωNb = ωNc = 2.01c2).
As for the effects of the pulse strength and the pulse duration,
the increase of the pulse strength V enhances the amplitude,
but does not affect the phase of the N (τ ) curve, comparing
curve a with curve b. The duration of the first pulse affects
both the amplitude and the phase of the N (τ ) cure, compar-
ing curve b with curve c. Therefore the effects of the pulse
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FIG. 4. The evolution of N (t = 0.003 a.u.) with τ in the
asymmetric double cosine-Gaussian pulse. Three sets of pulse
strength and the first pulse duration are chosen: (curve a) T1 =
1/

√
2c2, V = 1.5c2, (curve b) T1 = 1/

√
2c2, V = 2c2, and (curve c)

T1 = 1/2
√

2c2, V = 2c2. Furthermore, T2 = 2/
√

2c2, ω = 2
√

2c2,
χ1 = χ2 = 0, m = 1 a.u., and W = 3/c. The inset is the amplifica-
tion of the results from τ = 0 to 0.0004 a.u.

strength and the pulse duration are the same as the findings
obtained in the symmetric case.

Subsequently, we study the effects of the CEP and the
pulse sequence swap on the N (τ ) curve. The dependencies
of the total EPP number on the time interval for four sets
of pulse CEPs are shown in Fig. 5, when the pulse strength
and the pulse duration are fixed. Furthermore, the results after
swapping the pulse sequence in each of the four cases are
studied as well. The dependencies of the total EPP number on

FIG. 5. The evolution of N (t = 0.003 a.u.) with τ in the asym-
metric double cosine-Gaussian pulse. The pulse strength is V =1.5c2.
Eight sets of pulse duration and CEP are chosen: (a) solid
dot: T1 = 1/

√
2c2, T2 = 2/

√
2c2, χ1 = χ2 = 0; and hollow dot:

T1 = 2/
√

2c2, T2 = 1/
√

2c2, χ1 = χ2 = 0, (b) solid dot: T1 =
1/

√
2c2, χ1 = 0, T2 = 2/

√
2c2, χ2 = π/4; and hollow dot

T1 = 2/
√

2c2, χ1 = π/4, T2 = 1/
√

2c2, χ2 = 0, (c) solid dot:
T1 = 1/

√
2c2, χ1 = π/4, T2 = 2/

√
2c2, χ2 = 0; and hollow dot

T1 = 2/
√

2c2, χ1 = 0, T2 = 1/
√

2c2, χ2 = π/4, and (d) solid dot
T1 = 1/

√
2c2, T2 = 2/

√
2c2, χ1 = χ2 = π/4; and hollow dot T1 =

2/
√

2c2, T2 = 1/
√

2c2, χ1 = χ2 = π/4. Furthermore, ω = 2
√

2c2,
m = 1 a.u., and W = 3/c.

the time interval almost exactly follow the fitting formula for
all of the cases, and the oscillation frequencies are about 2c2

[the fitted results of the N (τ ) curves are 2.01c2]. The phases
of the N (τ ) curves in Fig. 5 are fitted as follows: φa = 0.033,
φbs = −0.76 φbh = 0.82 (s represents solid dot and h repre-
sents hollow dot), φcs = 0.82 φch = −0.75, φd = 0.033. As
for the effect of the CEP, the phase advance of the first pulse
causes the phase advance of the N (τ ) curve (e.g., φbh − φa

and φcs − φa are about π/4), while the CEP effect brought
by the second pulse is opposite (e.g., φbs − φa and φch − φa

are about −π/4). The phase advance (or lag) of the N (τ )
curve is equal to the nonzero CEP, when the CEP of one of
the two pulses is nonzero. Furthermore, when the CEP of the
two pulses are both nonzero, the phase change of the N (τ )
curve is the superposition of the CEP effect brought by the
two pulses, e.g., φd = φa. Therefore the effect of the CEP
in the asymmetric case is the same as that in the symmetric
case. On the other hand, swapping the pulse sequence does
not influence the N (τ ) curve at all when the CEP of the two
pulse are the same, as shown in Figs. 5(a) and 5(d). However,
when the CEP of the two pulses are different, swapping the
sequence affects the phase, but does not affect the amplitude
of the N (τ ) curve. This is because the effect of χ1 and χ2

on the phase of the N (τ ) curve are opposite. The final phase
change of the N (τ ) curve is the superposition of the CEP
effect brought by the two pulses. The swapping of the pulse
sequence causes the exchange of χ1 and χ2, so that the final
phase of the N (τ ) curve are different before and after the pulse
sequence is swapped. As shown in Figs. 5(b) and 5(c), the
phase difference is π/2 between the N (τ ) curve before and
after the pulse sequence is swapped.

B. Alternating-sign double-Gaussian pulse

Since the EPP creation is sensitive to the temporal pulse
shape, the alternating-sign double-Gaussian pulse is applied to
the vacuum in this section. Different from the cosine-Gaussian
pulse, the Gaussian pulse is a monocycle pulse. Subsequently,
the symmetric (T1 = T2) case is studied first. The dependence
of the total EPP number on the time interval for three sets of
pulse strength and pulse duration are shown in Fig. 6.

In Fig. 6, the total EPP number damply oscillates with
the time interval for all of the cases, and the oscillations are
also almost exactly consistent with the fitting formula (10).
The oscillation frequencies for all of the cases are about
2c2 (ωNa = ωNb = ωNc = 2.01c2). The increase of the pulse
strength can increase the photon density, which can enhance
the EPP creation probability. Comparing curve a with curve
b, the increase of the pulse strength enhances the amplitude,
but does not affect the phase of the N (τ ) curve. The increase
(or decrease) of the pulse duration can decrease (or increase)
the frequency spectrum of the photons. This can affect the
multiphoton EPP creation process. Comparing curve b with
curve c, the pulse duration affects both the amplitude and the
phase of the N (τ ) curve.

In the asymmetric case, the durations of the two pulses are
different. The dependence of the total EPP number on the
time interval are studied for three sets of pulse parameters,
in which the second pulse duration T2 is fixed. Furthermore,
the situation after the pulse sequence is swapped in theses
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FIG. 6. The evolution of N (t = 0.003 a.u.) with τ in the sym-
metric double-Gaussian pulse. Three sets of pulse strength and the
pulse duration are chosen: (curve a) T1 = T2 = 1/

√
2c2, V = 1.5c2,

(curve b) T1 = T2 = 1/
√

2c2, V = 2c2, and (curve c) T1 = T2 =
1/2

√
2c2, V = 2c2. Furthermore, m = 1 a.u. and W = 3/c. The

inset is the amplification of the results from τ = 0 to 0.0004 a.u.

three cases is considered as well. As shown in Fig. 7, the
dependencies of the total EPP number on the time interval are
consistent with the fitting formula Eq. (10) for all of the cases.
The oscillation frequencies of the N (τ ) curves are about 2c2

(ωNa = ωNb = ωNc = 2.01c2). From the detail, the increase
of the pulse strength can enhance the amplitude, and does not
affect the phase of the N (τ ) curve, comparing curve a with
curve b. The pulse duration affects both the amplitude and the
phase of the N (τ ) curve. Furthermore, the results before and
after swapping the pulse sequence completely coincide.

C. Double-Gaussian pulse with the same sign

The double cosine-Gaussian pulse and the alternating-sign
double-Gaussian pulse both contain conjugate turning points,
which can lead to the Ramsey interference effect in the
EPP creation [6,12,14–16]. Subsequently, we investigate
whether the interference effect is responsible for the damp
oscillation of the total EPP number with the time interval.
The double-Gaussian pulse with the same signs is applied
(i.e., the sign before the exponential function is positive in the
second pulse of f2(t )), which does not have two conjugate
turning points and then the interference effect is absent [12].

FIG. 7. The evolution of N (t = 0.003 a.u.) with τ in the asym-
metric double-Gaussian pulse. Six sets of pulse strength and the pulse
duration are chosen: (a) solid square: T1 = 1/

√
2c2, T2 = 2/

√
2c2,

V = 1.5c2; and hollow dot: T1 = 2/
√

2c2, T2 = 1/
√

2c2, V =
1.5c2, (b) solid square: T1 = 1/

√
2c2, T2 = 2/

√
2c2, V = 2c2; and

hollow dot: T1 = 2/
√

2c2, T2 = 1/
√

2c2, V = 2c2, and (c) solid
square: T1 = 1/2

√
2c2, T2 = 2/

√
2c2, V = 2c2; and hollow dot:

T1 = 2/
√

2c2, T2 = 1/2
√

2c2, V = 2c2. Furthermore, m = 1 a.u.

and W = 3/c.

The dependence of the total EPP number on the time interval
for the same-sign and the alternating-sign double-Gaussian
pulse are shown in Fig. 8.

In the same-sign double-Gaussian pulse, the dependence of
the total EPP number on the time interval are consistent with
the fitting formula as well. Compared with the alternating-sign
double-Gaussian pulse, the N (τ ) curve between them only has
a phase difference of π . The results indicate that the char-
acteristic oscillation still exists even without the interference
effect. Therefore, the characteristic oscillation of the total EPP
number is not resulted from the interference effect caused by
the conjugate turning points.

For all of the studied cases, the evolution of the total EPP
number with the time interval is consistent with Eq. (10),
which can describe the oscillation of the order parameter
in the BCS superconductor as well. The superconductor or-
der parameter damply oscillates with the time interval, and
the oscillation frequency is twice of the superconductor gap,
detected by the pump-probe technique. This phenomenon is

TABLE II. Similarities between the BCS superconductor and the Dirac vacuum.

Dirac vacuum BCS superconductor ground state

Hamiltonian HD = cpσ1 + mc2σ3 HBCS = εpσ3 + �0σ1
a

Energy spectrum E = ±√
c2 p2 + m2c4 E = ±

√
ε2

p + �2
0

Energy gap 2mc2 2�0

Studied quantity N(total EPP number) � (order parameter)

External field double pulse (time interval τ ) pump-probe pulse (time interval τ )
phenomenon N (τ ) damp oscillation (frequency 2mc2) �(τ ) damp oscillation (frequency 2�0)

aεp is the kinetic energy for single electron, �0 is the superconductor gap.
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FIG. 8. The evolution of N (t = 0.003 a.u.) with τ in the
alternating-sign and identical-sign double-Gaussian pulse. Four
sets of double-Gaussian pulse are studied: (a) T1 = T2 = 1/

√
2c2,

V = 1.5c2 for both the alternating-sign (hollow dot) and the same-
sign (solid dot) double Gaussian pulse, (b) T1 = 1/

√
2c2, T2 =

2/
√

2c2, V = 1.5c2 for both the alternating-sign (hollow dot) and
the same-sign (solid dot) double Gaussian pulse. Furthermore,
m = 1 a.u. and W = 3/c.

proved to be the amplitude mode occurring in the BCS super-
conductor. We think that the characteristic oscillation of the
total EPP number maybe is a manifestation of the amplitude
mode excited in the Dirac vacuum, due to the various similar-
ities between the Dirac vacuum and the BCS superconductor.
The similarities are summarized in Table II.

D. The comparison with the single pulse

Finally, we make a comparison between the pair creation
in the double pulse and two single pulses. Each single pulse
respectively corresponds to the first pulse and the second
pulse of the double pulse. The relation between Ninf and Ns

is studied, where Ninf is the asymptotic value of N (τ ) when
τ → ∞, Ns is the final total EPP number when the action of
the single pulse is finished. Values of Ninf and Ns for several

cases are listed in Table III, in which the strength V = 1.5c2

for all of the pulses.
For all of the cases, Ninf is equal to the sum of Ns obtained

in each single pulse. As studied above, the total EPP number
damply oscillates around the value of Ninf when the time
interval changes. The good value of the time interval can
make the EPP number much larger than Ninf , i.e., much larger
than the sum of the final EPP number created in a single
pulse. Therefore the creation of the EPPs can be effectively
promoted by adjusting the time interval.

IV. CONCLUSION

To conclude, the dependence of the total EPP number (N)
on the time interval (τ ) is comprehensively studied under spa-
tially localized double pulse (i.e., the double cosine-Gaussian
pulse and the alternating-sign double-Gaussian pulse). The
total EPP number damply oscillates with the time inter-
val, and the oscillation is consistent with formula N (τ ) =
D exp(−βτ ) sin(ωNτ + φ) + Ninf for all of the cases. From
the details, the phase and amplitude of the N (τ ) curve are
affected by the pulse parameters. The pulse strength only
affects the amplitude of the N (τ ) curve, while the pulse du-
ration affects both the amplitude and the phase of the N (τ )
curve. The effects of the pulse strength and the pulse duration
are independent of the temporal pulse shape. In addition, the
CEP that exists in the cosine-Gaussian pulses mainly affects
the phase of the N (τ ) curve. The CEP advance of the first
pulse causes a phase advance of the N (τ ) curve, and the
CEP advance of the second pulse causes a phase lag of the
N (τ ) curve. The final phase change of the N (τ ) curve is
the superimposition of the CEP effects brought by the two
pulses. However, the effect of swapping the pulse sequence
does depend on the pulse shape. In the monocycle pulse (e.g.,
double-Gaussian pulse), swapping the pulse sequence does
not affect the phase or the amplitude of the N (τ ) curve at
all. Nevertheless, in the pulse with subcycle (e.g., double
cosine-Gaussian pulse), the effect of swapping the pulse se-
quence is sensitive to the CEP. If the CEP of the two pulses
are different, swapping the pulse sequence mainly affects the
phase of the N (τ ) curve. If the CEP of the two pulses are the
same, swapping the pulse sequence does not affect the EPP
creation.

TABLE III. Relationship between Ninf and Ns.

double cosine-Gaussian pulsea single cosine-Gaussian pulsea

T (T1, T2) Ninf T Ns Ninf and Ns

T1 = T2 = 1/
√

2c2 1.910E − 2 1/
√

2c2 9.560E − 3 Ninf = 2Ns

T1 = 1/
√

2c2 3.250E − 2 1/
√

2c2 9.560E − 3(Ns1) Ninf = Ns1 + Ns2

T2 = 2/
√

2c2 2/
√

2c2 2.296E − 2(Ns2)
double Gaussian pulse single Gaussian pulse

T (T1, T2) Ninf T Ns Ninf and Ns

T1 = T2 = 1/
√

2c2 7.560E − 3 1/
√

2c2 3.780E − 3 Ninf = 2Ns

T1 = 1/
√

2c2 3.890E − 3 1/
√

2c2 3.780E − 3(Ns1) Ninf = Ns1 + Ns2

T2 = 2/
√

2c2 2/
√

2c2 1.072E − 4(Ns2)

aCEP is zero in the cosine-Gaussian pulse.
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Furthermore, we find that the Ramsey interference effect
is not responsible for the characteristic oscillation of the total
EPP number with the time interval. The oscillation still exists
and is consistent with the fitting formula, when the Ram-
sey interference effect is absent by applying double-Gaussian
pulse with the same signs. Since the evolution of the total
EPP number with the time interval are consistent with the
fitting formula for all of the cases, the characteristic oscillation
maybe has relation with the amplitude mode.

These findings indicate that the EPP creation probability
can be enhanced by adjusting the time interval. The proper
time delay which corresponds to the peaks in the N (τ ) curve

mainly depends on the CEP and the pulse duration. Therefore
the time interval should be optimized together with other pulse
parameters. This may be helpful for the construction of the
experimental scenario.
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