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Determination of the tunneling flight time as the reflected phase time
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Using the time parameter in the time-dependent Schrödinger equation, we study the time of flight for a
particle tunneling through a square barrier potential. Comparing the mean and variance of the energy and
the flight time for transmitted and reflected particles, using both density and flux distributions, we find that,
when accounting for momentum filtering, the suitably normalized transmitted and reflected distributions are
identical in both the density and flux cases. In contrast to previous studies, we demonstrate that these results
do not imply a vanishing tunneling time, but rather that the time it takes to tunnel through a square barrier is
precisely given by the reflected phase time. For wide barriers, this becomes independent of the barrier width,
as predicted independently by MacColl and Hartman. We show that these conclusions can be reached using a
variety of arguments, including purely quantum mechanical ones. Analysis of the shapes of the distributions
under consideration reveals that wave-packet reshaping is not an explanation for the MacColl-Hartman effect.
The results presented here have direct implications for understanding recent experimental results in the study of
the barrier crossing of rubidium atoms. The finite width of an incident wave packet significantly “masks” the
tunneling time, and induces substantial asymmetry between the flight times of transmitted and reflected atoms.
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I. INTRODUCTION

It is well known that a quantum mechanical object can pass
through a barrier it would be forbidden to traverse classically.
This is known as quantum tunneling. However, one significant
property of this transition is considered contentious among
contemporary researchers [1–5]: How long does this traversal
take? This question is related to discussions concerning a phe-
nomenon known as the Hartman effect [6,7], which describes
the surprising revelation that the time taken to traverse a bar-
rier appears to be independent of the length of the barrier when
said barrier is sufficiently broad. Although controversial, this
effect has support experimentally and theoretically [1,7], and
even in the relativistic limit [8–10].

On the experimental side, many experiments in the 1990s
and early 2000s studied optical analogs of tunneling systems
and verified that times independent of barrier lengths could be
obtained [11–13], and several experiments since have found
that the effect is also valid for quantum systems such as
Larmor precession [14–16] and attoclock experiments [14,17–
20].

There remain unresolved controversies in the experimental
results, however, with some claiming that the tunneling time is
exactly zero [18,19,21,22], and others claiming that it is small
but finite [11,15,16]. Both sides have theoretical and compu-
tational results that support their claims, and most agree that
it is independent of the length of a sufficiently broad barrier.
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The controversy has recently been renewed thanks in part
to recent experimental results measuring the “Larmor time”
for barrier crossings involving rubidium atoms [15,16]. This
is in agreement with the original claim by Hartman, and ar-
guably the earlier claim by MacColl [23]. Others do, however,
claim that the measures of tunneling time that lead to the
“MacColl-Hartman” effect are associated with lifetimes such
as energy decay times [5,24] but not with physical transit
times.

This paper contributes to this discussion by demonstrating
three main points. The first point is that in the limit of the inci-
dent wave packet having a narrow width in momentum space,
the contribution from tunneling to the flight time for a square
barrier is given by the reflected phase time. This time is finite
and independent of width for sufficiently long barriers, and
for a symmetric square barrier, differs from the transmitted
phase time. The second point is that this demonstrates that the
Hartman effect can be observed for flight times, leaving open
the possibility of experimentally verifying it. We note that
prior to the present results, the Hartman effect has only been
studied theoretically for monochromatic waves, and not for
wave packets. The final point is that the Hartman effect is not
a result of the effects of momentum filtering and wave-packet
distortion, as claimed by some [25,26], as we show that the
effect persists when these are removed and the transmission is
restricted to strictly below-barrier momentum components.

Instead of attempting to define a time operator, we con-
sider the time of flight of the particle as determined by the
time parameter appearing in the time-dependent Schrödinger
equation. Initially, the particle is described via a Gaussian
wave packet whose incident mean kinetic energy is below
the potential barrier height, and whose momentum variance is
sufficiently small to ensure that above-barrier components of
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the wave packet are much smaller than the mean transmission
probability (no “above-barrier transmission”). At the same
time the packet is initiated sufficiently far to the left of the
barrier to ensure that the initial probability of finding the
particle to the right of the barrier is negligible compared to
the initial normalization of unity (no “pretransmission”). With
these conditions, transmission occurs predominantly through
tunneling and any nontunneling contributions may be ignored.

Since time-of-flight experiments typically measure the flux
of particles impinging on a detector, we study here both the
density and the flux time-of-flight distribution, rather than just
the density, as studied previously in Ref. [27]. This also has
the advantage that both the mean and the variance of the flight
time are well defined, as the time flux distribution at large
times goes as t−4, in comparison with the density which goes
as t−3 [7,28].

We generate results both using purely quantum mechanical
computations, and with classical trajectories from a classical
Wigner dynamics approximation to the quantum mechanics.
With the Wigner dynamics results, we presuppose zero tun-
neling time, and then examine how the overall time of flight
compares to the results calculated using full quantum mechan-
ical methods.

In addition to the mean and variance, another aspect of the
distributions, their peaks, is studied. Comparisons between the
means and peaks of the time-of-flight distributions are made,
facilitating comparisons to free particles, and allowing for
further explorations of how the wave packet is reshaped by
the tunneling process.

For the systems we study, we show that the tunneling
process induces minimal changes to the form of the final
transmitted wave packet itself: the wave packet retains its
Gaussian-like form and its width in time is directly related to
its initial spatial width. The main reshaping of the transmitted
wave packet is the lowering of its amplitude due to the small
transmission amplitude associated with tunneling. We further
emphasize this finding with an examination of the variances
of the transmitted time and energy distributions, especially in
reference to the energy-time uncertainty relation, and make
comparisons to analytic results generated with the steepest-
descent approximation.

These results negate previous arguments based on wave-
packet reshaping which feature in many explanations of the
Hartman effect. Our results show, in agreement with Ref. [5],
but in contrast to some claims in the literature [25,26], that
wave-packet reshaping cannot be invoked as an explanation
for the Hartman effect.

Determining the time of flight and the related tunnel-
ing time should be achieved without resort to classical or
semiclassical mechanics [11,29–31]. Hence, using only the
time-dependent Schrödinger equation, we evaluate the mean
flight time of transmitted and reflected particles and, in agree-
ment with recent studies [27], find that in the limit that the
momentum width of the incident wave packet vanishes, the
two are identical. Taking the momentum width to zero pro-
vides a bridge between the theoretical definition of the phase
time, valid for monochromatic wave packets, and more realis-
tic tunneling wave packets with finite widths.

However, this does not “prove” that the tunneling time
vanishes. When we analyze the mean transmission time

separately, we find that in the limit of the momentum width of
the incident wave packet vanishing it implies a tunneling time
which is accurately predicted by the reflected phase time.

This last conclusion is based not only on a comparison
of the peak time, that is, the time associated with the peak
of the transmitted wave packet as compared to that of a free
particle, but also by comparing the mean transmission time for
differing barrier heights. We find that the dependence of the
mean transmission time on the barrier height is well accounted
for by the phase time. A comparison of the mean flight time
with classical Wigner computations further strengthens the
claim that the tunneling time is given accurately by the phase
time.

It should be stressed that this conclusion, that the tunneling
time is given by the reflected phase time, is meaningful only
for a square barrier and for an incident particle with vanishing
momentum variation. Partly this is because in the case of a
square barrier, all the “action” occurs in the tunneling region,
whereas for a smooth barrier such as a Gaussian-shaped one,
the particle is slowed down in the classically allowed region.
The phase time includes both this slowing down and the
speeding up due to tunneling.

The situation is further complicated when the momen-
tum width of the incident particle is finite. Not only must
one consider the well-understood phenomenon of momen-
tum filtering [27,32], but in addition the width induces large
asymmetry between the mean transmitted and reflected flight
times. There is also the possibility that contributions from
momentum components close to and higher than the barrier
height can drown out both the Hartman effect and the effects
of momentum filtering. The implications of these observa-
tions to understanding the recent Larmor time experimental
results [15,16] on the scattering of rubidium atoms on a Gaus-
sian barrier are considered here.

In Sec. II we review briefly the theory needed for imple-
menting the computations. Results are presented in Sec. III
and we end with a Discussion, paying special attention to
the implications of this work on the aforementioned rubidium
Larmor time experiments.

II. THEORY

We consider a one-dimensional Gaussian wave packet with
a large width in space (or, equivalently, a small width in
momentum), which is initially placed far to the left of a square
potential barrier with an incident mean momentum in the
positive direction, that is, towards the barrier. The initial posi-
tion, initial momentum, and their distributions are all chosen
such that the initial probabilities of the wave packet being
found to the right of the barrier in position space and above
it in momentum space are both negligible. The Hamiltonian
operator for this system is

Ĥ = p̂2

2M
+ V (q̂) (1)

for a particle with mass M, where the potential V (q̂) is given
by

V (q̂) = V ‡[�(q̂ + a) − �(q̂ − a)] (2)
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for the Heaviside function �(q̂), barrier height V ‡, and barrier
width 2a centered around the origin (we restrict our analysis
here to symmetric barriers).

The initial wave packet is given by

�(q, t = 0)

= 〈q|�〉 =
(

�

π

) 1
4

exp

(
−�

2
(q − x)2 + i

h̄
px(q − x)

)
,

(3)

where � is the width parameter, x is the initial mean position
of the wave packet, and px is the initial mean momentum. x is
chosen such that x + 1√

�
is far more negative than −a, and px

is chosen such that ( p2
x

2M + h̄2�
M ) � V ‡.

The time evolution of the initial wave packet was com-
puted by integrating it over all k = p

h̄ when multiplied by

exp (−i h̄k2

2m t ). The particular method for doing this for a Gaus-
sian wave packet interacting with a square barrier was based
on the method outlined by Papadopoulos [33] (see also [32]).

A. Transition path time distributions

A transition path time probability distribution [27,34] is
defined for observing the particle density evolved to positive
time t : ρ(y, t ) = |�(y, t )|2 at the spatial point y (the “screen”).
The transition path time probability distribution (TPTD) for
the density is given by [27]

P�,ρ (y, t ) = |�(y, t )|2∫ ∞
0 dt |�(y, t )|2 . (4)

There are some implicit assumptions in this definition that
must be stressed: it is assumed that the integral in the denom-
inator does not diverge, that the density is well defined at the
point y, that there are no contributions to the integral from
negative times (unlike the presence time distribution [35],
which does include negative times), and that the density is
positive-valued everywhere (it is a positive-operator-valued
measure, or POVM [36]).

Most importantly, we have assumed the existence of a
clock that is able to tick once at t = 0 when the state is
prepared, and once again at some time t when the particle is
detected at the screen position y. This allows t to be a variable
that measures the time of flight of the particle. This assumption
is made for all the definitions discussed in this work.

A different version of the time distribution of Eq. (4) may
be defined for the flux instead of the density. The expression
for the flux density J (q, t ) at the screen y and time t is well
known (the prime denotes the derivative with respect to the
coordinate q):

J (y, t ) = h̄

M
Im(�∗(y, t )� ′(y, t )). (5)

Hence, the TPTD for the flux at a given y and t can be
expressed as

P�,J (y, t ) = J (y, t )∫ ∞
0 dt J (y, t )

. (6)

Useful metrics for analyzing the tunneling time without re-
sorting to classical or semiclassical mechanics can be obtained

by considering P�,ρ and P�,J for the reflected and transmitted
parts of the density and flux, respectively. This is achieved by
considering their values at two points: one far to the right of
the barrier such that y 	 a, and one far to the left of the initial
position such that −y � x (the two points are equidistant from
the center of the barrier). That ensures that only reflected
components of the density or flux are present at −y, and only
transmitted components at y.

This also ensures that P�,J can be used as a POVM, despite
the fact that it can have negative values. For the systems being
considered here, we are only interested in the value of P�,J

far to the left or right of the barrier, where the flux is either
entirely negative or entirely positive, such that the resulting
flux time distribution is positive and this is well defined. This
construction was also used in our recent study of the TPTD
for a relativistic electron scattered on a square barrier [10].

Labeling the density TPTD to the right of the barrier at y
as P�,ρ,T , the density TPTD to the left of the barrier at −y
as P�,ρ,R, and the flux equivalents of those two quantities as
P�,J,T and P�,J,R, respectively, we can define the means of all
four distributions:

〈t〉(ρ,J ),(T,R) =
∫ ∞

0
dt tP�,(ρ,J ),(T,R). (7)

Unlike in the case of a free particle, this integral does not
diverge when considering both the density and the flux re-
flected and transmitted time distributions. Note that all four
distributions P�,(ρ,J ),(T,R) are separately normalized to unity:
the fact that the transmission probability is far smaller than
the reflection probability is not important for this part of the
analysis. Also note that this integral is only over the interval
[0,∞], as with the definitions in Eqs. (4) and (6).

One of the advantages of considering the flux time distri-
butions is that due to its t−4 dependence at long times, one
may also obtain the second moments of the time distribution
and the associated variances (σt )2

J,(T,R):

〈t2〉J,(T,R) =
∫ ∞

0
dt t2P�,J,(T,R) (8)

and

(σt )
2
(ρ,J ),(T,R) = 〈t2〉J,(T,R) − 〈t〉2

J,(T,R) . (9)

This is not possible for the density time distribution, as it goes
as t−3 at long times such that the second moment diverges
(although in practice the density time distribution’s variance
was approximated numerically and found to be very similar
to the flux’s variance).

One of the difficulties in examining the tunneling time is
that for a finite width of the incident wave packet one has to
account for the effect of momentum filtering [27,32]. Due to
tunneling and the related exponential dependence of the trans-
mission probability on the incident momentum of the wave
packet, higher momenta will be preferentially transmitted.
This leads to significant differences in the mean transmitted
and reflected times. The filtering effect will become smaller
as the momentum width of the incident wave packet becomes
smaller. Therefore, we are interested in the dependence of the
TPTDs on the width parameter � and the difference between
the reflected and transmitted mean times for the two operators
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ρ and J:

�t(ρ,J )(�) = 〈t〉(ρ,J ),R (�) − 〈t〉(ρ,J ),T (�). (10)

In the limit of vanishing momentum width of the incident
wave packet, the filtering effect will vanish and any remaining
difference should reflect the tunneling time. Hence, we define
the tunneling flight time difference as

tTFT,(ρ,J ) = − lim
�→0

�t(ρ,J )(�). (11)

Further discussion of the implications of this definition for the
density time distribution may be found in Ref. [27]. These
implications also carry over to the flux case.

In addition to the time differences, the mean times them-
selves (〈t〉ρ,R, 〈t〉J,R, 〈t〉ρ,T , and 〈t〉J,T ) can be separately
considered in the � → 0 limit. These quantities will also form
the basis of other useful metrics for the numerical studies
presented in the next section.

B. Free particles

One way used by many [37] to understand the tunneling
time is to compare the transmitted particle’s time distribution
at the screen to that of a free particle. One propagates the
initial wave packet defined as in Eq. (3) with the free-particle
time propagator exp (−i h̄k2

2M t ) onto the screen point y and stud-
ies the resulting distribution of density or flux arrival times.

There is, however, a formal difficulty when considering a
free particle’s time distribution. Unlike the transmitted par-
ticle, for a free-particle wave function �FP(y, t ) the integral∫

dt t |�FP(y, t )|2 diverges [28]. The same is also true of the
equivalent integral for the flux. Time averages of the transmit-
ted time distributions for the density and flux are undefined in
the free-particle case and so cannot be compared to those of
the transmitted particle.

The accepted alternative is to compare instead the peak
times, or the times at which the density and flux at the screen
are maximal. Taking the � → 0 limit helps in this case, too, as
it makes the peak and mean times for the transmitted particle
as close as possible, as the results section will show. Thus, one
useful tunneling time metric can be written as

tmaxdiff,(ρ,J ) = lim
�→0

[tmax,(ρ,J ),T(�) − tmax,(ρ,J ),FP(�)] (12)

for the density and flux peaks of the free particle
tmax,(ρ,J ),FP(�) and the tunneled particle tmax,(ρ,J ),T(�).

In the � → 0 limit, the peak of the time distribution of the
free-particle wave packet matches the simple classical time
of flight of the free particle. For a free-particle wave packet
initially peaked at q = x, the distance to the screen is y + |x|,
and thus the classical time of flight is this distance divided by
the speed px

M . By the same logic, the time a classical particle
would spend traversing the same length as the barrier width,
which one might call the “naive” barrier traversal time, is
given by 2aM

px
.

Hence, a barrier traversal time ttrav can be defined as fol-
lows:

t(ρ,J ),trav = tmax,(ρ,J ),T − M(y + |x| − 2a)

px
. (13)

The latter term on the right can be thought of as the � → 0
limit free-particle peak time of flight, minus the naive barrier
traversal time. This leaves only a metric for how long the
free particle spent outside the barrier region: the free-particle
“nonbarrier” traversal time. Subtracting this from the peak
time of flight of the transmitted particle gives a measure of
how long the transmitted particle spent inside the barrier: a
barrier traversal time.

C. Phase time

It is an open question whether the MacColl-Hartman effect
implies a zero tunneling time or a fixed, finite time. The phase
time (sometimes called the Wigner time [38]) is believed to be
involved if the latter is true. There is a phase time associated
with both the transmitted and reflected parts of the distribu-
tion. If the probability of transmission as a function of k is
given by |T (k)|2, and the probability of reflection by |R(k)|2,
then the phase times 	T (k) and 	R(k) are defined as M

h̄k times
the derivative with respect to k of the arguments, or phases,
of T (k) = |T (k)| exp [iϕT (k)] and R(k) = |R(k)| exp [iϕR(k)],
respectively [1]:

	T (k) = M

h̄k

dϕT

dk
, 	R(k) = M

h̄k

dϕR

dk
. (14)

The quantities T (k) and R(k) for the symmetric square barrier
are given by [32]

T (k) = 2ikK exp (−2ika)

(k2 + K2) sin (2Ka) + 2ikK cos (2Ka)
(15)

and

R(k) = (k2 − K2) sin (2Ka)

(k2 + K2) sin (2Ka) + 2ikK cos (2Ka)
, (16)

where

K =
√

k2 − 2MV ‡

h̄2 . (17)

The phase times can be computed by noting that

dϕT

dk
= Im

(
d ln T

dk

)
(18)

and similar for R(k). In principle, the phase times as defined
here shed light on the tunneling time for monochromatic
scattering only. We will demonstrate that they also give a
good approximation to tunneling flight times for narrow-
in-momentum wave packets whose incident energies are
sufficiently below the barrier height.

For the square barrier, the following relationship holds for
all values of a, px, and V ‡:

	R

( px

h̄

)
− 	T

( px

h̄

)
= 2aM

px
. (19)

The term on the right-hand side is the naive barrier traversal
time and will be important when analyzing the implications
of the phase times for the tunneling times. This relationship,
which depends on the width but not the height of the barrier,
is an exception to the rule that symmetric barriers have equal
transmitted and reflected phase times in the monochromatic
limit.
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When considering the scattering of an incident (non-
monochromatic) wave packet, the transmission probability for
the wave packet is obtained by averaging over the momentum
components. The resulting averaged transmission and reflec-
tion probabilities, denoted as |T� |2 and |R� |2, respectively, are
given by

|T� |2 = 1√
�π

∫ ∞

−∞
dk|T (k)|2 exp

(
− (k − kinit )

2

�

)
(20)

for transmission, and an equivalent expression is used to ob-
tain the total reflection probability |R� |2. Here, kinit is the
mean wave number of the incident wave packet. These inte-
grals also serve as the normalization constants for the energy
distributions. Similarly, equivalent integrals for the normaliza-
tion of the transmitted and reflected flux |T�,J |2 and |R�,J |2
are given by multiplying the integrand of Eq. (20) and its
reflection equivalent by h̄k. The normalization factors for the
free-particle density and flux energy distributions are given by
removing |T� |2 from the integrand, and multiplying by h̄k in
the flux case.

The dependence of the transmission and reflection proba-
bilities on the wave number k is the cause of the momentum
filtering phenomenon discussed above. Especially in the deep
tunneling regime, the transmission probability |T (k)|2 in-
creases exponentially with increasing k. This means that
higher-k components will be preferentially included in the
transmitted wave packet, as compared to the reflected wave
packet where the reflection coefficient is almost unity in this
regime and hardly changes. This effect implies that the trans-
mitted wave packet will travel faster than the reflected one and
tends to mask any short-time contribution due to tunneling. By
taking the limit of �t as � → 0, it is possible to remove the
effects of momentum filtering since there is in principle only
one momentum component at � = 0.

D. Wave-packet energies

In addition to defining the means and variances in time of
the four time-of-flight distributions for the transmitted parti-
cles, it is also possible to define their means and variances in
energy. This is useful not only for checking the energy-time
uncertainty of the wave packets, but also the extent to which
the scattering reshapes the wave packet since, initially, the
wave packets are minimum uncertainty states.

Due to the difficulty in defining the time operator, one
does not have a time-energy analog to the momentum-position
uncertainty principle. However, as shown in [28], the relation

(σE )2(σt )
2 � h̄2

4
(21)

holds if one defines the energy variance of the density using
weak values.

The procedure for defining this quantity is as follows: the
time-dependent Schrödinger equation for the wave packet at
time t is

Ĥ |�t 〉 = ih̄
∂

∂t
|�t 〉 . (22)

By considering the weak-value time mean of the Hamiltonian
operator

〈H (q)〉ρ(T,R) = 1∫ ∞
0 dt 〈�t |q〉 〈q|�t 〉

×
∫ ∞

0
dt 〈�t |q〉 〈q|�t 〉 〈q|Ĥ |�t 〉

〈q|�t 〉 , (23)

one obtains the expressions

〈E〉ρ(T,R) = ih̄∫ ∞
0 dt |�(T,R)(q, t )|2

×
∫ ∞

0
dt �∗

(T,R)(q, t )
∂�(T,R)(q, t )

∂t
(24)

and

〈E2〉ρ(T,R) = h̄2∫ ∞
0 dt |�(T,R)(q, t )|2

∫ ∞

0
dt

∣∣∣∣∂�(T,R)(q, t )

∂t

∣∣∣∣
2

.

(25)
The equivalent expressions for the flux J (y, t ) are not given

in [28], but can be shown to have similar forms to the expres-
sions given there:

〈E〉J (T,R) = ih̄∫ ∞
0 dt J (q, t )

∫ ∞

0
dt

J (q, t )

�(T,R)(q, t )

∂�(T,R)(q, t )

∂t
(26)

and

〈E2〉J (T,R) = h̄2∫ ∞
0 dt J (q, t )

×
∫ ∞

0
dt

J (q, t )

|�(T,R)(q, t )|2
∣∣∣∣∂�(T,R)(q, t )

∂t

∣∣∣∣
2

. (27)

In all of these expressions, the variable q is set to the screen
location +y for the transmitted quantities and −y for the
reflected quantities. The variances can then be defined using

(σE )2
(ρ,J ),(T,R) = 〈E2〉(ρ,J ),(T,R) − 〈E〉2

(ρ,J ),(T,R) . (28)

When the energy variances (σE )2
J,(T,R) defined here are multi-

plied by the respective time variances (σt )2
J,(T,R), the products

are greater than h̄2

4 , as is the case for the density time distribu-
tion. This is discussed in more detail in Appendix A.

E. Steepest-descent approximation

The steepest-descent approximation can be used to provide
a convenient, accurate approximation to the time-evolving
wave packet beyond the barrier. This can then be used to ob-
tain analytic expressions for the energy and time variances and
their product, and be used to assess the effects of wave-packet
reshaping.

The calculation begins with the energy representation of
the time-evolving wave packet. The steepest-descent approx-
imation eliminates the associated integral over k by pulling
out the principal contribution arising from the neighborhood
of the saddle-point wave number k�. Using this expression,
we find the most probable tunneling time, the time tmp, for
which the wave packet has greatest amplitude. Expanding the
exponent of the wave packet to second order about the most
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probable time gives an explicit Gaussian form for the time-
evolving wave packet. This expression affords straightforward
computation of the time and weak-value energy moments of
interest in this paper. A more detailed derivation is given in
Appendix B, and the main results are provided here.

The weak-value energy moments, in this approximation,
are

〈E〉ρ,T = E �
mp, (29)

where E#
mp is the energy corresponding to k#

mp, the saddle-
point wave number evaluated at the peak time tmp (expressions
for which are given in Appendix B), and

〈E2〉ρ,T = E �2
mp + 1

2 h̄2[Reη + (Imη)2(Reη)−1], (30)

where η/2 is the complex coefficient of (t − tmp)2 in the ex-
plicit Gaussian approximation to the time-evolving wave
packet (an expression for η is given in Appendix B). The
steepest-descent variance of the weak-value energy of the
transmitted wave packet thus has the form

σ 2
E ,ρ,T = 1

2 h̄2[Reη + (Imη)2(Reη)−1]. (31)

The approximate time moments are

〈t〉ρ,T = tmp (32)

and

〈t2〉ρ,T = t2
mp + 1

2 (Reη)−1. (33)

The resulting variances are

σ 2
t,ρ,T = 1

2 (Reη)−1 (34)

and

σ 2
E ,ρ,T σ 2

t,ρ,T = 1

4
h̄2

[
1 +

(
Imη

Reη

)2]
. (35)

The real and imaginary parts of η have the following lead-
ing terms, for small �:

Reη ∼ �v�2
mp (36)

and

Imη ∼ �2v�2
mp

[(
d2ϕT

dk2

)�

mp

− h̄tmp

m

]
, (37)

where the � superscript and mp subscript represent evaluating
the derivative at k = k�

mp.

Therefore, for v�
mp = h̄

m k�
mp for small �,

σ 2
E ,ρ,T ∼ �

2
h̄2v�2

mp, (38)

σ 2
t,ρ,T ∼ �−1

2
v�−2

mp , (39)

and

σ 2
E ,ρ,T σ 2

t,ρ,T ∼ 1

4
h̄2

{
1 + �2

[(
d2ϕT

dk2

)�

mp

− h̄tmp

m

]2}
. (40)

The flux-weighted moments are the same as the density-
weighted moments in the steepest-descent approximation, as
the velocity factor of the flux weighting is treated as a pref-
actor to the exponential function in the energy representation

integrand. It does not affect the saddle point, and it cancels out
when moments are computed.

F. Classical Wigner dynamics

One way to gain insight into the tunneling time is by com-
paring the quantum results with an analogous approximate
theory based on classical trajectories which fully accounts
for momentum filtering. For this purpose we use a classical
Wigner dynamics formulation [39–44]. The classical Wigner
approximation for the TFT was computed in both the density
and flux cases and compared to the numerically exact quantum
equivalents.

The Wigner function formalism is a phase-space-based
representation of quantum mechanics that permits the exis-
tence of classical-mechanics-like quantities such as proba-
bility distributions (more formally “quasidistributions”) over
position and momentum. The Wigner function for the density
is defined as the Weyl transformation of the density operator
ρ̂ (divided by 2π h̄), and the Wigner function for the flux
operator is defined in an equivalent way. In both cases, in this
work they were then time evolved using classical mechanical
free-particle time propagation, and integrated over all k to
obtain functions that are analogous to �(q, t ).

For a free particle, the position-space Wigner representa-
tion of the density of a Gaussian wave packet �(q, t ) is given
by

w�,ρ (q, t ) = 1

π h̄

∫ ∞

−∞
dk exp

[
−�

(
q − x − h̄k

M
t

)2

− 1

h̄2�
(h̄k − h̄kinit )

2

]
, (41)

where x and kinit are the initial position and wave-number
peaks, respectively. The Wigner representation of the flux is
the same as for the density, except with the integrand multi-
plied by an extra h̄k

M factor.
In the classical Wigner approximation, one assumes clas-

sical time evolution. For the square barrier, this implies
free-particle motion, as in Eq. (41), except for in the barrier
region. We assume, as in [27], that a trajectory hitting the
barrier with momentum h̄k is reflected from it with probability
|R(k)|2 and transmitted instantaneously to the right edge of
the barrier with probability |T (k)|2. This implies that the time
distributions measured at the screen locations y and −y are
obtained by multiplying the integrand in Eq. (41) by |T (k)|2
and |R(k)|2, respectively. The instantaneous barrier traversal
time is accounted for by subtracting the barrier width 2a
from the path traversed by the transmitted particle, thereby
assuming the time spent inside the barrier is zero. Taking the
difference between the flight time calculated using quantum
and Wigner dynamics defined in this way will enable us to
understand how momentum filtering affects the flight time.

This classical Wigner dynamics approximation accounts
for momentum filtering since the transmitted and reflected
time distributions at the respective screen locations y and −y
are weighted by the transmission and reflection probabilities.
We do note that with this procedure we implicitly assume that
the momentum is filtered throughout the trajectory, i.e., before
and after the barrier.
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FIG. 1. Quantum mechanical time density and flux distributions. The initial position x = −500, the initial momentum px = 0.9, the width
parameter � = 0.000 09, y = 1000, a = 5, V ‡ = 1.5. The reflected flux is multiplied by −1 for the sake of comparison to the other distributions.
Note the logarithmic scale used for the distributions.

The normalized density and flux distributions are then ob-
tained as in Eqs. (4) and (6), respectively. The time moments
were then obtained as in Eqs. (7) and (8).

III. RESULTS

The results for the reflected and tunneled wave pack-
ets were obtained following the propagation method set
out by Papadopoulos [33]. All of the results were obtained
by numerically integrating the appropriate quantities using
Mathematica version 12.1’s “double exponential” integration
method. Atomic units were used throughout. Convergence
testing revealed the numerical integration techniques used
were stable to 10 significant figures.

For comparisons between the numerically exact quantum
mechanical (QM) and approximate Wigner dynamics compu-
tations, a quantity � was defined as in Ref. [27] to quantify
the squared differences between them, such that for N com-
parisons between times measured quantum mechanically and
using Wigner dynamics (with each N representing a different
value of �),

� = 1

N

N∑
j=1

(tQM, j − tW, j )2

t2
QM, j

. (42)

Six time distributions were examined and compared for each
value of the width parameter �. In each case, we were in-
terested in the evolution of a wave packet that begins as a
Gaussian centered around the point x < 0 with momentum
centered around px, and with width parameter �. This wave
packet was then either propagated freely to a screen at the
point y, or it tunneled through a square barrier centered around
q = 0 before arriving at the screen at y, or it was reflected by
that barrier and measured at a screen at the point −y. In each
case, the density and flux distributions at the screen were com-
puted as a function of the time of flight. The distributions were
generated using either numerically exact quantum mechani-
cal or approximate Wigner dynamics. The six unnormalized
quantum mechanical distributions for a given value of � are
shown in Fig. 1. When a = 5, V ‡ = 1.5 and px = 0.9 as in
the distributions in the figure, the transmission probability is
4.4 × 10−13.

A. Tunneling flight time

When the six distributions are normalized as in Eqs. (4)
and (6), such that the reflected distributions are divided by
|R� |2, the transmitted distributions are divided by |T� |2, and
the free-particle distributions divided by 1, the reflected and
transmitted distributions are very close to each other. The
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(a) (b)

(c) (d)

FIG. 2. The differences between the reflected and transmitted mean time of flight for the density [upper panels: (a) �t (�) for the
numerically exact quantum density time distribution, (b) �t (�) for the classical Wigner density time distribution] and flux [lower panels:
(c) �t (�) for the numerically exact quantum flux time distribution, (d) �t (�) for the classical Wigner flux time distribution] time distributions
using numerically exact quantum dynamics (left panels) and classical Wigner dynamics (right panels). The non-� parameters used are as
in Fig. 1. In each plot, the points represent the results of the calculations, and the lines are lines of best fit through those points, the fitting
parameters of which are shown in Table I.

extent to which they are not identical depends on the Gaussian
spatial width parameter �, as shown in Fig. 2.

This figure illustrates the calculation of the tunneling flight
time (TFT), which is defined as the limit as � → 0 of the

TABLE I. Tunneling flight times for the density (tTFT,ρ) and flux (tTFT,J ) time distributions using numerically exact quantum propagation
and classical Wigner dynamics, and α(ρ,J ),(QM,W ), the slopes of the fits used to produce them. The errors from the QM-Wigner comparisons
for both the density and the flux �(ρ,J ) [as in Eq. (42)] are also shown. Results are presented for four different sets of representative physical
parameters.

Parameters tTFT,ρ,QM tTFT,ρ,W tTFT,J,QM tTFT,J,W αρ,QM αρ,W αJ,QM αJ,W �ρ �J

px = 0.9

a = 5 −1.3131 × 10−4 −1.3135 × 10−4 −6.9452 × 10−5 −6.9550 × 10−5 1.2487 × 104 1.2479 × 104 1.2485 × 104 1.2477 × 104 1.1418 × 10−3 1.1418 × 10−3

V ‡ = 1.5

px = 0.4

a = 5 −1.4819 ×10−3 −1.4807 ×10−3 1.6472 ×10−4 1.6458 ×10−4 4.4156 ×104 4.4122 ×104 4.4101 ×104 4.4068 ×104 1.5016 ×10−3 1.5015 ×10−3

V ‡ = 1.5

px = 0.9

a = 1 −2.7038 ×10−5 −2.7023 ×10−5 −4.8829 ×10−7 −4.9450 ×10−7 3.5594 ×103 3.5573 ×103 3.5585 ×103 3.5564 ×103 1.1580 ×10−3 1.1580 ×10−3

V ‡ = 1.5

px = 0.9

a = 5 −7.7904 ×10−5 −7.7827 ×10−5 −2.0478 ×10−5 −2.0567 ×10−5 1.0803 ×104 1.0797 ×104 1.0801 ×104 1.0795 ×104 1.1202 ×10−3 1.1204 ×10−3

V ‡ = 2.0
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difference in mean times between the reflected and transmit-
ted wave packets. The TFT is presented for both the density
and the flux. The calculation has been performed using exact
quantum and approximate Wigner dynamics computations.
As the figure shows, in all cases the difference between the re-
flected and transmitted particles’ mean times of flight linearly
tends to zero as the width parameter is reduced. The largest
mean time difference recorded on the graph is approximately
1, whereas the peak times of the reflected and transmitted
distributions at the screen occur at approximately 1600 time
units. Clearly, the reflected and transmitted distributions peak
at almost the exact same time when � is small. The TFT
itself was calculated by fitting the points to a straight line and
calculating its intercept.

The values of � used to calculate the TFT were chosen
such that the wave packet was as narrow in energy as possible
with a negligible probability of finding the particle to the
right of the barrier at t = 0. The initial distance of x = −500
distance units allowed for the computation of results for �

as low as 4 × 10−5. For � = 3 × 10−5, there was a nontrivial
probability, approximately 4 × 10−5, of the wave packet being
located to the right of the barrier at t = 0, which notably im-
pacted the results. This was not the case for the � = 4 × 10−5

results shown in Fig. 2, where the probability was approx-
imately 3 × 10−6. Over the range studied, increasing � by
1 × 10−5 decreased the probability of the wave packet being
located to the right of the barrier at t = 0 by a factor of
approximately 10.

The actual values of the four tunneling flight times, calcu-
lated from the results in Fig. 2 in both the quantum and Wigner
function cases and for both the density and the flux, are pre-
sented in Table I. The �t(ρ,J ),(QM,W )(�) values were fit to lines
with intercepts tTFT(ρ,J ),(QM,)W and slopes α(ρ,J ),(QM,W ). The
error � for the comparisons between quantum and Wigner
results for both the density and the flux are also provided.
The transmission probabilities for each of the four sets of pa-
rameters considered in Table I were 4.4 × 10−13, 1.9 × 10−15,
8.4 × 10−3, and 7.9 × 10−16, respectively.

The errors in the fits used to generate the tunneling flight
times tTFT,(ρ,J ),(QM,W ) are not shown in Table I, but are lower
than the values of �. For instance, for the first set of parame-
ters in the table, tTFT,ρ,QM was fitted to its value with a standard
error of 1.0403 × 10−5. Similar standard errors were obtained
for the other quantities and parameters. These standard errors
are slightly larger than the numerical errors found in conver-
gence testing. The standard error is small enough to make
the TFT significantly different from zero, though it is not
anticipated that this has any physical significance. Preliminary
testing with nonlinear fits have shown that the TFT can be
made to be smaller than the standard error when a cubic fit is
used, although again we do not expect this to have substantial
physical significance.

It is clear that once the effects of momentum filtering
are removed by narrowing the initial wave packet down, the
reflected and transmitted wave packets’ time-of-flight distri-
butions are identical, and the TFT is negligible in all four
cases. However much time the tunneled particle spends in the
barrier region, it is clear that, for this system, the reflected
particle can be interpreted as spending the same amount of
time in that region.

B. Classical Wigner dynamics mean transmission times

Comparing the slopes in Table I reveals that �t (�) is
similar for both the density and the flux operators for both
quantum and Wigner dynamics. The mean time of flight
for the transmitted particle can be compared directly in the
Wigner and quantum cases. Since it was presupposed that
the tunneling time was zero when producing results using the
Wigner dynamics approximations, the difference in mean time
of flight between these two distributions can be interpreted as
a measure of the tunneling time.

Table II and Figure 3 are key to understanding this section.
They both show the difference in mean time of flight as the
width � → 0. From these results it becomes clear that, under
the interpretation of the difference between the two different
means as a representation of the tunneling time, the tunneling
time is precisely given by the reflected phase time. This is
true regardless of the initial parameters, as long as the initial
momentum distribution is well below the barrier height and
the wave packet has a negligible amplitude to the right of the
barrier at t = 0. This result will be reinforced in the subse-
quent sections, which focus on the quantum dynamics, rather
than the Wigner dynamics.

C. Variances

Here, we demonstrate that, apart from momentum filtering,
the only change that tunneling through the square barrier
causes to the shape of the wave packet is in its absolute
amplitude. We do so by examining the variances of the energy
and time distributions of the transmitted and reflected wave
packets.

Figure 4 shows the energy and time variances for the
transmitted density distribution, along with their product, as
functions of �, �−1, and �2, respectively. The points were
calculated using the weak-value time averages as outlined in
Ref. [28] and as described in Sec. II and Appendix A. The
lines were produced by fitting data points generated using the
steepest-descent approximations outlined in Sec. II and Ap-
pendix B (with numerical methods used to solve the equation
generating k�

mp).
As predicted by the steepest-descent approximation,

Eqs. (38), (39), and (40), we find that the energy variance
tends linearly towards zero as � → 0, the time variance tends
linearly towards zero as �−1 → 0, and the product tends lin-
early towards h̄2

4 from above as �2 → 0 (recalling that h̄ = 1
in our units).

Along with the results for the transmitted density distri-
bution, equivalent results for the other distributions of Fig. 1
were also generated, and found to be similar, tending in the
same way to the same asymptotes. These results demonstrate
that the transmitted wave packet is still a minimum uncer-
tainty state, up to the small corrections introduced by the
momentum-filtering effects of the barrier. This shows that
the narrow-in-momentum, below-barrier wave packets con-
sidered here are not distorted by the tunneling process. In
view of this, wave-packet reshaping cannot be invoked as an
explanation of the MacColl-Hartman effect.
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TABLE II. Mean of the tunneling flight time distribution using QM (〈t〉ρ,QM) and Wigner dynamics (〈t〉ρ,W ), compared to the reflected
phase time 	R( px

h̄ ). Similar results were obtained for the flux distributions, with a relative error of 3.736 × 10−10 for the first set of parameters,
for instance. The last column on the right indicates the very high accuracy of the reflected phase time as the measure of the tunneling time.

Parameters 〈t〉ρ,W 〈t〉ρ,QM 	R( px
h̄ )

√
{〈t〉ρ,QM−[〈t〉ρ,W +	R ( px

h̄ )]}2

(〈t〉ρ,QM )2

px = 0.9, a = 5, V ‡ = 1.5 1655.556 1657.057 1.501634 2.299 × 10−10

px = 0.4, a = 5, V ‡ = 1.5 3725.000 3727.967 2.966954 2.293 × 10−10

px = 0.9, a = 1, V ‡ = 1.5 1664.444 1665.947 1.502891 6.963 × 10−11

px = 0.9, a = 5, V ‡ = 2.0 1655.556 1656.800 1.24421 3.501 × 10−10

D. Other measures

Thus far, we have appealed to comparisons to classical
Wigner dynamics to argue that the tunneling time is given by
the phase time. Here, we present other arguments in favor of
this assertion. The first of these arguments is based on compar-
isons to free particles with identical initial distributions. This
will be especially useful when analyzing recent experimental
results, as will be seen in the Discussion section.

As discussed above, one difficulty with comparisons to free
particles is that the mean of the free-particle time distribu-
tions diverges. It is therefore necessary to focus on the peak
of the free particle’s time distribution instead, for both the
density and the flux. It was anticipated that taking the � → 0
limit would also cause the peak of the tunneled particle’s
time-of-flight distribution tmax,(ρ,J ),T to coincide with its mean
〈t〉(ρ,J ),T , due to the number of momentum components being
minimized. Table III displays these quantities for � → 0, for
different sets of physical parameters, using numerically exact
quantum mechanical propagation.

The results in this table confirm that, for both the density
and the flux operators and a square barrier, the difference be-

tween the mean and peak locations becomes negligibly small
as � tends to zero. This suggests that the location of the peak
of the transmitted distribution is still a useful measure of the
time of flight, and allows for comparisons to the free-particle
distributions’ peaks.

With this in mind, Table IV displays comparisons between
the location of the peak of the transmitted particle’s time
distribution and the location of the peak of the free particle’s
time distribution for both the density and the flux in the limit
� → 0. Also displayed in this table is the transmitted phase
time 	T ( px

h̄ ), which coincides numerically with tmaxdiff,(ρ,J ), as
defined in Eq. (12). (The error parameters for the flux are not
shown, but are similar to the error parameters for the density.)

In other words, the transmitted particle, defined using ei-
ther the density or flux time distributions, arrives at the screen
earlier than the free particle, and the time difference between
the transmitted particle’s peak arriving and the free particle’s
peak arriving is given by 	T ( px

h̄ ). As Eq. (19) states, this is
equal to 	R( px

h̄ ) minus the free particle’s peak barrier traversal
time 2aM

px
, suggesting that 	R( px

h̄ ) represents the barrier traver-
sal time of the transmitted particle.

FIG. 3. The difference between the mean time of flight for the density of the tunneled particle propagated quantum mechanically 〈t〉ρ,T ,QM

and the mean time of flight for the classical Wigner-propagated density of the tunneled particle 〈t〉ρ,T ,W as a function of the initial momentum
px (dots), compared with the reflected phase time 	R, also as a function of px (line). The numerical parameters were a = 5, V ‡ = 1.5, and

� → 0. Inset: the relative error

√
[(〈t〉QM(px )−〈t〉W (px ))−	R (px )]2

(	R (px ))2 between the points and the curve as a function of px . The agreement between the

two very different computations indicates that the tunneling time is given by the reflected phase time.
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TABLE III. The location of the peak of the density distribution (tmax,ρ,T ) and flux distribution (tmax,J,T ) for a transmitted particle, the mean of
the distribution for the transmitted density (〈t〉ρ,T ) and the transmitted flux (〈t〉J,T ), and comparisons between these means and peak locations.
All quantities are shown in the limit � → 0. Results for four different sets of parameters are shown.

Parameters 〈t〉ρ,T tmax,ρ,T

√
(〈t〉ρ,T −tmax,ρ,T )2

(〈t〉ρ,T )2 〈t〉J,T tmax,J,T

√
(〈t〉J,T −tmax,J,T )2

(〈t〉J,T )2

px = 0.9
a = 5 1657.1 1657.1 5.3770×10−7 1657.1 1657.1 7.6642×10−8

V ‡ = 1.5
px = 0.4
a = 5 3728.0 3728.0 1.3796×10−6 3728.0 3728.0 1.2535×10−6

V ‡ = 1.5
px = 0.9
a = 1 1665.9 1665.9 4.9281×10−7 1665.9 1665.9 5.3423×10−8

V ‡ = 1.5
px = 0.9
a = 5 1656.8 1656.8 2.7094×10−6 1656.8 1656.8 5.6736×10−8

V ‡ = 2.0

The quantity tmaxdiff also demonstrates that for the square
barrier studied here, the transmitted particle takes less time
to arrive at the screen than a free particle would, and that the
speedup is related to properties of the barrier as measured by
the phase time. This analysis is similar to the one performed in
a recent paper of ours which studied tunneling with the Dirac
equation [10].

Similarly, it can also be shown that 	T is related to the
difference between the peaks of the free wave packet and the
reflected one in the same way that the free and transmitted
wave packets are related. The only caveat is that the reflected
flux is negative, and thus its trough, not its peak, must be
compared to the peak of the free wave packet.

Table IV’s error parameter shows good agreement between
the time difference and the phase time, but it is not quite as
strong as in other results in this work, largely due to numerical
error in the precise location of the peak. We found that the
results and the errors were relatively unchanged even when
altering the comparison such that the filtered momentum was

used to calculate tmax,FP. This is in contrast to the figure shown
in the Discussion section, where introducing the free-particle
time with a filtered momentum has significant effects.

The difference in peak times is also clearly seen in Fig. 5.
When the distributions are all normalized to their respective
peak values, the shift is visible. In this particular instance,
with � = 9 × 10−5 as in Fig. 1, the difference between the
times of the peaks is approximately 10 time units. This can
be compared to Fig. 2, which shows that at � = 9 × 10−5, the
difference between the transmitted and reflected mean times
is approximately 1, which implies that momentum filtering is
not the main cause of the shift seen in Fig. 5. The unnormal-
ized peak values themselves are, of course, in actuality many
orders of magnitude different from each other due to the small
tunneling probability.

While the results of Table IV show that the flight time
of the tunneling particle is less than the free-particle time,
they do not directly answer the question of how much time
the particle spends under the barrier. The results presented in

TABLE IV. The location of the peak of the density distribution (tmax,ρ,FP) and flux distribution (tmax,J,FP) for a free particle, the same two
quantities for the transmitted distribution (tmax,ρ,T , tmax,J,T ), the transmitted particle’s phase time 	T ( px

h̄ ), and the differences between the
transmitted and free particles’ peak locations (tmaxdiff,(ρ,J )). All quantities are shown as � → 0. Results for four different sets of parameters are
shown.

Parameters tmax,ρ,FP tmax,ρ,T tmax,J,FP tmax,J,T 	T ( px
h̄ ) tmaxdiff,ρ tmaxdiff,J

√
[tmax,ρ,FP−	T ( px

h̄ )]2

[	T ( px
h̄ )]2

px = 0.9
a = 5 1666.7 1657.1 1666.7 1657.1 −9.6095 −9.6102 −9.6095 7.8725 × 10−5

V ‡ = 1.5
px = 0.4
a = 5 3750.0 3728.0 3749.9 3728.0 −22.033 −22.028 −21.956 2.4313 × 10−4

V ‡ = 1.5
px = 0.9
a = 1 1666.7 1665.9 1666.7 1665.9 −0.71933 −0.71848 −0.71941 1.1182 × 10−3

V ‡ = 1.5
px = 0.9
a = 5 1666.7 1656.8 1666.7 1656.8 −9.8669 −9.8713 −9.8670 4.4679 × 10−4

V ‡ = 2.0
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FIG. 4. The variances of the energy (σE )2 and time (σt )2 for a =
5, px = 0.9, V ‡ = 1.5 for the transmitted density, plotted as functions
of � and �−1, respectively, along with the product of the variances of
the two parameters (σE )2(σt )2 plotted as a function of �2. The points
represent the results of the full calculations, and the lines represent
fits done with the steepest-descent approximations. Insets: relative
error between the steepest-descent and fully quantum calculations
(defined in a similar manner to the inset in Fig. 3) for each of the
three plots (with the horizontal axes scaled by 105, 10−4, and 109,
respectively).

Table V do so more clearly. The quantity ttrav, as defined in
Eq. (13), effectively defines an “outside-the-barrier” traversal
time for the transmitted particle by means of a comparison
with a free particle, and then subtracts that from the peak time
of flight, under the assumption that the leftover represents an
“inside-the-barrier” traversal time.

TABLE V. The barrier traversal time of Eq. (13), ttrav, of the
transmitted wave packet for different values of the barrier width a
(with V ‡ = 1.5 and px = 0.9), contrasted with the naive classical
free-particle traversal time 2aM

px
and with the two phase times. The

quantity tmax,ρ,T is given in the limit � → 0. ttrav is qualitatively
similar for tmax,J,T , tmax,ρ,R, and tmax,J,R.

2a tmax,ρ,T (a) 2aM
px

	T (a) 	R(a) ttrav(a)

0.2 1667.043 0.2222222 0.3765323 0.5987546 0.5985556
2.0 1665.947 2.222222 −0.7193311 1.502891 1.502556
6.0 1661.502 6.666667 −5.165028 1.501639 1.502000
10.0 1657.056 11.11111 −9.609472 1.501639 1.500444

In this table, the peak of the density distribution as a func-
tion of flight time for the tunneled particle tmax,ρ,T is given
for four different values of the barrier width a (keeping the
barrier height V ‡ and incident mean momentum px constant
at the values they had in Fig. 1, and taking the limit � → 0),
and compared to the naive barrier traversal time, the two phase
times, and ttrav. Results were also obtained for the flux, but are
not displayed as they are almost identical to the results for the
density, as demonstrated also in other tables.

Three facts can be clearly discerned from the results pre-
sented in Table V. The first is that for the square barrier, ttrav

is independent of the barrier width a, when a is sufficiently
large. The second is that the tunneling time ttrav is almost
precisely equal to the reflected phase time 	R, reinforcing the
conclusion reached using comparisons to Wigner dynamics.
The third is that the constancy of the tunneling time sets in at
a length at which the transmitted phase time delay becomes
negative. This relationship makes sense when considering
Eq. (19) since for the square barrier, 	T is the same as 	R

minus the naive free-particle barrier traversal time.
To further emphasize the fact that the barrier flight time

converges to the reflected phase time, Fig. 6 presents ttrav

before the � → 0 limit is imposed, as a function of �. This
barrier traversal time is calculated from both the transmitted
and reflected flight times, which both converge to the same
quantity 	R for � → 0, and which overlap on this plot.

The classical Wigner approximations of these numbers
were also computed, as seen in Fig. 3 and Table II. Since
the results obtained using the classical Wigner approximations
presuppose that the tunneling time was zero, the Wigner func-
tion equivalent of tmax,ρ,T also deviated from the QM version
by almost exactly the phase time 	R(a).

While the comparisons to the reflected classical Wigner
approximation and to free particles are useful, it would still be
desirable to have a measure of the tunneling time that did not
rely on comparisons based on classical mechanics, and only
used the quantum properties of the transmitted particle itself.
As previously mentioned, the mean time for the free-particle
wave packet diverges, so it cannot be used as a reference for
the mean time.

Therefore, instead of comparing the mean transmission
time with a classical Wigner time or comparing peak times
with the free particle, one may compare mean transmission
times for the same initial wave packet traversing through
barriers with the same widths, but different heights. If our

012225-12



DETERMINATION OF THE TUNNELING FLIGHT TIME … PHYSICAL REVIEW A 103, 012225 (2021)

FIG. 5. Free and transmitted particle density and flux distributions, normalized to their respective peak values. The tunneled particle clearly
peaks earlier. All parameters are as in Fig. 1.

FIG. 6. The barrier tunneling time from Eq. (13) calculated using the mean transmitted (closed circular points and closest line) and reflected
(closed square points and closest line) flight times [ttrav,T (�) and ttrav,R(�)] as functions of � compared to the transmitted and reflected phase
times 	T and 	R for px = 0.9, V ‡ = 1.5, a = 3, x = −500, y = 1000. The quantity 	R is subtracted from ttrav,R(�) to distinguish it from
ttrav,T (�), which it would otherwise overlap with, and 	T is divided by five to make the slopes of the fitted lines clearer.

012225-13



RIVLIN, POLLAK, AND DUMONT PHYSICAL REVIEW A 103, 012225 (2021)

FIG. 7. Mean time of flight for the density of the transmitted particle 〈t〉ρ,T , subtracted from its value at barrier height V ‡ = 0.5, all as
a function of barrier height (dots), compared with the transmitted phase time 	T , also as a function of V ‡ and subtracted from its value

at V ‡ = 0.5 (line). The numerical parameters were a = 5, px = 0.4, and � → 0. Inset: the relative error

√
{[〈t〉(0.5)−〈t〉(V ‡ )]−[	T (0.5)−	T (V ‡ )]}2

[	T (0.5)−	T (V ‡ )]2

between the points and the curve as a function of the barrier height V ‡.

conclusion that the mean tunneling time is given by the re-
flected phase time is correct, we should expect that, in the
narrow-in-momentum limit, the difference between the flight
times for two different barrier heights should be given by
the difference between the reflected phase times for the two
barrier heights.

To evaluate this, the � → 0 mean tunneling time for the
density 〈t〉ρ,T was considered for different values of the bar-
rier height V ‡ (once again, flux results were computed but
not displayed as they were almost identical to the density
results). The lowest value of V ‡, V ‡ = 0.5, was chosen as a
reference value (for no value of V ‡ in this analysis did the
initial momentum distribution have significant above-barrier
components). 〈t〉ρ,T was evaluated at this value, and then
〈t〉ρ,T (V ‡) was subtracted from this quantity for all values of
V ‡ considered. The same principle was then applied to the
phase time 	T , and the results were compared. These results
are shown in Fig. 7. Once again, the tunneling time is shown
to be directly related to the phase time. As the barrier height
increases, the mean time of flight and the phase time decrease
in tandem. We anticipate that this last result should also be
valid for other types of barrier.

The results shown for 	T in Fig. 7 apply equally well
to 	R since Eq. (19) shows that the difference between the
reflected and transmitted phase times does not depend on
V ‡, and thus 	T (V ‡) − 	T (V ‡′

) is the same as its reflected
counterpart.

IV. DISCUSSION

A. Special relativity

The MacColl-Hartman effect presents clear, problematic
implications for special relativity: if a long barrier can be tra-
versed in negligible time, then it is trivially simple to construct
a way for a quantum object to travel “superluminally.” Since

the barrier traversal time ttrav is constant, as the barrier width
2a increases, ttrav becomes a smaller fraction of the naive
free-particle time, meaning that for sufficiently large a it is
negligible, and thus the wave packet can traverse the barrier
with arbitrary “speed.”

This fact has led to controversies at the borders of quantum
mechanics and special relativity over the physical implica-
tions of observations made on tunneled systems [5,25,45–
48]. These controversies persist due to disagreements over
the definitions of quantities like the “traversal time.” Due
to the quantum mechanical nature of the objects and pro-
cesses involved, there are grounds for disagreement over the
definitions that correspond most closely to sensible observ-
ables [1,5,15,16,25,49].

Our results demonstrate that there is a causal connection
between the wave packet that enters the barrier and the one
that exits it, as the two are shown to have the same shape
(mainly the amplitude is changed). This is an important in-
sight in the context of claims [5,25,26,46] that the tunneling
time metrics are somehow flawed due to the tunneled object
being a different entity. We showed that the variances of the
reflected and transmitted wave packets are almost identical,
a clear sign that the transmitted wave packet has a causal
connection to the initial one.

A deeper discussion of all of the disagreements, along
with a discussion of the implications of tunneling times in a
relativistic framework, are presented in a separate paper [10].
That paper also shows that qualitatively similar results can
be obtained when using the Dirac equation, which, with few
exceptions [9,50,51], has not been explored thoroughly for
this problem.

B. Square barriers

The results presented in this work show that, for the given
definitions and assumptions used to construct a “tunneling
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FIG. 8. The mean transmitted time 〈t〉ρ,T minus the momentum-filtered free-particle time tFP,T (closed circular points and closest line), the
equivalent points for the reflected component (closed square points and closest line), and the transmitted phase time for a Gaussian barrier 	T

are all plotted as functions of the incident wave-packet width parameter � in inverse-square Bohr radii (a−2
0 ). The lines of best fit are produced

using the first five points of each data set, assuming the intercept equals the phase time. The open circular and open triangular points with error
bars are the experimentally reported transmitted and reflected times, respectively, at the experimental � and the same mean incident energy.

time,” the time spent under the square barrier is small but
finite, and becomes independent of barrier length. Specifi-
cally, the time spent under the barrier is equal to 	R, which
is independent of the barrier length for sufficiently long
barriers.

This work also shows that the reflected wave packet has
the same time distribution as the transmitted wave packet,
which suggests that it also “spends some time under the
barrier” before being reflected. It was also shown that the
flux time distributions are very similar to the density time
distributions (apart from the negativity of the reflected flux).
From a theoretical perspective, this can be verified using the
steepest-descent approximation. The results based on the flux
time distributions may be able to motivate experimental works
in the future.

It is important to note that the results produced here
only demonstrate the MacColl-Hartman effect so vividly be-
cause the initial wave packet is carefully constructed to avoid
above-barrier transmission and pretransmission. In essence,
we verify the MacColl-Hartman effect only for the case
of a square barrier, and only for a very small portion of
the possible phase space for the preparation of the incident
particle.

The square barrier greatly simplifies the task of relating
quantum objects to classical counterparts since the dynamics
can be understood in terms of prebarrier, under-barrier, and
postbarrier components with relative ease. Analysis of other
barriers encounters problems assigning those labels since the
potential affects the motion in the classically allowed region.
In our results, numerical testing showed that any above-barrier
transmission or significant pretransmission notably altered the
final results, in many cases drowning out the relationship with
the phase time. The choice of the incident wave packet can
significantly affect the results and mask the tunneling.

C. Experimental results

The impact of the choice of incident wave packet on the
transmission dynamics is further emphasized by comparing
to recent experimental work by Spierings and Steinberg [16]
(expanding on results presented by the same group in Ramos
et al. [15]) which used the Larmor clock measure [46] of
tunneling time. For a symmetric barrier, this is closely related
to the phase time [52,53], and should lend itself to direct
comparisons in that way.

Figure 8 is similar in construction to Fig. 6 but with
important differences. Figure 8 shows the mean transmit-
ted and reflected times for the density of a Gaussian wave
packet incident on a Gaussian barrier (calculated with the
code wavepacket [54]), using the parameters and one of
the below-barrier energies (px = 0.000 286 56 atomic units)
quoted in [16]. We set xi to be −429 912, and y to 859 826
atomic units. As with Fig. 6, here we subtract from the mean
transmitted and reflected times the free-particle time of flight.
Crucially, however, unlike with Fig. 6, there is no need to
subtract the extra 2aM

px
term from the free-particle flight time

since the reflected and transmitted phase times for the Gaus-
sian barrier are identical. The free-particle time of flight is
adjusted to use the filtered average momentum, rather than
the initial momentum, which we calculate with a variant on
Eq. (B8). The filtered free-particle momentum was used to
eliminate the trivial speedup of the transmitted particle, which
becomes larger as the “screen” is moved further away from
the barrier.

The plot also shows the phase time at the incident mean
energy, calculated using methods derived from [55] (for a
symmetric Gaussian barrier, the transmitted and reflected
phase times are equal). This method also allows us to calcu-
late the transmission and reflection probabilities |T (k)|2 and
|R(k)|2 for a Gaussian barrier.
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The experiment only used one value of �, but we varied
it to produce the figure, with the experimental �, 6.7965 ×
10−10 atomic units, being the largest one shown in the plot.
At this value of � we also plot the two experimental tunneling
times: the upper one is the transmitted point, and the lower
one is the reflected point.

The plot also shows lines of best fit made using the lowest
five points, which we assumed to be in the linear regime as
with previous plots in this paper. The y intercepts of the lines
were assumed to be the phase time, and the resulting residuals
between the data points and the lines were calculated ac-
cordingly. Within the numerical accuracy of the wave-packet
propagation method we used, we found that at the � = 0 limit
the transmitted and reflected time differences coincided with
the phase time.

Inspection of the results presented in Fig. 8 is instructive
when considering the experimental results. Most evident is the
asymmetry between the transmitted and the reflected times.
The plot shows that only in the � → 0 limit are the two
identical.

In contrast to the claim in [16], this asymmetry does not
necessarily reflect an asymmetry in the barrier. It may be
due only to the finite spatial width of the incident particle.
The transmitted particle “feels” the barrier top more than the
reflected particle due to momentum filtering, and so is slowed
down more. Hence, a second aspect of these results is the
observation that the transmitted time in particular does not
accurately reflect the phase time, due to the finite width of
the wave packet.

Finally, at best the experiment may reveal a transmission
time, but not the “tunneling time” per se, since the experi-
mental Larmor time is affected by the motion in the classically
allowed region, whose extent depends on the spatial width of
the incident wave packet.

V. CONCLUSIONS

We showed that for a Gaussian wave packet transmitted
through a one-dimensional square barrier with purely below-
barrier transmission and negligible pretransmission, the time
spent under the barrier is small but finite, and we identify this
time with the reflected phase time.

Generally, for one-dimensional, smooth, symmetric barri-
ers, the reflected and transmitted phase times are identical, but
this is not the case for a square barrier. To make a general
statement, we note that the tunneling flight time is given
by the reflected phase time and this, then, includes all one-
dimensional symmetric smooth barriers.

We found that the reflected and transmitted wave packets
have the same time-of-flight distributions at their respective
screens, with both the means and variances being essentially
the same. This demonstrates unequivocally that the incident
wave packet is not distorted by the tunneling, meaning that
wave-packet distortion is not a “good” explanation for the
Hartman effect.

Extensive use was made of the � → 0 limit, which re-
moved the complications of momentum filtering from the
analysis and allowed the transmitted wave packet to be
compared to that of a free particle. Using purely quantum
mechanical arguments, along with arguments appealing to

classical Wigner dynamics, and comparisons to free particles,
we presented numerous metrics one can use to measure time
spent under the barrier. In all cases, we showed that these
metrics indicate that the time spent under the barrier is given
by the reflected phase time, and in doing so we provide a
theoretical verification of the MacColl-Hartman effect for the
system studied.

Although in the monochromatic limit of � → 0 the
reflected and transmitted times are identical for smooth, sym-
metric barriers, this symmetry is destroyed when the width
parameter � is finite. The implications of the present results
on experimentally measured Larmor clock-based transmis-
sion times were considered. Experimentally, we conclude
that there remains a way to go before obtaining a definitive
determination of the “tunneling time.” The experimental co-
nundrum may still be with us for many years.
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APPENDIX A: WEAK-VALUE FLUX
UNCERTAINTY RELATION

In this Appendix we outline the derivation of the weak-
value energy-time uncertainty relation when averaging over
the flux time distribution rather than the density distribution,
which was used in Ref. [28]. For the density distribution, the
weak-value-based definitions of the mean n = 1 and second
moment n = 2 of the time distribution are given as

〈t n(x)〉 =
∫ ∞

0
dt tnP(x, t ), (A1)

where P(x, t ) is given by

P(x, t ) = | 〈x|�〉 |2∫ ∞
0 dt | 〈x|�〉 |2 (A2)

[the denominator is defined to be N (x)].
This is a specific case of the general definition of the time-

averaged weak values of operators, given by

〈O(x)〉 =
∫ ∞

0
dt P(x, t )Ow(x, t ), (A3)

and the time average of products of weak values of operators

〈O1(x)O2(x)〉 =
∫ ∞

0
dt P(x, t )O1w(x, t )O2w(x, t ), (A4)

where the weak value of the operator O is defined as

Ow(x, t ) = 〈x|O|�t 〉
〈x|�t 〉 . (A5)

In [28] it was shown that, for time moments as defined
above, and energy moments based on the Hamiltonian Ĥ , as
outlined in Eqs. (23)–(25), the time-energy uncertainty prin-
ciple was satisfied. In particular, for the standard uncertainty
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principle inequality [56]

0 � 1

N (x)

∫ ∞

0
dt P(x, t )[t − iλHw(x, t )][t + iλH∗

w(x, t )],

(A6)
it was shown that the wave packet satisfied the inequality

〈t2〉 〈H∗H〉 � h̄2

4
. (A7)

That analysis gave all the operator moments with respect to
the density of the wave packet at the point x. If one wishes
instead to use the flux, the quantity P(x, t ) is replaced with

PJ (x, t ) = J (x, t )∫ ∞
0 dt J (x, t )

(A8)

for the definition of J (x, t ) given in Eq. (5) [where the denom-
inator is denoted as NJ (x)], and all the definitions that flow
from it must be updated to flux-based versions such as Ow,J

and 〈O(x)〉J .
It remains to be shown that the equivalent of the uncertainty

principle inequality in Eq. (A7) with P(x, t ) → PJ (x, t ) and
Hw → Hw,J is still satisfied. This can be done, as long as it
is assumed that ∂ pw

∂t , the time derivative of the weak-value
version of the momentum operator, is zero. This is equivalent
to assuming the potential does not vary in space. Since the
flux must be measured far away from the interaction region in
order to be useful as a POVM, this assumption is valid.

APPENDIX B: STEEPEST-DESCENT APPROXIMATION

The steepest-descent approximation, applied to the k inte-
gral which determines ψ (q, t ), together with a second-order
Taylor expansion about the most probable tunneling time,
determines a Gaussian (in time) approximation for ψ (q, t )
at the screen (q = ±y). This calculation is carried out in
Ref. [10], in the relativistic setting, using the Dirac equation.
The corresponding derivation, in the nonrelativistic limit, is
provided here.

We begin with the expression for the time-evolving wave
packet beyond the barrier in the energy representation, written
here as an integral over k:

ψ (q, t ) = C
∫ ∞

−∞
dk exp

(
− (k − kinit )2

2�

)

× T (k) exp

(
ik(q − x) − ih̄k2t

2m

)

= C
∫ ∞

−∞
dk exp[iF (k, t )], (B1)

where for q = y,

F (k, t ) = k(y − x) − h̄k2t

2m

+ϕT + i

(
(k − kinit )2

2�
− ln[|T (k)|]

)
(B2)

and C is the initial wave-packet normalization factor. An
equivalent expression can be obtained for the reflected wave
packet by replacing T (k) and ϕT with R(k) and ϕR, and replac-
ing y with −y. Similarly, an expression for a free particle can

be obtained by simply removing the terms containing T (k)
and ϕT from the expression for F (k, t ).

Setting ∂F/∂k = 0, determines the saddle-point wave
number k�. Specifically, k� is the solution to the nonlinear
equation

y − x − h̄kt

m
+ dϕT

dk
+ i

(
k − kinit

�
− d ln [|T (k)|]

dk

)
= 0.

(B3)
In the steepest-descent approximation, the wave packet takes
the form

ψsd(y, t ) = C(2π )1/2

(
d2F �

dk2

)−1/2

exp[iF (k�, t )]. (B4)

The most probable time tmp is the time for which ImF (k�, t ) is
maximal. This time is determined by setting d ImF (k�, t )/dt
to zero, to get

dk�

dt

(
∂ ImF (k, t )

∂k

)�

+ ∂ ImF (k�, t )

∂t
= 0,

∂ ImF (k�, t )

∂t
= 0. (B5)

The first term in the first line of Eq. (B5) is zero, as this is the
defining equation of k�. Equation (B5) leads to Imk� = 0, i.e.,
k� is real at the most probable time. This simplifies (B3), as the
real and imaginary parts of this equation are easily separated
when k� is real.

From the real part, we find

y − x = h̄k�
mptmp

m
−

(
dϕT

dk

)�

mp

(B6)

(where the � superscript and mp subscripts represent eval-
uating the derivative at k = k�

mp) which determines tmp.
Specifically,

tmp =
[

y − x +
(

dϕT

dk

)�

mp

]
m

h̄k�
mp

. (B7)

In the free-particle case, the phase derivative term is no longer
present. As expected, the phase leads to a shift in the most
probable time.

From the imaginary part, we find

k�
mp − kinit

�
+

(
d ln |T |

dk

)�

mp

= 0

or

k�
mp = kinit − �

(
d ln |T |

dk

)�

mp

, (B8)

which is a real nonlinear equation determining k�
mp. This equa-

tion shows the momentum-filtering effect. The wave number
is shifted to a higher value since ln |T | decreases with increas-
ing k, and the shift is proportional to �. This simplifies to
k�

mp = kinit in the free-particle case.
Expanding F (k�, t ) to second order about the most proba-

ble tunneling time gives a wave-packet approximation with a
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Gaussian time dependence:

F (k�, t ) = F
(
k�

mp, tmp
) + ∂F

(
k�

mp, tmp
)

∂t
(t − tmp)

+ 1

2

∂2F
(
k�

mp, tmp
)

∂k2

(
k� − k�

mp

)2

+ ∂2F
(
k�

mp, tmp
)

∂k∂t

(
k� − k�

mp

)
(t − tmp). (B9)

The above equation accounts for the saddle-point condi-
tion (B3) and the linear explicit time dependence of F , the
second partial with respect to time is zero. The equation is
further simplified by differentiating Eq. (B3) with respect to
time to get

− h̄k�

m
+ dk�

dt

[
− h̄t

m
+ d2ϕT

dk2
+ i

(
1

�
− d2 ln |T |

dk2

)]
= 0

(B10)
or

dk�

dt
= v�[− h̄t

m + d2ϕT

dk2 + i
(

1
�

− d2 ln |T |
dk2

)] , (B11)

where v� = h̄k�/m. The (k� − k�
mp) factors in the last two

terms in Eq. (B9) are eliminated in favor of (t − tmp) factors
via (

k� − k�
mp

) = dk�

dt
(t − tmp) (B12)

and Eq. (B11).
Since

∂F (k, t )

∂t
= − h̄k2

2m
, (B13)

∂2F (k, t )

∂k∂t
= − h̄k

m
, (B14)

and
∂2F (k, t )

∂k2
= − h̄t

m
+ d2ϕT

dk2
+ i

(
1

�
− d2 ln |T |

dk2

)
,

we have

F
(
k�, t

) = F
(
k�

mp, tmp
) − h̄k�2

mp

2m
(t − tmp)

− 1

2

v
�2
mp

− h̄t
m + ( d2ϕT

dk2

)�

mp + i
[

1
�

− ( d2 ln |T |
dk2

)�

mp

]
× (t − tmp)2. (B15)

This leads to the following approximate wave packet:

ψsd(y, t ) = |Tψ,sd|π−1/4(Reη)−1/2

× exp

(
−i

h̄k�2
mp

2m
(t − tmp) − η

2
(t − tmp)2

)
,(B16)

where |Tψ,sd| is the equivalent of |Tψ | for the steepest-descent
calculation, and

η = v
�2
mp

1
�

− ( d2 ln |T |
dk2

)�

mp − i
[( d2ϕT

dk2

)�

mp − h̄tmp

m

] (B17)

determines the width of the Gaussian: Reη−1/2.

The weak-value energy density-weighted moments are
readily found using the steepest-descent approximate wave
packet:

〈E〉ρ,T = |Tψ,sd|−1ih̄
∫ ∞

0
dt ψ∗(a, t )

∂

∂t
ψ (a, t )

= π−1/2(Reη)1/2
∫ ∞

0
dt

[
E �

mp − ih̄η(t − tmp)
]

× exp[−Reη(t − tmp)2]

∼= E �
mp (B18)

and

〈E2〉ρ,T = |Tψ,sd|−1h̄2
∫ ∞

0
dt

∂

∂t
ψ∗(a, t )

∂

∂t
ψ (a, t )

= π−1/2(Reη)1/2
∫ ∞

0
dt

∣∣E �
mp − ih̄η(t − tmp)

∣∣2

× exp[−Reη(t − tmp)2]

∼= π−1/2
∫ ∞

−∞
dt

{
E �2

mp + h̄2[Reη+ (Imη)2(Reη)−1]t2
}

× exp(−t2)

= E �2
mp + 1

2
h̄2[Reη + (Imη)2(Reη)−1]. (B19)

The variance of the weak-value energy has the form

σ 2
E ,ρ,T = 1

2 h̄2[Reη + (Imη)2(Reη)−1]. (B20)

Since

σ 2
t,ρ,T = 1

2 (Reη)−1, (B21)

we find

σ 2
E ,ρ,T σ 2

t,ρ,T = 1

4
h̄2

[
1 +

(
Imη

Reη

)2]
. (B22)

The real and imaginary parts of η can be written as

Reη = v�2
mp

1
�

− ( d2 ln |T |
dk2

)�

mp[
1
�

− ( d2 ln |T |
dk2

)�

mp

]2 + [( d2ϕT

dk2

)�

mp − h̄tmp

m

]2 (B23)

and

Imη = v�2
mp

( d2ϕT

dk2

)�

mp − h̄tmp

m[
1
�

− ( d2 ln |T |
dk2

)�

mp

]2 + [( d2ϕT

dk2

)�

mp − h̄tmp

m

]2 . (B24)

Thus, for small �, they have the following leading terms:

Reη ∼ �v�2
mp (B25)

and

Imη ∼ �2v�2
mp

[(
d2ϕT

dk2

)�

mp

− h̄tmp

m

]
. (B26)

Therefore, for small �,

σ 2
E ,ρ,T ∼ 1

2 h̄2�v�2
mp, (B27)

σ 2
t,ρ,T ∼ 1

2�−1v�−2
mp , (B28)
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and

σ 2
E ,ρ,T σ 2

t,ρ,T ∼ 1

4
h̄2

{
1 + �2

[(
d2ϕT

dk2

)�

mp

− h̄tmp

m

]2}
.

(B29)
These three expressions simplify in the free-particle case since
v�

mp = h̄
m kinit , and the derivative term in the final expression

vanishes.

The flux-weighted moments are related to the density-
weighted moments in a simple way in the steepest-descent
model. Specifically,

J (q, t ) = h̄k�
mp

m
ρ(q, t ). (B30)

The extra velocity factor cancels when the moments are cal-
culated as above, and the final result still applies.
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