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Bloch-like superoscillations and unidirectional motion of phase-driven quantum walkers
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We study the dynamics of a quantum walker simultaneously subjected to time-independent and -dependent
phases. Such dynamics emulates a charged quantum particle in a lattice subjected to a superposition of
static and harmonic electric fields. With proper settings, we investigate the possibility to induce Bloch-like
superoscillations, resulting from a close tuning of the frequency of the harmonic phase ω and that associated
with the regular Bloch-like oscillations ωB. By exploring the frequency spectra of the wave-packet centroid, we
are able to distinguish the regimes on which regular and super-Bloch oscillations are predominant. Furthermore,
we show that under exact resonant conditions ω = ωB unidirectional motion is established with the wave-packet
average velocity being a function of the quantum coin operator parameter, the relative strengths of the static and
harmonic terms, as well as the own phase of the harmonic field. We show that the average drift velocity can be
well described within a continuous-time analogous model.
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I. INTRODUCTION

The classical random walk and its stochastic movement
of particles form a well-known concept in physics, whose
application extends to a wide variety of systems such as be-
havioral macroeconomics [1], image segmentation [2], animal
dynamics [3,4], computer science [5], evolutionary ecology
[6,7], and thermal conductivity of nanofluids [8,9]. Within
the quantum context, discrete-time quantum walks (DTQWs)
have received outstanding attention in recent years. In gen-
eral lines, its dynamics concerns a quantum walker whose
movement through the lattice is closely related to its internal
state, which changes step by step [10]. Coherent superposition
and quantum interference make DTQWs usually faster than
their classical counterpart and, therefore, an interesting and
versatile tool for the realization of quantum algorithms and
quantum simulations [10–12].

Due to its promising character, DTQWs have been ex-
plored in different environments, such as linear optics
[13–15], electrodynamics cavities [16], Bose-Einstein con-
densates [17,18], and integrated photonic waveguides [19,20].
Furthermore, studies in DTQWs have examined different in-
gredients such as disorder [15,20–22], nonlinearity [23,24],
particle-particle interaction [25,26], and non-Hermiticity
[27,28]. Here, we will focus on quantum walks whose addi-
tion of specific phases emulates the action of electric fields
[29–32]. Considering a phase which depends linearly on po-
sition, Cedzich et al. described the long-time propagation
properties of a quantum walker as very sensitive to the emu-
lated electric field. Ballistic and localized quantum walks have
been reported by employing rational and irrational phases,
respectively [29]. An experimental realization of discrete-time
quantum walks which simulate the effect of an electric field on
a charged particle has been reported in Ref. [30]. Using single
Cs atoms in spin-dependent optical lattices and measures by

fluorescence imaging, it has been shown that a quantum par-
ticle can exhibit features closely related to Bloch oscillations.
By studying the phenomenology for a two-dimensional (2D)
system, Bru et al. reported that the particle dynamics is easily
affected by orientation of the field [31]. The analysis of con-
ical intersections in the dispersion relations suggests suitable
directions of the field for a perfect 2D trapping to occur.

A description analogous to Bloch oscillations has also
been described by considering time-dependent phases on both
single- and split-step DTQW protocols [32]. The refocusing
behavior has been described as resulting from the interplay
between dynamical and geometric phases, as well as nona-
diabatic transitions. Other studies exploring DTQWs with
time-dependent phases have described dynamical localization
and quasiperiodic dynamics [33–37].

Previous results showed how time-independent or -
dependent phases have been employed on DTQWs to obtain
dynamical localization and/or Bloch oscillations. Here, our
goal is to address to the following question: How DTQWs
behave with the simultaneous presence of both ingredients?
Such a system corresponds to a quantum walker subject to
the concomitant action of two artificial electric fields. The
constant field is emulated by a phase with a linear depen-
dence on position, while the time-dependent field comes from
a phase which has a harmonic modulation. We show dif-
ferent quantum-walk dynamics owing to the tuning of the
electric field characteristics. We observe the development
of Bloch-like superoscillations, an oscillatory dynamics ex-
hibiting characteristic frequencies which can be adjusted by
controlling the artificial electric fields. The crossover from
regular to super-Bloch oscillations is established. Further-
more, we demonstrate that, under resonant conditions, the
walker can develop a unidirectional drift to a preferential side
of the lattice. Both drift velocity and direction of movement
are explicitly shown to depend on the electric fields settings
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and the specific coin operator. Its overall behavior is shown to
be well described by an analogous continuous-time approach.

II. MODEL

The problem consists of a quantum walker moving in a
one-dimensional discrete chain with N sites under the influ-
ence of superposed artificial dc and ac electric fields. Such a
walker consists of a qubit (two-state quantum system) with
the internal degree of freedom (e.g., spin [10] or polarization
[15]). Its full Hilbert space is composed of two subspaces:
H = HP ⊗ HC . HP denotes the position space spanned by a
set orthonormal vectors {|n〉P: n ∈ N∗}. HC is defined by a
two-dimensional coin space spanned by orthogonal vectors
|↑〉C = [1, 0]T , |↓〉C = [0, 1]T , associated with the internal
degree of freedom of the particle which determines the direc-
tion of the walk motion.

In general, the evolution step of a discrete-time quantum
walk consists in two operations: We start by applying the uni-
tary operator quantum gate (well known as a quantum coin)
Ĉ in the initial state of particle, followed by the conditional
shift operator Ŝ. Thereby, the state |�0〉 of the particle after t
steps can be described by |ψt 〉 = Ŵ0 · · ·Ŵ0|�0〉 = ∏

Ŵ0|�0〉.
Here, Ŵ0 := Ŝ · (Ĉ ⊗ IP ) describes the evolution operator of
the walk, with IP representing the identity matrix over the
subspace of the positions. The conditional shift operator Ŝ has
the form

Ŝ = |↑〉〈↑| ⊗ Ŝ+ + |↓〉〈↓| ⊗ Ŝ−, (1)

with the operators Ŝ± = ∑N
x=1 |n ± 1〉〈n|. The quantum gate

Ĉ is an arbitrary SU(2) unitary operator given by

Ĉ =
(

cos θ sin θ

sin θ − cos θ

)
, (2)

where θ is an adjustable parameter which controls the vari-
ance of the probability distribution.

In order to simulate the electric field, we define an extra
unitary operator [30]

F̂E =
∑

n

exp(iGn̂)|n〉〈n| ⊗ IC . (3)

G is a function that represents the phase imprinted by the
effective electric field that can be expressed in fractions of
2π/m, with m ∈ R. This operator only acts in the subspace
of the positions HP. By exploring Eq. (3), we observe quan-
tum walks under the presence of electric fields with m = 1, 2
showing a similar behavior to those without an electric field.
In this work, we express G so that it simulates the super-
position between two electric fields: a uniform (dc) and a
harmonic (ac) component. Thus, we consider

G(t ) = �0 + �� sin(ωt + φ). (4)

The first term represents the dc artificial field with magnitude
�0 = 2π/m, while the second represents the ac artificial field
with modulation ��, frequency ω, and phase φ. The time
evolution of the system is now governed by the “electric-
field” operator, given by Ŵel := F̂E · Ŵ0. Thus, by using the
time-evolution protocol |ψt 〉 = Ŵel |ψt−1〉, we can derive the

recursive evolution equations for the probability amplitudes:

ψ
↑
t+1,n = eiGt (n−N/2)(cos θψ

↑
t,n−1 + sin θψ

↓
t,n−1),

ψ
↓
t+1,n = eiGt (n−N/2)(sin θψ

↑
t,n+1 − cos θψ

↓
t,n+1), (5)

with ψ
↑
t,n and ψ

↓
t,n representing the probability amplitudes of

obtaining the states |↑〉 and |↓〉 at position n and time step t .
Although quantum walks have been experimentally real-

ized in diverse physical systems, we consider the experimental
implementation feasible by using an optical feedback loop
[15] or integrated waveguide circuits [20], since such systems
have been used to enforce time-independent and time-
dependent phases on the subspace of position of quantum
walker. The first has the advantage of the demand for re-
sources that remains constant as the number of steps in the
quantum walk increases.

Our results were obtained following Eqs. (5) for a quan-
tum particle initially localized at lattice center n0 = N/2. We
consider throughout the analysis open chains as the boundary
condition, whose sizes N are large enough that the wave
function does not reach its edges during the evaluated time.

III. RESULTS AND DISCUSSION

We start our discussion illustrating the time evolution of
the particle’s quantum wave packet under the effect of dif-
ferent configurations of artificial external fields. In Fig. 1, we
show the profile of the probability density |ψn|2 as a density
plot in the plane of the positions (n) vs time steps for three
representative cases of artificial fields. We consider the initial
state of the quantum particle is a symmetric one of the form

|�0〉 = 1/
√

2(|↑〉 + i|↓〉) ⊗ |n0〉, (6)

with N = 103 sites. We assume a weak artificial electric field
with m = 100 so that the uniform phase G has increments
of �0 = 2π/100. In addition, we use a Hadamard gate (θ =
π/4) for which such initial wave packet would evolve in
time, developing symmetric wave fronts. Revisiting the case
of a quantum walker under the action of a constant phase
having a linear dependence on the position, the quantum
walker performs oscillations around the initial position with
a well-defined period and frequency ωB = �0, as shown in
Fig. 1(a). Thanks to the presence of the F̂E operator, such
behavior is usually associated with Bloch oscillations (BOs)
[30,32,37], an emerging phenomenon of solid-state physics in
which an electron is loaded in a periodic potential subjected
to a constant electric field. This is a quasistationary dynamics
for a quantum walker that persists over a long time whenever
the phase increment �0 
 1. In the very-long-time regime,
the oscillation becomes unstable, a characteristic feature of
discrete-time quantum walks [29]. Bloch-like oscillations are
inherent to the dynamics of quantum particles placed in a
periodic potential under the action of a uniform field. The
association of an external periodic driving can promote, under
appropriate resonance conditions, the emergence of dynami-
cal trends that cannot be extracted from the independent action
of uniform and periodic emulated fields. To explore this, we
add a harmonic component (�� = �0) to the G(t ) phase
that plays a role similar to an external time-dependent field
[see Eq. (4)]. As shown in Fig. 1(b), a different dynamics
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FIG. 1. Probability density profile in the plane of positions n
vs time steps. (a) Under the presence of a uniform electric field
G with m = 100 (�� = 0), the quantum walker shows Bloch-like
oscillations. (b) When subjected to both constant and harmonic
fields, with ω very close to the Bloch frequency (ωB), the quantum
walker performs oscillations with large amplitudes. (c) When we
tune the frequency ω = ωB the quantum walker spreads, developing
a preferential walk to one side of the chain.

emerges: the wave function oscillates with large amplitudes in
the position space when the frequency of the harmonic field
component (ω) is close to that of the Bloch-like oscillations
(ωB). Analogous to solid-state super-Bloch oscillations, such
a phenomenon arises only when the harmonic field frequency,

ω = ωB + �ω, (7)

is slightly detuned (�ω 
 ωB) from the Bloch oscillation
frequency (ωB = �0). This scenario that we label as Bloch-
like superoscillations changes to a unidirectional drift when
we adjust the frequencies for the case of exact resonance.
In Fig. 1(c) we assume �ω → 0 so that ω = ωB. The wave
packet of the quantum walker develops a preferential walk
direction, in close analogy to the dynamics of single-electron
wave packets obeying a continuous-time Schrödinger equa-
tion under similar field conditions.

For a more detailed description of the interplay be-
tween regular and super-large-amplitude Bloch oscillations,
we compute the time evolution of the centroid of the parti-
cle’s quantum wave packet in order to understand the effects
caused by the detuning �ω on its dynamics. The centroid is
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FIG. 2. Left panels show the centroid of a quantum walker
initially localized at lattice center n0 = 500, with distinct
configurations of G(t ). Right panels show their respective
Fourier transform. (a), (b) In the absence of harmonic mod-
ulation (�� = 0), the centroid exhibits Bloch-like oscillations,
whose frequency corresponds to the magnitude of the em-
ulated field �0 = 2π/m. (c), (d) By connecting the har-
monic component and tuning its frequency to a value very close
to the Bloch frequency (�ω = ω − ωB = 0.01), we observe large
oscillations described as a superposition of two main frequencies.
(e), (f) Oscillations with similar pattern of Bloch-like oscillations are
recovered as we increase the detuning �ω.

defined as

x(t ) =
∑

n

n|ψn(t )|2. (8)

In the left column of Fig. 2, we show the evolution of the
average position of the particle, x, for three field settings
G(t ). For all cases, the centroid exhibits an oscillatory pattern.
However, changing the value of �ω, the dynamics visits two
regimes. Figure 2(a) displays the case where the quantum
particle is only under the action of a uniform artificial electric
field, �� = 0.0 and �0 = 2π/100. The centroid shows co-
herent oscillations with Bloch period TB = m. The oscillation
frequency is proportional to the acquired uniform phase, �0.
The Fourier transform of the centroid over several oscillations
x(
), reported in Fig. 2(b), clearly shows that the centroid
displays an oscillatory pattern with predominant frequency
ωB = �0. The detailed dynamics depends closely on whether
�0/2π is an irrational or a rational number, as discussed in
Refs. [29–31]. When we turn on the harmonic component of
the artificial electric field with modulation amplitude �� =
�0 and with a frequency very close to ωB, i.e, ω = �ω +
ωB, the quantum particle develops a large-amplitude oscil-
lation [see Fig. 2(c)], with a period TSBO ≈ 2π/�ω 
 TB.
The spectral decomposition of the centroid trace shows that
its dynamics has two main components [see Fig. 2(d)]. The
largest component represents the frequency of super-Bloch
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FIG. 3. (a) Quantitative analysis of the predominant spectral fre-
quency (
) as a function of the detuning factor (�ω) for distinct
strengths of the emulated static field (�0 = 2π/m). We consider the
quantum gate phase θ = π/4. For small detuning, the predominant
frequency is associated with Bloch-like superoscillations. Above a
characteristic m-dependent detuning, regular Bloch-like oscillations
predominate. (b) The characteristic crossover frequency (�ωc ) is
inversely proportional to m and independent of the applied quantum
gate.

oscillations (SBOs) (
SBO) = �ω = 2π/m − ω = 0.01. The
second component is the usual Bloch frequency, which de-
pends only on the uniform dc component �0 = 2π/100. It is
also possible to identify a small third frequency component
which is the sum of the frequencies ωB + ω + �ω. It is inter-
esting to mention that the dynamics of SBOs is independent
of the phase φ of the artificial ac field. In Fig. 2(e), we con-
sider a larger detuning by increasing the difference between
the frequencies, �ω = 0.1. In this case, the influence of the
harmonic component of the artificial electric field gives rise
just to small-amplitude slow oscillations of the centroid. The
predominant component of its spectral decomposition remains
the standard Bloch frequency, as shown in Fig. 2(f).

The previous analysis allows us to identify two distinct
dynamical regimes according to the detuning between the
frequency of the harmonic artificial field and the frequency
of the standard Bloch oscillations. These two regimes are
characterized by the predominant spectral frequency 
 of the
centroid trace. In Fig. 3(a), we report 
 as a function of
�ω for the Hadamard gate and two distinct phase increments
�0 = 2π/m. For low detuning values (�ω � �ωc), a linear
dependence of the predominant frequency on �ω signals that
it is associated with the SBO. On the other hand, when �ω >

�ωc the standard m-dependent Bloch frequency (
 = 2π/m)
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FIG. 4. Time evolution of the quantum-walker centroid for
different quantum gates θ = π/6, π/4, and π/3. Numerical experi-
ments were performed using m = 100, �� = �0, and ω = ωB. We
demonstrate the possibility of driving the quantum walker along the
lattice (to the left or to the right) by controlling the parameter φ.

predominates over the dynamics of the wave packet. By
considering a chain with N = 2500, tmax = 40N time steps,
and three distinct quantum gates (θ = π/6, π/4, π/3), we
report in Fig. 3(b) the characteristic detuning frequency sep-
arating two dynamical regimes as a function of m. We show
the critical detuning dependent on 1/m, but independent of the
quantum gate. Thus, we unveil the crossover frequency being
proportional to the standard Bloch-like oscillations. Our data
support �ωc/ωB � 0.3979.

In the absence of frequency detuning �ω = 0, i.e., the
frequency of the sinusoidal phase coinciding with the Bloch
frequency (ω = ωB), the quantum particle develops a prefer-
ential walk. For a more quantitative description, we compute
numerically the centroid of the quantum-walker wave packet
under resonant field conditions. In Fig. 4, we plot the time
evolution of the average position of the quantum walker for
three different quantum gate configurations, θ = π/6 (contin-
uous line), π/4 (dashed line), and π/3 (dash-dotted line). We
used m = 100. A unidirectional modulated walk of the wave-
packet centroid is obtained whose average velocity depends
on the relative phase of the ac field and of the quantum gate
parameter θ . For φ = 0 the quantum particle performs a uni-
directional walk to the left of the initial position. The opposite
occurs when φ = π . This effect can be used to manipulate the
dynamics of the quantum particle by tuning the phase of the
artificial harmonic field.

In order to explore the unidirectional walk induced by the
resonance condition, we determined the phase dependence of
the centroid’s velocity. Figure 5 displays the average velocity
(v) as a function of artificial harmonic field phase φ. Here, we
also consider the field amplitudes �� = �0 and �� = 3�0.
We unveil that, under the resonance condition associated to the
ac and dc field components, the quantum particle dynamics,
initially in the quantum state Eq. (6), undergoes a unidirec-
tional motion with an oscillatory dependence of the average
velocity on the phase of the ac component for all quantum
gates. In the regime of small field increments �0, leading to
Bloch oscillations with period TB 
 1, one expects a close
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FIG. 5. Phase dependence of the quantum-walker centroid veloc-
ity for three distinct quantum gates: θ = π/6, π/4, and π/3. Both
(a) �� = �0 and (b) �� = 3�0 exhibit similar trends, with overall
amplitudes depending on the ratio ��/�0 and θ . Such dependencies
corroborate the continuous-time theoretical result given by Eq. (9),
represented by the solid line for the case θ = π/4.

analogy between the quantum walk dynamics and that of a
single-particle wave packet governed by a continuous-time
Schrödinger equation within a tight-binding approximation. It
has been demonstrated that the wave-packet net velocity of a
noninteracting particle driven by an ac field in resonance with
the BO is given by [38–40]

v = v0 cos(δ� cos(φ) − φ), (9)

where δ� = (��/�0) and the velocity amplitude v0 ∝
J1(δ�), where J1(x) corresponds to the Bessel function of the
first kind and order 1. The above expression fits accurately
the velocity dependence on φ, as shown by the solid lines in
Fig. 5. Results corroborate the velocity amplitude dependence
in relation to δ�, as well as the maintenance of the overall
behavior when varying it. For δ� = 1, maximum positive
(negative) speed is reached at φ1 = δ� cos φ1 ≈ 0.739 (φ2 =
π − φ1 ≈ 2.402).

To better characterize the quantum-walker centroid veloc-
ity, we probe how the velocity amplitudes are related to the
acquired phases �� and �0. Based on Eq. (9), we explore
the average velocity and show v0 as a function of δ� (see
Fig. 6). In full agreement with previous analysis, data reveal
the velocity amplitudes ruled by the Bessel function J1(δ�).
In the limit of �0 
 1, a continuous-time approximation pro-
vides v0 = J1(δ�) cos θ/2. Thus, specific ratios of ��/�0

corresponding to the zeros of the Bessel function are also
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FIG. 6. By exploring the average velocity (v) in relation to the
acquired phases �� and �0 for θ = π/4, we expose the relation-
ship between the velocity amplitudes and δ� ruled by the Bessel
function of the first kind and order 1. The solid line accounts for
J1(δ�) cos θ/2. The insets show amplifications close to the first two
zeros of the Bessel function, ��/�0 = 3.83171 and ��/�0 =
7.01559. Dashed lines are guides for the eye which identify v0 = 0.

responsible for an absence of the centroid’s drift for all θ .
The insets in Fig. 6 show amplifications of v0 vs δ� close
to first two zeros of the Bessel function, ��/�0 = 3.83171
and ��/�0 = 7.01559. Dashed lines are guides for the eye
which identify v0 = 0.

The effective hopping of the quantum walker along the
chain is directly influenced by the quantum gate parameter
θ . We extended our numerical experiments in order to offer a
full diagram presenting the dependence of the wave-packet
unidirectional centroid’s velocity at resonance regime as a
function of θ and φ. Our results are shown as a density
plot in Fig. 7. For θ = 0 and π , the wave packet spreads
symmetrically, resulting in a stationary centroid. On the other
hand, the wave packet remains trapped around the initial posi-
tion for the Pauli-X gate θ = π/2. Extremal drift velocities

FIG. 7. Density plot of the centroid’s velocity in the plane φ

(ac field phase) vs θ (quantum gate). We consider the resonance
condition ω = ωB, with ω = �0, m = 100, and �� = �0 = 2π/m.
Notice that the centroid’s drift velocity can be controlled by tuning
either the ac field phase or the quantum gate parameter.
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(maximum and minimum) are achieved at finite θ values.
However, these extremal drift velocities are displaced towards
θ = 0 (or θ = π ) when smaller phase increments �0 are
considered. Therefore, the drift velocity of the wave-packet
centroid can be controlled by tuning either the ac field phase
or the gate parameter, thus opening a nice perspective for
the manipulation of quantum walkers. The noise near θ = 0
and π is due to finite-time effects. Near these limiting values,
the convergence towards the asymptotic dynamics becomes
very slow and the continuous-time prediction of v0 ∝ cos θ

breaks down. In the long-time regime, the dynamics of the
quantum walk under a uniform field becomes unstable due
to its discrete-time nature [29], thus degrading the resonance
condition required to sustain the unidirectional motion.

IV. CONCLUDING REMARKS

In this work, we explored the dynamics of a quantum
walker subjected to a superposition of emulated static and har-
monic electric fields. The artificial constant field is related to a
phase with a linear dependence on position, while the effective
time-dependent field comes from a phase which exhibits a
harmonic modulation. We show different quantum-walk dy-
namics by tuning the resulting electric field characteristics.

Under the action solely of a weak artificial constant field,
the quantum walk develops quasistationary Bloch-like oscil-
lations. Super-Bloch oscillations, with large amplitude and

low frequency ωSBO, can be achieved when the frequency
of the harmonic phase field is closely tuned to the typi-
cal Bloch-oscillation frequency. We demonstrated that this
low-frequency component on the quantum-walk dynamics is
predominant whenever the detuning frequency �ω = ω − ωB

is below a characteristic fraction of ωB.
At exact resonance conditions, ω = ωB, the quantum walk

develops a unidirectional motion. Its average velocity and
direction was shown to depend both on the field characteristics
(amplitudes and phase) and the specific quantum gate im-
plemented. In particular, the dependence of the wave-packet
velocity on the field characteristics was shown to be well
captured by a continuous-time approach. The coin operator
parameter controls the range of possible values for the average
velocity. Considering that discrete-time quantum walks can
be implemented in several physical platforms, such as optical
lattices, quantum cavities, and Bose-Einstein condensates, the
present results show distinct ways to manipulate and drive
quantum walkers by tuning either network characteristics gov-
erning the specific coin operator or the phase field parameters.
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