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Controlling and exploring quantum systems by algebraic expression of adiabatic gauge potential
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Adiabatic gauge potential is the origin of nonadiabatic transitions. In counterdiabatic driving, which is a
method of shortcuts to adiabaticity, adiabatic gauge potential can be used to realize identical dynamics to
adiabatic time evolution without requiring slow change of parameters. We introduce an algebraic expression
of adiabatic gauge potential. Then, we find that the explicit form of adiabatic gauge potential can be easily
determined by some algebraic calculations. We demonstrate this method by using a single-spin system, a
two-spin system, and the transverse Ising chain. Moreover, we derive a lower bound for fidelity to adiabatic
time evolution based on the quantum speed limit. This bound enables us to know the worst case performance
of approximate adiabatic gauge potential. We can also use this bound to find dominant terms in adiabatic gauge
potential to suppress nonadiabatic transitions. We apply this bound to magnetization reversal of the two-spin
system and to quantum annealing of the transverse Ising chain. Adiabatic gauge potential reflects structure of
energy eigenstates, and thus we also discuss detection of quantum phase transitions by using adiabatic gauge
potential. We find a signature of a quantum phase transition in the transverse Ising chain.
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I. INTRODUCTION

Quantum control is a fundamental element of quantum
technologies [1]. To control a quantum system in a desired
way, we change parameters of a Hamiltonian at each time.
When we quickly change these parameters, nonadiabatic tran-
sitions, i.e., transitions between different energy eigenstates,
take place. These nonadiabatic transitions are described by
adiabatic gauge potential (AGP) [2]. In contrast, when we
change parameters slowly in time, a given system shows adi-
abatic time evolution, i.e., it tracks its energy eigenstate [3,4].
Recently, quantum information processing based on adiabatic
time evolution has been paid much attention [5]. An advantage
of adiabatic time evolution as a control protocol is robustness
with respect to various kinds of errors. On the other hand, a
drawback is the requirement of slow operation. Such long time
processes are useless and suffer from decoherence.

Shortcuts to adiabaticity were proposed as methods to
speedup adiabatic time evolution [6–10]. Counterdiabatic
(CD) driving is one of such methods [6,7]. In CD driving,
we add AGP, or in other words, the CD term, to a reference
Hamiltonian, of which we would like to realize adiabatic time
evolution. AGP cancels out diabatic changes, and thus its
dynamics is identical to adiabatic time evolution of a refer-
ence Hamiltonian even if its operation is conducted within
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short time. At the beginning, it was considered that con-
struction of AGP requires knowledge of energy eigenstates
of a given reference Hamiltonian and thus application range
was limited [6,7,11,12], but soon it was extended to com-
plex systems having special properties such as equivalence
with two-level systems [13–15], scale invariance [16–18], and
classical nonlinear integrability [19]. It was also found that
AGP for general systems can be constructed with the aid of
the variational principle [20]. However, it is not clear whether
or not we can always construct the exact AGP by using the
variational approach.

Even if AGP is constructed, it usually includes non-local
and many-body interactions, and thus it is often difficult to
implement in experiments. Therefore, many ways to con-
struct approximate AGP consisting of local and a few-body
interactions have been proposed [14,20–26]. Performance of
approximate AGP has been evaluated by using various kinds
of measures such as fidelity, residual energy, and so on. Nu-
merical simulation of real time evolution is usually required
to calculate these measures.

AGP is also useful to explore structure of quantum systems
because it reflects properties of energy eigenstates. For exam-
ple, we can use AGP as a probe for quantum chaos [27]. It
is also possible to find singular points of a quantum system
in parameter space by studying the optimal direction of AGP
[28].

In this paper, we introduce an algebraic expression of AGP.
By rewriting a given reference Hamiltonian and its AGP in
terms of Lie algebra, we find that the exact AGP can easily be
constructed in a fully algebraic way. By using the relation to
the variational approach, we can also construct approximate
AGP in the algebraic way. Moreover, our approach reveals
a condition for determining AGP, which is not clear in the
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formalism of the variational approach [20]. We also derive a
lower bound for fidelity to adiabatic time evolution based on
the quantum speed limit in a similar way to Ref. [29]. This
bound can be used to evaluate the worst case performance of
approximate AGP without simulating real time evolution. We
can also use this bound to find dominant terms in AGP to sup-
press nonadiabatic transitions. Finally, we discuss detection
of quantum phase transitions by using AGP. In particular, we
focus on scaling behavior of AGP.

This paper is constructed as follows. In Sec. II, we intro-
duce an algebraic expression of AGP and explain how to find
the explicit form of it. This method is demonstrated by using
a single-spin system. We also discuss the relationship be-
tween the algebraic approach and the variational approach. In
Sec. III, we derive a lower bound for fidelity to adiabatic time
evolution. We apply this bound to magnetization reversal of a
two-spin system to find dominant terms suppressing nonadia-
batic transitions and to find the worst case performance when
we use these terms as approximate AGP. We also apply it to
quantum annealing of the transverse Ising chain. In Sec. IV,
we discuss detection of quantum phase transitions by using
AGP. Scaling behavior of approximate AGP for the transverse
Ising chain around the critical point is found. Section V is
devoted to our summary.

II. ALGEBRAIC EXPRESSION OF ADIABATIC GAUGE
POTENTIAL

A. Adiabatic gauge potential

We consider a time-dependent Hamiltonian

Ĥ (λ) =
∑

n

En(λ)|n(λ)〉〈n(λ)|, (1)

where En(λ) is the nth energy eigenvalue and |n(λ)〉 is the
associated energy eigenstate. Here, λ = λt is a set of time-
dependent parameters. By moving to the adiabatic frame,
where the Hamiltonian is diagonalized in the Schrödinger
equation, we can find that nonadiabatic transitions are gen-
erated by AGP:

Â(λ) = i
∑

n

(1 − |n(λ)〉〈n(λ)|)|∇n(λ)〉〈n(λ)|, (2)

where Â(λ) is a vector of the Hermitian operators because
of the differentiation ∇ = ∂/∂λ [2]. Throughout this paper,
we set h̄ = 1. In CD driving, we can realize adiabatic time
evolution of the reference Hamiltonian (1) by adding the AGP
(2) as Ĥ (λ) + λ̇ · Â(λ) [6,7].

The AGP (2) satisfies the condition [2]

[Ĥ (λ),∇Ĥ (λ) − i[Ĥ (λ), Â(λ)]] = 0. (3)

Note that if a Hermitian operator Â(λ) satisfies the condition
(3) instead of the AGP (2), it is also the AGP except for the di-
agonal part, which only affects phase factors. The variational
approach is a method to search for a Hermitian operator Â(λ)
exactly or approximately satisfying the condition (3) based on
the variational principle [20]. In this paper, we rather try to
directly solve the condition (3).

B. Algebraic construction

We introduce the basis operators of N-dimensional Hilbert
space {L̂μ}μ=1,2,...,N2−1 satisfying

1

N
Tr(L̂μL̂ν ) = δμν (4)

and

[L̂μ, L̂ν] = i
∑

λ

fμνλL̂λ, (5)

where fμνλ is an antisymmetric tensor. Here, we omit the
identity operator. The reference Hamiltonian (1) and the AGP
(2) can be rewritten as

Ĥ (λ) =
M∑

i=1

hμi (λ)L̂μi , μi ∈ {1, 2, . . . , N2 − 1} (6)

and

Â(λ) =
M̃∑

i=1

αμ̃i (λ)L̂μ̃i , μ̃i ∈ {1, 2, . . . , N2 − 1}, (7)

where {hμi (λ)}i=1,2,...,M and {αμ̃i (λ)}i=1,2,...,M̃ are sets of
time-dependent parameters with integers M, M̃ � N2 − 1. By
multiplying L̂μ̃ j , taking the trace, and using the cyclic property
of the trace, the condition for the AGP (3) becomes

M(λ)α(λ) = u(λ), (8)

where M(λ) is the M̃ × M̃ matrix with the matrix element

Mi j (λ) = Tr{[Ĥ (λ), L̂μ̃i ][Ĥ (λ), L̂μ̃ j ]}, (9)

α(λ) = (αμ̃1 (λ), αμ̃2 (λ), . . . , αμ̃M̃
(λ))T is the M̃-dimensional

vector, and u(λ) is the M̃-dimensional vector with the ele-
ments

ui(λ) = iTr{[Ĥ (λ),∇Ĥ (λ)]L̂μ̃i}. (10)

By solving Eq. (8), we find the exact AGP (7).
However, it is not always possible to directly solve Eq. (8)

due to the absence of the inverse matrix of M(λ), which
mathematically happens when the matrix M(λ) is not full
rank, i.e., rank[M(λ)] < M̃. Physically, this reduction of the
rank arises from symmetries of the reference Hamiltonian (6),
which impose some constraints among {αμ̃i (λ)}i=1,2,...,M̃ , or
arbitrariness in the diagonal part of the AGP (7). In the former
case, we can solve Eq. (8) by reducing equivalent conditions
in Eq. (8). We will show this case in Secs. III B and III C.
In the latter case, we can solve Eq. (8) by adding another
condition,

Tr
[
Ĥ (λ)Â(λ)

] = 0, (11)

which fixes the diagonal part of the AGP to be zero as Eq. (2).
We show this case in the next section. Note that the right-hand
side of Eq. (11) can be nonzero. In this case, as mentioned
after Eq. (3), adiabatic time evolution is realized but phase
factors differ from the adiabatic state of the reference Hamil-
tonian (1).

Here we remark on the set of the basis operators for
the AGP {L̂μ̃i}i=1,2,...,M̃ . By rewriting the AGP (7) in the
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Lehmann’s representation [28,30], we find that the AGP (7)
consists of the nested commutation relations

Âk (λ) = [Ĥ (λ), [Ĥ (λ), . . . , [Ĥ (λ),∇Ĥ (λ)] · · · ]], (12)

where the number of Ĥ (λ) in the nested commutation relation
is (2k − 1) with an integer k > 0. Namely, the AGP can be
also expressed as

Â(λ) = i
∑

k

ak (λ)Âk (λ), (13)

with appropriate parameters {ak (λ)} [28,30]. Here, the sum-
mation is taken until generation of operators from the nested
commutation relations converges. Therefore, we can find the
set of the basis operators for the AGP {L̂μ̃i}i=1,2,...,M̃ by cal-
culating the odd nested commutation relations by using the
algebraic expression of the reference Hamiltonian (6). We can
easily confirm that the even nested commutation relations do
not contribute to the AGP (7) by calculating the off-diagonal
elements of the condition (3). We also point out that, to derive
Eq. (8), we focus on the M̃ components among the (N2 − 1)
components by taking the trace with L̂μ̃i . This is justified by
Eq. (13) because it guarantees that both terms [Ĥ (λ),∇Ĥ (λ)]
and [Ĥ (λ), [Ĥ (λ), Â(λ)]] in the condition (3) only reproduce
some of {L̂μ̃i}i=1,2,...,M̃ .

C. Example

Here we demonstrate our method by using a single-spin
system

Ĥ (λ) = hx(λ)X̂ + hy(λ)Ŷ + hz(λ)Ẑ, (14)

where we express the Pauli matrices as X̂ , Ŷ , and Ẑ . Note
that the three basis operators of this two-dimensional system
are given by {X̂ , Ŷ , Ẑ}. In particular, we show two situations.
In the first situation, the AGP (7) has no diagonal part, and
thus Eq. (8) can be directly solved. In contrast, in the second
situation, the AGP (7) has a diagonal part. Therefore, we solve
Eq. (8) by imposing the additional condition (11).

First, we consider the Hamiltonian (14) with hy(λ) = 0.
The nested commutation relations (12) consist of only the
basis operator Ŷ , and thus the AGP (7) is given by

Â(λ) = αY (λ)Ŷ , (15)

where the coefficient α(λ) = αY (λ) can be determined from
Eq. (8) and it is given by

αY (λ) = hz(λ)∇hx(λ) − hx(λ)∇hz(λ)

2{[hx(λ)]2 + [hz(λ)]2} . (16)

This is of course identical to the known result constructed by
using the energy eigenstates [6,7].

Next, we consider the general case of the Hamiltonian
(14) with the nonzero coefficients hi(λ) �= 0, i = x, y, z. Here,
the nested commutation relations (12) include all the basis
operators X̂ , Ŷ , and Ẑ , and thus the AGP (7) also consists of
these basis operators:

Â(t ) = αX (λ)X̂ + αY (λ)Ŷ + αZ (λ)Ẑ. (17)

The time-dependent coefficients α(λ) =
(αX (λ), αY (λ), αZ (λ))T can be determined from Eq. (8)

with

M(λ) = −8

⎛
⎝hy2 + hz2 −hxhy −hxhz

−hxhy hx2 + hz2 −hyhz

−hxhz −hyhz hx2 + hy2

⎞
⎠ (18)

and

u(λ) = −4

⎛
⎝hy∇hz − hz∇hy

hz∇hx − hx∇hz

hx∇hy − hy∇hx

⎞
⎠, (19)

where we abbreviate the parameter λ in the right-hand side
of these equations for simplicity. However, the inverse matrix
of the matrix (18) does not exist because the AGP (17) has a
diagonal part and the rank of the matrix (18) is 2. To resolve
this problem, we consider the additional condition (11), which
gives

hx(λ)αX (λ) + hy(λ)αY (λ) + hz(λ)αZ (λ) = 0. (20)

Now we find that the left-hand side of Eq. (8) is invariant
under the transformation

M(λ) → M(λ) − 8

⎛
⎝ hx2 hxhy hxhz

hyhx hy2 hyhz

hzhx hzhy hz2

⎞
⎠, (21)

because of the additional condition (20), and then we can
solve Eq. (8). It is also identical to the known result con-
structed by using the energy eigenstates [7].

Later, we will show other examples, but, before that,
we discuss relation between our method and the variational
method.

D. Relation to the variational approach

In the variational approach, we introduce a trial AGP
Âtri(λ) and the operator

Ĝ(λ) = ∇Ĥ (λ) − i[Ĥ (λ), Âtri(λ)]. (22)

Then, we construct the AGP based on the variational principle

δ‖Ĝ(λ)‖2
HS = 0, (23)

with respect to the trial AGP Âtri(λ) [20]. Here ‖Ô‖HS ≡√
Tr(Ô2) represents the Hilbert-Schmidt norm. We may find

the exact AGP if the trial AGP Âtri(λ) includes all the possible
operators. Notably, even if the trial AGP Âtri(λ) consists of
only some limited operators, we can find an approximate AGP
from Eq. (23).

Now, we rewrite the trial AGP Âtri(λ) in terms of Lie
algebra as

Âtri(λ) =
M̄∑

i=1

ᾱμ̄i (λ)L̂μ̄i , μ̄i ∈ {1, 2, . . . , N2 − 1}, (24)

where {ᾱμ̄i (λ)}i=1,2,...,M̄ is a set of time-dependent parameters
with an integer M̄ � N2 − 1. The variational principle (23) in
the Lie algebraic expression reads

δ‖Ĝ(λ)‖2
HS =

M̄∑
i=1

∂‖Ĝ(λ)‖2
HS

∂ᾱμ̄i (λ)
δᾱμ̄i (λ) = 0, (25)
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and thus we find

M̄(λ)ᾱ(λ) = ū(λ), (26)

where M̄(λ) is the M̄ × M̄ matrix with the matrix element

M̄i j (λ) = Tr{[Ĥ (λ), L̂μ̄i ][Ĥ (λ), L̂μ̄ j ]}, (27)

ᾱ(λ) = (ᾱμ̄1 (λ), ᾱμ̄2 (λ), · · · , ᾱμ̄M̄
(λ))T is the M̄-dimensional

vector, and ū(t ) is the M̄-dimensional vector with the elements

ūi(λ) = iTr{[Ĥ (λ),∇Ĥ (λ)]L̂μ̄i}. (28)

Therefore, if we consider the identical set of the basis op-
erators to {L̂μ̃i}i=1,2,··· ,M̃ , we can reproduce Eq. (8). In this
sense, the algebraic approach is equivalent to the variational
approach.

In the algebraic approach, the condition for determining
the exact AGP is clear. Namely, it can be found when the
matrix M(λ) is full rank. In contrast, in the variational ap-
proach, one cannot notice it until the variational operation
(23) is performed. This is the most advantageous point of the
algebraic approach compared with the variational approach.
Moreover, the algebraic approach reveals that if we consider
all the operators {L̂i}i=1,2,...,N2−1 for a trial AGP, we cannot
find the exact AGP because it has a diagonal part, i.e., the
rank of M(λ) is less than M̃ and no inversion matrix exists.

III. PERFORMANCE OF COUNTERDIABATIC DRIVING

A. Lower bound for fidelity

In many cases, the exact AGP consists of many-body and
nonlocal interactions, and thus it is difficult to implement in
experiments. Therefore, we may use approximate AGP in CD
driving. However, there is no guarantee that approximate AGP
improves adiabaticity. Fidelity to adiabatic time evolution is
one of the measures to evaluate performance of CD driving
in the presence of approximations in AGP. In this section,
we derive a lower bound for fidelity, which enables us to
know performance of the worst case before simulating real
time evolution. We point out that this bound can also be used
to find dominant terms in the AGP to suppress nonadiabatic
transitions.

We consider a total Hamiltonian

Ĥtot (t ) = Ĥ (λt ) + λ̇t · Âapp(λt ), (29)

where Âapp(λt ) is approximate AGP for the reference Hamil-
tonian Ĥ (λt ). In this section, we explicitly express time
dependence of the parameter λ = λt . Starting from an energy
eigenstate |n(λ0)〉, fidelity to adiabatic time evolution is given
by

pn(t ) = |〈n(λt )|Û (t )|n(λ0)〉|2, (30)

where Û (t ) is the time evolution operator under the total
Hamiltonian (29). Note that pn(t ) = 1 when Âapp(λt ) is the
exact AGP.

Based on the quantum speed limit [31–33], we obtain a
bound for the fidelity,

arccos
√

pn(t ) �
∫ t

0
dt ′σ [λ̇t ′ · (Â(λt ′ ) − Âapp(λt ′ )), |n(λt ′ )〉],

(31)

where σ [Ô, |�〉] ≡
√

〈�|Ô2|�〉 − 〈�|Ô|�〉2 is the standard
deviation, in a similar way to Ref. [29]. We can find that the
right-hand side of this equation can be expressed as the line
integral of λt , and thus it does not depend on the total opera-
tion time but depends on the path of λt [2,29,34,35]. When it is
difficult to obtain the energy eigenstate |n(λt )〉, we can replace
the standard deviation in Eq. (31) with the operator norm,

‖Ô‖ =
√

sup|�〉〈�|Ô2|�〉, or the Hilbert-Schmidt norm al-
though it is looser. Note that the bound (31) is a lower bound
for Eq. (30), and thus it guarantees the fidelity of the worst
case. Indeed, by writing the bound as θ (t ) ≡ arccos

√
pn(t ) �

B(t ), we can rewrite it as pn(t ) = cos2 θ (t ) � cos2 B(t ) for
B(t ) � π/2.

Remarkably, we can use this bound to find dominant terms
in the exact AGP Â(λt ) to suppress nonadiabatic transitions.
The integrand of the bound (31) becomes large when dy-
namics tends to be nonadiabatic. Moreover, smaller values
guarantee larger lower bounds for fidelity. Therefore, by con-
sidering each term of the exact AGP Â(λt ) as approximate
AGP Âapp(λt ), we can find dominant terms. We will discuss
this point in the next section.

B. Example 1: Two-spin system

As the first example, we consider magnetization reversal of
a two-spin system described by a Hamiltonian

Ĥ (λt ) = χ0Ẑ1Ẑ2 + δt (Ẑ1 + Ẑ2) + �0(X̂1 + X̂2), (32)

where we write the Pauli matrices as X̂i, Ŷi, and Ẑi, (i = 1, 2),
and λt = {χ0, δt ,�0} is a set of parameters. Here, we sweep
the longitudinal field δt from negative to positive under the
fixed parameters χ0 and �0. In this section, we construct
the exact AGP for the reference Hamiltonian (32) based on
the algebraic approach, and then we discuss the fidelity (30)
and its lower bound (31) to find dominant terms to suppress
nonadiabatic transitions.

The fifteen basis operators of this four-dimensional sys-
tem are given by {X̂1, X̂2, Ŷ1, Ŷ2, Ẑ1, Ẑ2, X̂1X̂2, X̂1Ŷ2, X̂1Ẑ2,
Ŷ1X̂2, Ŷ1Ŷ2, Ŷ1Ẑ2, Ẑ1X̂2, Ẑ1Ŷ2, Ẑ1Ẑ2}. The nested commutation
relations (12) produce the following operators: Ŷ1, Ŷ2, X̂1Ŷ2,
Ŷ1X̂2, Ŷ1Ẑ2, and Ẑ1Ŷ2. Therefore, by taking into account the
permutation symmetry of the reference Hamiltonian (32), the
AGP is given by

Â(λt ) = αY (λt )(Ŷ1 + Ŷ2) + αXY (λt )(X̂1Ŷ2 + Ŷ1X̂2)

+ αY Z (λt )(Ŷ1Ẑ2 + Ẑ1Ŷ2), (33)

where the coefficients α(λt ) = (αY (λt ), αXY (λt ), αY Z (λt ))T

can be determined from Eq. (8).
Now we discuss truncation of the exact AGP by assuming

restriction of possible interactions and try to find dominant
terms. We consider the following cases: (a) Âapp(λt ) = 0
for reference, (b) Âapp(λt ) = αY (λt )(Ŷ1 + Ŷ2), (c) Âapp(λt ) =
αXY (λt )(X̂1Ŷ2 + Ŷ1X̂2), and (d) Âapp(λt ) = αY Z (λt )(Ŷ1Ẑ2 +
Ẑ1Ŷ2). For numerical simulation, we set χ0 = −1, �0 = −1,
and δt = −2 cos(πt/T ). Here, T is the operation time. For
these parameters, a small energy gap appears at δT/2 = 0,
and thus nonadiabatic transitions occur around this point. We
plot the integrand of the bound (31) in Fig. 1 for T = 1. It
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FIG. 1. The integrand of the bound σ [λ̇t · (Â(λt ) −
Âapp(λt ), |GS(λt )〉] with respect to the swept longitudinal
field δt = −2 cos(πt/T ). The horizontal and vertical axes
are in units of |χ0| = 1 with T = 1. The red solid curve
is (a) Âapp(λt ) = 0 for reference, the green dashed curve
is (b) Âapp(λt ) = αY (λt )(Ŷ1 + Ŷ2), the blue dotted curve is
(c) Âapp(λt ) = αXY (λt )(X̂1Ŷ2 + Ŷ1X̂2), and the yellow dash-dotted
curve is (d) Âapp(λt ) = αY Z (λt )(Ŷ1Ẑ2 + Ẑ1Ŷ2).

is clear that the integrand of the bound (31) becomes large
around δT/2 = 0 reflecting occurrence of nonadiabatic transi-
tions. Compared with the reference (a), we find that the cases
(b) and (c) suppress the integrand of the bound (31), while the
case (d) rather increases it. Therefore, we expect that the cases
(b) and (c) improve adiabaticity.

Now we perform numerical simulation of real time evo-
lution and confirm correctness of the above expectation. We
plot the fidelity (30) with the bound (31) for various operation
times T in Fig. 2. We find that the cases (b) and (c) actually
increase the fidelity compared with the reference (a), while
the case (d) does not. Moreover, the bounds (31) for the cases
(b) and (c) are finite, while these for the cases (a) and (d) are
almost zero. Note that the bound (31) is constant as discussed

0
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0.6

0.8

1

1 10 100

p 0
(T

)

T

FIG. 2. The fidelity p0(T ) = |〈GS(λT )|Û (T )|GS(λ0 )〉|2 with re-
spect to the operation time T . The horizontal axis is in units of
T0 = |χ0|−1 = 1. In a similar way to Fig. 1, (red circles) the case
(a), (green triangles) the case (b), (blue squares) the case (c), and
(yellow diamonds) the case (d) are plotted with the bound (31), which
is represented by the red solid line, the green dashed line, the blue
dotted line, and the yellow dash-dotted line, respectively.

in Sec. III A. This result indicates that for any operation time
T the fidelity remains finite if we apply αY (λt ) or αXY (λt ).

One may be interested in why we do not use approximate
construction (26), but truncate the exact AGP. In the approxi-
mate construction (26), we find ᾱXY (λt ) = 0 and ᾱY Z (λt ) =
0 because of ūXY (λt ) = 0 and ūY Z (λt ) = 0 for the present
parameter set λt = {χ0, δt ,�0}. This is why we consider trun-
cation of the exact AGP.

C. Example 2: Transverse Ising chain

Next, we consider quantum annealing of the Ising chain

Ĥ (λt ) = −gt

L∑
i=1

ẐiẐi+1 − (1 − gt )
L∑

i=1

X̂i, (34)

with the periodic boundary condition ẐL+1 = Ẑ1. Here, the
parameter λt is gt satisfying g0 = 0 and gT = 1, where T is
the annealing time. In this model, the AGP is given by a series
of many-body interactions [13]. In this section, we compare
performance of two cases. One is truncation of the exact AGP
[13] and the other is approximate construction of AGP (26).

The 4L − 1 basis operators of this 2L-dimensional system
can be generated by products of {X̂i, Ŷi, Ẑi}i=1,2,...,L. The
nested commutation relations (12) produce the following op-
erators: ŶiẐi+1, ẐiŶi+1, ŶiX̂i+1Ẑi+2, ẐiX̂i+1Ŷi+2, ŶiX̂i+1X̂i+2Ẑi+3,
ẐiX̂i+1X̂i+2Ŷi+3, ..., ŶiX̂i+1X̂i+2 · · · X̂i+L−2Ẑi+L−1, and
ẐiX̂i+1X̂i+2 · · · X̂i+L−2Ŷi+L−1 for all i = 1, 2, . . . , L. Therefore,
by taking into account the translation symmetry of the
reference Hamiltonian (34), the AGP is given by

Â(λt ) =
L−2∑
k=0

αY XX ...XZ (λt )

×
L∑

i=1

(ŶiX̂i+1X̂i+2 · · · X̂i+kẐi+k+1

+ ẐiX̂i+1X̂i+2 · · · X̂i+kŶi+k+1), (35)

where the number of X in αY XX ...XZ (λt ) and the number of X̂
between Ŷ and Ẑ are k. The coefficients αY XX ...XZ (λt ) can be
easily obtained from Eq. (8), which is an (L − 1)-dimensional
linear equation. (a) For truncation of the exact AGP we restrict
the summation in Eq. (35) up to K (K � L − 2) and (b) for
approximate construction (26) we use the set of the basis
operators identical to the case (a).

We plot the fidelity (30) for various annealing times T in
Fig. 3. We find that the case (a) shows slightly better results,
but the case (b) also improve adiabaticity significantly. We
also plot the bound (31) for the case (b) in Fig. 3. The finite
value of the bound (31) ensures that the fidelity never becomes
zero for any annealing time T .

We stress that for many-body systems, in which large num-
ber of the basis operators appears in the AGP (7), approximate
construction (26) is much easier than truncation after the exact
construction (8) because we can just take into account some
low-order nested commutation relations (12). Therefore, the
similar behavior of the fidelity, which we can find in Fig. 3,
is attractive in practice. Indeed, for general chaotic systems,
such as quantum annealing of spin glasses, we expect that an
exponentially large number of basis operators appears in the
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FIG. 3. The fidelity p0(T ) = |〈GS(λT )|Û (T )|GS(λ0 )〉|2 with re-
spect to the annealing time T . Here, the top panel is L = 10 and
the bottom panel is L = 100. The horizontal axis is in units of
T0 = g−1

T = 1. The open symbols represent (a) truncation of the exact
AGP and the closed symbols represent (b) the approximate construc-
tion (26). The red circles are Âapp(λt ) = 0 for reference, the green
triangles are K = 0 (K = 9), the blue squares are K = 2 (K = 29),
and the yellow diamonds are K = 8 (K = 98), for L = 10 (L = 100).
For each datum, we also plot the lower bound by the red solid line,
the green dashed line, the blue dotted line, and the yellow dash-dotted
line, respectively. Note that some of the bounds are smaller than the
bottom border.

AGP (7), and thus computational complexity to solve Eq. (8)
would increase in an exponential way. However, we could
significantly improve adiabaticity with polynomial computa-
tional cost if a result similar to Fig. 3 also holds for quantum
annealing of spin glasses.

IV. DETECTION OF QUANTUM PHASE TRANSITIONS

A. Signatures of quantum phase transitions in adiabatic gauge
potential

The AGP reflects structure of energy eigenstates, and thus
we expect that it can also be used to explore quantum systems
themselves. Here, we discuss detection of quantum phase
transitions by using the AGP. We consider the energy eigen-
states with slightly different parameters, |n(λ)〉 and |n(λ +
δλ)〉. If these two quantum states are similar, the Fubini-Study
distance between these two states, d (|n(λ)〉, |n(λ + δλ)〉) ≡
arccos F (|n(λ)〉, |n(λ + δλ)〉) with F (|n(λ)〉, |n(λ + δλ)〉) ≡

0
2
4
6
8

10
12
14
16
18
20
22

10 20 30 40 50 60 70 80 90 100

λ̇
·Â

(λ
)

2 H
S/

N

L

FIG. 4. The quantity ‖δλ · Â(λ)‖2
HS/N with respect to the system

size L. The vertical axis is in units of |gT |2 = 1. The red circles
represent the critical point gt = 0.5, the green triangles represent
gt = 0.48, and the blue squares represent gt = 0.45.

|〈n(λ)|n(λ + δλ)〉|, can be expanded as [36]

[d (|n(λ)〉, |n(λ + δλ)〉)]2

≈
∑
i, j

〈∂λi n(λ)|(1 − |n(λ)〉〈n(λ)|)|∂λ j n(λ)〉δλiδλ j . (36)

This quantity is known as the quantum geometric tensor [37].
When a quantum phase transition happens within a certain
parameter region (λ,λ + δλ), two quantum states |n(λ)〉 and
|n(λ + δλ)〉 should be significantly different, and thus we
expect that the quantity (36) shows singular behavior. Indeed,
such singularity has been reported [36,38].

It is known that the Hilbert-Schmidt norm of the AGP is
given by the summation of the quantum geometric tensor [39],

‖δλ · Â(λ)‖2
HS

=
∑

n

∑
i, j

〈∂λi n(λ)|(1 − |n(λ)〉〈n(λ)|)|∂λ j n(λ)〉δλiδλ j . (37)

Therefore, if the quantity (36) shows singular behavior, the
quantity (37) should also show similar singularity. Namely, we
could find signatures of quantum phase transitions in Eq. (37).
Moreover, by using the property of the basis operators of Lie
algebra (4), Eq. (37) is rewritten as

‖δλ · Â(λ)‖2
HS = N

M̃∑
i=1

[δλ · αμ̃i (λ)]2. (38)

This kind of expression was found in free systems [27], but it
holds for any system if we consider the algebraic expression
of the AGP (7).

In this paper, we try to detect a quantum phase transition by
using approximate AGP constructed by Eq. (26) instead of the
exact AGP. As mentioned in the previous section, it would be
very attractive if we could detect quantum phase transitions
by using approximate AGP. Note that flow of the AGP was
discussed in Ref. [28] to find singularity in systems includ-
ing quantum phase transitions, but we rather discuss scaling
behavior of the AGP because quantum phase transitions in
principle make sense in the thermodynamic limit.
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FIG. 5. The quantity ‖δλ · Âapp(λ)‖2
HS/N with respect to the re-

striction rate (K + 1)/M̃ of the basis operators. The top panel is
L = 10 and the bottom panel is L = 100. The vertical axis is in units
of |gT |2 = 1. The red circles represent the critical point gt = 0.5, the
green triangles represent gt = 0.48, and the blue squares represent
gt = 0.45.

B. Example

We again consider the transverse Ising chain (34) with the
periodic boundary condition. It is known that a quantum phase
transition occurs at the critical point gt = 1/2, and thus we
expect that a peak appears in Eq. (38) there. Indeed, we can
find it, but it is rather natural. We can find a peak even in the
Landau-Zener process of a two-level system, whereas it is not
a phase transition. Therefore, we focus on scaling behavior of
Eq. (38).

First, we plot Eq. (38) with respect to the system size L in
Fig. 4. We find that it shows linear scaling at the critical point

gt = 1/2, but it shows weaker behavior around there. Next,
we consider approximate construction (26) for this method.
Here, we restrict the basis operators up to K th order in the
approximate construction (26) as we did in Sec. III C and also
in the summation in Eq. (38). We plot the restricted version
of Eq. (38) with respect to the restriction rate (K + 1)/M̃
in Fig. 5. We find that it also shows linear scaling at the
critical point gt = 1/2, but it shows weaker behavior around
there. We conclude that the linear scaling is a signature of the
quantum phase transition in the transverse Ising chain.

V. SUMMARY

In this paper, we introduced the algebraic expression of the
AGP. The explicit form of both the exact and approximate
AGP can be easily determined by the algebraic calculations.
Although this algebraic approach is equivalent to the varia-
tional approach proposed in Ref. [20], the algebraic approach
clarifies the condition for obtaining the AGP. We also derived
the lower bound for the fidelity to adiabatic time evolution
based on the quantum speed limit. This bound gives the worst
case performance of approximate AGP without numerical
simulation of real time evolution. We can also use this bound
to find dominant terms in the AGP to suppress nonadiabatic
transitions. Finally, we discussed detection of quantum phase
transitions by using approximate AGP.

We considered the quantum spin systems expressed by
products of the Pauli matrices, but our method is not limited to
such models. A set of basis operators for a finite-dimensional
quantum system is known as the generalized Gell-Mann
matrices [40]. Therefore, it is straightforward to apply our
method to systems that are composites of finite-dimensional
quantum systems. Application of our method to infinite-
dimensional quantum systems is an open problem.

We found the linear scaling behavior of the approxi-
mate AGP for the transverse Ising chain with respect to the
restriction rate. We expect that other critical systems also
show some scaling behavior, but it may not be linear. We
leave study of approximate AGP for other systems as future
work.
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