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Unveiling the transverse formation length of nonlinear Compton scattering
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The process of emission of electromagnetic radiation does not occur instantaneously, but is “formed” over a
finite time known as the radiation formation time. In the ultrarelativistic regime, the corresponding (longitudinal)
formation length is given by the formation time times the speed of light and controls several features of radiation.
Here, we elucidate the importance of the transverse formation length (TFL) by investigating nonlinear Compton
scattering by an electron initially counterpropagating with respect to a flying focus laser beam. The TFL is related
to the transverse size of the radiation formation “volume” and, unlike the longitudinal formation length, has a
quantum origin. Since the TFL is typically of the order of the Compton wavelength, where any laser field can
be assumed to be approximately uniform, related quantum interference effects have been ignored. However, we
show analytically that if the focus in a flying focus beam with nL � 1 cycles moves at the speed of light and
backwards with respect to the beam propagation direction, the effects of the TFL undergo a large enhancement
proportional to nL and may substantially alter the differential emission probability for feasible flying focus
pulses.

DOI: 10.1103/PhysRevA.103.012215

I. INTRODUCTION

The emission of radiation by accelerated electric charges
is one of the most fundamental processes in physics, with ap-
plications spanning from high-energy physics and accelerator
physics to astrophysics. If charges are accelerated by suffi-
ciently intense electromagnetic fields, the emission process
can be described theoretically within the framework of strong-
field QED, where the influence of the intense background
field onto the emission of radiation can be taken into account
exactly [1–3]. This is achieved by describing the intense elec-
tromagnetic field as a given classical background field and
by quantizing the electron-positron field in the presence of
the background field (Furry picture) [4]. By considering, for
definiteness, the emission of radiation by electrons (charge
e < 0 and mass m, respectively), the applicability of the Furry
picture requires the ability to solve the Dirac equation in the
background field analytically, which can be achieved only
for particularly symmetric electromagnetic fields such as, for
example, a plane wave or a Coulomb field [1] (see, also, the
monograph [5]).

Within the Furry picture, the transition amplitude S f i of
the process of radiation of a single photon by an elec-
tron in an external electromagnetic field is expressed as a
spacetime integral, S f i = ∫

d4xA f i(x) [1], where the complex
function A f i(x) depends on the initial and final states of
the electron in the background field as well as on the pho-
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ton state. Thus, the corresponding probability Pf i = |S f i|2 =∫
d4xd4x′A f i(x)A∗

f i(x
′) can be written in the form Pf i =∫

d4x+Wf i(x+), where

Wf i(x+) =
∫

d4x−A f i

(
x+ + x−

2

)
A∗

f i

(
x+ − x−

2

)
, (1)

with x± = (x ± x′)/2(1±1)/2. The presence of the electron
and photon wave functions typically renders the amplitudes
A f i(x) oscillating functions. In this respect, the quantities
A f i(x+ + x−/2)A∗

f i(x+ − x−/2) represent the “elementary”
contributions to radiation, which typically interfere construc-
tively only within a limited spacetime region of the relative
variables xμ

− for a given spacetime point x+, whereas the
contributions from the remaining spacetime volume approx-
imately cancel each other. The region in x− of constructing
interference is known as the “formation region” and the exact
behavior of the integrand in the outer spacetime volume is
practically irrelevant for the radiation at x+ [see Eq. (1)].
For this reason, although it is a mathematical construct, the
notion of formation region is physically extremely useful in
radiation theory, as it allows one to assign characteristic values
to the coordinates inside the integrals, in order to simplify the
integrands and to gain insights into how the structure of the
background field shapes the features of the radiation [6,7].

If the background field features some spacetime symme-
tries, the electron states with definite asymptotic momenta
have a plane-wave-like dependence on the corresponding co-
ordinates. For example, the electron states in a static Coulomb
field depend on time as exp(−iεt/h̄), where ε is the electron
energy. In such cases, the formation volumes may formally
extend to infinity along the symmetry directions giving rise
to δ functions, which in turn enforce corresponding energy-
momentum conservation laws, as energy conservation in a
Coulomb field. In this case, one considers the remaining
lower-dimensional integral in Eq. (1) and introduces the
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corresponding lower-dimensional formation regions. Another
example is represented by a plane-wave background field,
which depends on a single spacetime variable φ = (nx) =
ct − n · x, where nμ = (1, n), with n being the unit vector
characterizing the propagation direction of the plane wave [the
metric tensor ημν = diag(+1,−1,−1,−1) is used through-
out]. The process of single-photon emission in an intense
plane wave is known as nonlinear single Compton scattering
and the corresponding probability is well known in the lit-
erature [8–37] (see, also, the reviews [38–43]). In this case,
indeed, the integral in Eq. (1) gives rise to three energy-
momentum conservation laws [the transverse momenta p⊥ =
p − (p · n)n and the quantity (np) = ε/c − p · n, with pμ =
(ε/c, p), being a generic four-momentum] and one introduces
the concept of formation “phase” corresponding to the quan-
tity φ (see, e.g., [39]).

In Refs. [44–47], we have developed a formalism based on
the Wentzel-Kramers-Brillouin (WKB) approximation to in-
vestigate strong-field QED processes in the presence of tightly
focused laser beams in the ultrarelativistic regime. We have
found that at the leading order in the ultrarelativistic limit, the
quantity (np) is still conserved but the transverse structure of
the field may alter the probability. Correspondingly, we have
introduced the concept of a transverse formation length (TFL)
and have found that it is typically of the order of the Comp-
ton wavelength λC = h̄/mc ≈ 3.9×10−11 cm [47]. Thus, the
laser field has been realistically assumed to be constant over
the TFL and all interference effects over the TFL have been
neglected. As a result, the final emission probability was ob-
tained as the average over the transverse coordinates of the
probability in a plane wave, but with the field being locally
also dependent on those coordinates [47].

In this paper, we show that the interference effects over the
TFL can alter the emission probability of a single photon in
nonlinear Compton scattering by an electron colliding with a
“flying focus” (FF) laser beam [48–52] (indicated as a “sliding
focus” laser beam in Ref. [48]). FF laser beams have been
realized experimentally and have the unique feature that their
focal spot can move virtually at any speed either parallel or
anti-parallel with respect to the pulse group velocity [49,51].
Thus, an ultrarelativistic electron initially counterpropagating
with respect to a sufficiently long FF beam with the focus
moving at the speed of light also in the opposite direction of
the laser propagation direction would not stay inside the focus
for a time corresponding to about two Rayleigh lengths, like
in a beam with a fixed focus, but potentially for the whole
time duration of the pulse. Now, as we will show analytically
below, the TFL is indeed typically of the order of the Compton
wavelength, but it is also proportional to the square root of the
time that the electron spends in the strong field (see below
for a technically more precise statement). In this way, the
effects of the TFL in the presence of an appropriately pre-
pared long FF beam accumulate and undergo an enhancement
by orders of magnitude as compared to a beam with fixed
focus, rendering the observation of the related interference
effects, in principle, feasible. Note that the thoroughly studied
failure of the so-called locally-constant field approximation
[28,34–37,53–60] is based on the smallness of the longitu-
dinal formation length (LFL), i.e., the formation time times
the speed of light, as compared to the typical wavelength of

the laser field. The LFL has a classical counterpart (see, e.g.,
[61]), whereas the TFL is a pure quantum concept, as is also
evinced by its typical value being of the order of λC [47].

II. NONLINEAR COMPTON SCATTERING
IN A FOCUSED LASER BEAM

We consider an arbitrarily focused optical laser beam, de-
scribed by the four-vector potential Aμ(x), which propagates
along the negative z direction, and which is characterized
by a central angular frequency ω0 (corresponding central
wavelength λ0 = 2π/ω0), an electric-field amplitude E0, a
transverse spot radius σ (Rayleigh length lR = πσ 2/λ0), and a
pulse duration τ (from now on, units with 4πε0 = h̄ = c = 1
are employed). In general, it is assumed that Aμ(x) satisfies
the free Maxwell’s equations with the convenient asymp-
totic conditions limT →±∞ Aμ(x) = 0, where T = (t + z)/2.
As will be clear below, it is convenient to employ light-cone
coordinates T = (t + z)/2, φ = t − z, and x⊥ = (x, y) and
the corresponding light-cone components v+ = (v0 + vz )/2,
v− = v0 − vz, and v⊥ = (vx, vy) for a generic four-vector
vμ = (v0, v). By working within the Lorenz gauge ∂μAμ(x) =
0, the free Maxwell’s equations reduce to the free wave
equations ∂μ∂μAν (x) = 0. Concerning, in particular, the FF
beams, their analytical expression is rather cumbersome [50]
and not needed here (see the Appendix for an exact solution
of Maxwell’s equations, which can be employed to describe
the main features of a FF beam with the focus moving back-
wards at the speed of light compared to the laser propagation
direction). The z component v f of the velocity of the focus
can be expressed in terms of the focal length f for the cen-
tral frequency and of the laser chirp parameter ζ as v f =
2 f /(2 f + ζ τ 2ω0) [50], which indicates a negative chirp can
be chosen to set v f = −1. Optical FF laser beams with in-
tensities I0 close to the relativistic regime (I0 ∼ 1018 W/cm2)
are feasible [52] and we assume that the background field is
characterized by values of the classical nonlinearity param-
eter ξ0 = |e|E0/mω0 = 0.75

√
I0[1018 W/cm2]/ω0[eV] of the

order of unity.
Passing now to the properties of the incoming electron, we

consider an electron with initial four-momentum pμ = (ε, p),
with ε =

√
m2 + p2. As in Refs. [44–47], the initial electron

energy ε is considered to be the largest dynamical energy
in the problem, i.e., η0 = max (m, mξ0)/ε 
 1. In addition,
the electron is almost counterpropagating with respect to the
laser field, i.e., pz > 0, |p⊥| � max (m, mξ0), and then pz ≈ε

(we will see below that the condition on p⊥ is actually
more restrictive). Finally, the quantum nonlinearity param-
eter χ0 ≈ (2ε/m)(E0/Ecr ) ≈ 0.057ε[GeV]

√
I0[1020 W/cm2]

is assumed to be less than or of the order of unity, with
Ecr = m2/|e| ≈ 1.3×1016 V/cm being the critical field of
QED [13,39,42].

Our starting point is the differential emission probability
dP/dω per unit of emitted photon energy ω in Eq. (35) in
Ref. [47]. For the sake of completeness, we provide an easier
and more general derivation here.

A. Derivation of the differential emission probability

First, we recall that in Ref. [47], the electron states have
been employed, obtained via the WKB method up to the
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next-to-leading order in Refs. [44,45]. Now, unlike in
Ref. [47], we exploit the additional gauge freedom in the
Lorenz gauge, to set A−(x) = 0 (axial gauge). This choice
already greatly simplifies the expressions of the electron in-
and out-states because, within the WKB method up to the
next-to-leading order, the states are independent of A+(x). For
the sake of completeness, we report the resulting expression
of the electron states:

ψ (in)
p,σ (x) = eiS(in)

p (x)

[
1 − e

2p+
γ+γ⊥ · A⊥(x)

]
up,σ√

2ε
, (2)

ψ (out)
p,σ (x) = eiS(out)

p (x)

[
1 − e

2p+
γ+γ⊥ · A⊥(x)

]
up,σ√

2ε
, (3)

ψ
(in)
−p,−σ (x) = eiS(in)

−p (x)

[
1 + e

2p+
γ+γ⊥ · A⊥(x)

]
u−p,−σ√

2ε
, (4)

ψ
(out)
−p,−σ (x) = eiS(out)

−p (x)

[
1 + e

2p+
γ+γ⊥ · A⊥(x)

]
u−p,−σ√

2ε
, (5)

where pμ and σ correspond to the asymptotic on-shell four-
momentum and spin quantum number, respectively, where

S(in)
±p (x) = ∓ (p+φ + p−T − p⊥ · x⊥)

+ 1

p+

∫ T

−∞
dT̄

[
ep⊥ · A⊥(x̄) ∓ 1

2
e2A2

⊥(x̄)

]
, (6)

S(out)
±p (X ) = ∓ (p+φ + p−T − p⊥ · x⊥)

− 1

p+

∫ ∞

T
dT̄

[
ep⊥ · A⊥(x̄) ∓ 1

2
e2A2

⊥(x̄)

]
, (7)

with x̄ = (T̄ , x⊥, φ), and where u±p,±σ are the constant
bispinors with positive and negative energy [1]. The achieved
simplification can be appreciated by comparing the above
equations with Eqs. (22)–(29) in Ref. [45], by noticing that in
the present gauge and with the asymptotic conditions on the
four-vector potential, we simply have A(in)

⊥ (x) = A(out)
⊥ (x) =

A⊥(x) = − ∫ T
−∞ dT̄ [E⊥(x̄) + z×B⊥(x̄)], with (E(x), B(x))

being the background electromagnetic field (note that unlike
in Ref. [45], here we use units with 4πε0 = h̄ = c = 1 and
we explicitly indicate the dependence of the field on the light-
cone variable φ).

We continue now to the description of nonlinear single
Compton scattering. It is convenient initially to assume that
the incoming electron is described by the wave packet

� (in)
p,σ (x) =

∫
d3q

(2π )3
ρp(q)ψ (in)

p,σ (x), (8)

with fixed spin quantum number σ and momentum distribu-
tion ρp(q) well peaked around the momentum p, correspond-
ing to the energy ε =

√
m2 + p2. Also, the central momentum

and the distribution ρp(q) are assumed to correspond to an ul-
trarelativistic electron almost counterpropagating with respect
to the laser field, according to the general method developed
in Refs. [44,45]. Finally, the wave packet is assumed to be
normalized to unity as

∫
d3q

(2π )3
|ρp(q)|2 = 1. (9)

Here, we observe that the states ψ (in)
p,σ (x) are approximated so-

lutions of the Dirac equation valid for ultrarelativistic energies
and up to terms scaling as 1/p+ ≈ 1/ε. By using the Dirac
equation for a generic state ψ (in)

p,σ (x) and for its Hermitian
conjugated, and by imposing periodic boundary conditions on
a finite volume V , it is easy to show that

d

dt

∫
V

d3x ψ
(in)†
p′,σ ′ (x)ψ (in)

p,σ (x) = 0 + O(1/ε2), (10)

and that the orthogonality and normalization properties of the
ψ (in)

p,σ (x) are the same as for the free states apart from terms
scaling at least as 1/ε2. In the limit V → ∞, we obtain

∫
d3x ψ

(in)†
p′,σ ′ (x)ψ (in)

p,σ (x) = (2π )3δ(p − p′)δσ,σ ′ + O(1/ε2),

(11)
and analogous for the relations involving the negative-energy
states.

Now, we assume that the final electron has on-shell
four-momentum p′μ = (ε′, p′) and spin quantum number σ ′.
Analogously, the emitted photon has on-shell four-momentum
kμ = (ω, k) and (linear) polarization l (polarization four-
vector eμ

k,l ). The leading-order S-matrix element of nonlinear
single Compton scattering in the Furry picture reads [1,4]

S f i = −ie
√

4π

∫
d4x ψ̄

(out)
p′,σ ′ (x)

êk,l√
2ω

ei(kx)� (in)
p,σ (x). (12)

Since the momentum distribution function ρp(q) is well
peaked around the momentum p, which corresponds to the
on-shell four-momentum pμ = (ε, p), we can approximate
the S-matrix element in Eq. (12) as

S f i ≈
∫

d4x ρ̃p(x)M f i,p(x), (13)

where

M f i,p(x) = −ie
√

4πψ̄
(out)
p′,σ ′ (x)

êk,l√
2ω

ei(kx)ψ (in)
p,σ (x) (14)

is the matrix element corresponding to an electron with four-
momentum pμ and where

ρ̃p(x) =
∫

d3q
(2π )3

ρp(q)ei[S(in)
q (x)−S(in)

p (x)] (15)

is the spin-independent amplitude of the wave packet in con-
figuration space. The expression in Eq. (15) reminds one
that care has to be taken to treat the oscillating exponential
functions also if the function ρp(q) is well peaked around the
momentum p (see, also, Ref. [62]).

The corresponding differential probability of the process
by averaging (summing) over the initial (final) discrete quan-
tum numbers is given by

dP = d3k
(2π )3

d3 p′

(2π )3

1

2

∑
l,σ,σ ′

|S f i|2, (16)
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and, by exactly following the same steps as in Ref. [47], we arrive at the expression

dP = πα

ωεε′
dε′

2π

d2 p′
⊥

(2π )2

dω

2π

d2k⊥
(2π )2

∫
d4xd4x′ ρ̃p(x)ρ̃∗

p(x′)ei[�C (x)−�C (x′ )]
{

m2

(
ε′

ε
+ ε

ε′ − 4

)
+ ε′

ε
p2

⊥ − 2p⊥ · p′
⊥

+ ε

ε′ p′ 2
⊥ + e

ω

εε′ (ε′ p⊥ − εp′
⊥) · [A⊥(x) + A⊥(x′)]− e2

[
A2

⊥(x) + A2
⊥(x′) −

(
ε′

ε
+ ε

ε′

)
A⊥(x) · A⊥(x′)

]}
, (17)

where α = e2 ≈ 1/137 is the fine-structure constant. Here, we have used the fact that within the first-order WKB approach, we
can approximate p+ ≈ ε, p′

+ ≈ ε′, and k+ ≈ ω, and we have introduced the phase

�C (x) = (ε′ + ω − ε)φ +
(

m2 + p′2
⊥

2ε′ + k2
⊥

2ω
− m2 + p2

⊥
2ε

)
T − (p′

⊥ + k⊥ − p⊥) · x⊥

+ e
p′

⊥
ε′ ·

∫ ∞

T
dT̄ A⊥(x̄) + e

p⊥
ε

·
∫ T

−∞
dT̄ A⊥(x̄) − 1

ε′
e2

2

∫ ∞

T
dT̄ A2

⊥(x̄) − 1

ε

e2

2

∫ T

−∞
dT̄ A2

⊥(x̄). (18)

The last two equations exactly correspond to Eqs. (31) and
(32) in Ref. [47], but where we have still not taken the integral
in the variable φ (which will enforce the energy conservation
ε = ε′ + ω).

Before continuing with the computation, we observe that
for a sufficiently narrow wave packet in momentum space, we
can expand the exponent in Eq. (15) up to linear terms,

ρ̃p(x) =
∫

d3q
(2π )3

ρp(q)ei[∇pS(in)
p (x)]·(q−p). (19)

According to the general theory as presented, e.g., in
Ref. [63], this approximation amounts to neglecting the
spreading of the wave packet. Also, in the WKB approach
followed in Ref. [47] and here, the quantity S(in)

p (x) is the
action corresponding to the electron trajectory in the external
field with the momentum (p+, p⊥) at asymptotic early time
T → −∞ (when the electron moves freely outside the field)
and with position (x⊥, φ) at the generic finite time T . By
assuming that, at a sufficiently early time T0 such that the
integral in the action S(in)

p (x) in Eq. (6) can be neglected,
the position of the electron (outside the field) corresponds to
the coordinates x0,⊥ and φ0, the asymptotic free trajectory of
the electron can be parametrized as x⊥ = x0,⊥ + (p⊥/ε)(T −
T0) and φ = φ0 + (p−/ε)(T − T0), with p− = (m2 + p2

⊥)/2ε.

Therefore, according to the general theory of mechanical
systems [64], the quantities ∇p⊥S(in)

p (x) and ∂p+S(in)
p (x) corre-

spond to the quantities x0,⊥ − (p⊥/ε)T0 and −φ0 + (p−/ε)T0,
respectively. Thus, as expected, if the function ρ̃p(x) is cen-
tered at a given early asymptotic time T0 around the point
(x0,⊥, φ0), then Eq. (19) implies that at a generic late time T ,
it will be centered around the position of the electron at that
time on the corresponding classical trajectory in the external
field.

By passing in Eq. (17) to the centered and the relative
variables x+ = (x + x′)/2 and x− = x − x′, respectively, we
notice that the relative coordinate φ− can be integrated out as
the field can be evaluated everywhere at the centered coordi-
nate φ+. The reason is that since φ− = t − z and the electron
propagates with ultrarelativistic velocity along the positive
z axis, the formation length in φ− scales as the inverse of
the square of the electron energy [44–47]. Thus, within the
first-order WKB approximation, the dependence of the field
on the quantity φ− can be neglected and the integral over
φ− provides the energy conservation condition ε = ε′ + ω.
Moreover, since the function ρ̃p(x) does not depend on the
transverse momenta of the final electron and of the photon,
the corresponding integrals can be taken as in Ref. [47] and
we obtain

dP

dω
= − α

8π2ε

∫
d4x+

∫
dT−d2x−,⊥

T 2−
ρ̃p(x)ρ̃∗

p(x′)

× exp

〈
i
T−
2

{
m2ω

εε′ − ε

T 2−

[
x−,⊥ − T−

ε
(p⊥ − Iin)

]2

+ 1

ε

(
I2

in − Jin
) − 1

ε′
(
I2

out − Jout
)}〉

×
〈
m2

(
ε′

ε
+ ε

ε′ − 4

)
+ 2iε

T−
+ ε′

ε

{
ε

T−
x−,⊥ + ε

ε′ Iout − ω

2ε′ [A⊥(x) + A⊥(x′)]
}2

− (ε + ε′)2

4εε′ [A⊥(x) − A⊥(x′)]2
〉
,

(20)
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where x± = (T±, x±,⊥, φ+) = (x ± x′)/2(1±1)/2, with x =
(T, x⊥, φ+) and x′ = (T ′, x′

⊥, φ+), where

Iin/out = 1

T−

[∫ T

∓∞
dT̃A⊥(x̃) −

∫ T ′

∓∞
dT̃ ′A⊥(x̃′)

]
, (21)

Jin/out = 1

T−

[∫ T

∓∞
dT̃A2

⊥(x̃) −
∫ T ′

∓∞
dT̃ ′A2

⊥(x̃′)
]
, (22)

with x̃ = (T̃ , x⊥, φ+) and x̃′ = (T̃ ′, x′
⊥, φ+), and where

A⊥(x) = eA⊥(x).
Finally, if the incoming electron is in the definite momen-

tum state corresponding to the central momentum p, i.e., for
ρp(q) = (2π )3δ3(q − p)

√
ρ0, with ρ0 being a constant elec-

tron spatial density, then Eq. (20) can be written in the form
dP/dω = ∫

d4x+ dW (x+)/dω, where

dW (x+)

dω

= − αρ0

8π2ε

∫
dT−d2x−,⊥

T 2−
ei�

〈
m2

(
ε′

ε
+ ε

ε′ − 4

)
+ 2iε

T−

+ε′

ε

{
ε

T−
x−,⊥−p⊥ + ε

ε′ Iout − ω

2ε′ [A⊥(x)+A⊥(x′)]
}2

− (ε + ε′)2

4εε′ [A⊥(x) − A⊥(x′)]2
〉
, (23)

with

� = T−
2

{
m2ω

εε′ − ε

T 2−

[
x−,⊥ − T−

ε
(p⊥ − Iin)

]2

+ 1

ε

(
I2

in − Jin
) − 1

ε′
(
I2

out − Jout
)}

, (24)

which exactly corresponds to Eq. (35) in Ref. [47] [note an
evident misprint in the pre-exponent of Eq. (35) in Ref. [47],
where the term 2iω/T− should rather read 2iε/T−, as it is clear
from the previous Eq. (33) there].

B. Analysis of the transverse formation length of nonlinear
Compton scattering

In order to investigate the properties of the TFL, we have
to analyze the integral over x−,⊥ in Eq. (23) and we recall that
the external field obviously also depends on the quantity x−,⊥.
The strategy is to pass from the variable x−,⊥ to the variable
ρ⊥ = x−,⊥ − R⊥, where R⊥ is a quantity independent of ρ⊥
and to be chosen in such a way that the following two condi-
tions are fulfilled: (1) the resulting integral over ρ⊥ is formed
around a region much smaller than the laser spot radius σ , i.e.,
the typical transverse length where the field changes signifi-
cantly; (2) the terms linear in ρ⊥ in the phase � in Eq. (24),
resulting after expanding the fields in � for small values of
|ρ⊥|, vanish. We will see below that these requirements can be
self-consistently fulfilled and that the vector R⊥ is related to
the trajectory of the electron on the transverse plane. We also
anticipate that, as expected, the TFL l⊥ will correspond to the
region where the integral in ρ⊥ is formed. It is sufficient here
to carry out the expansion of the external field up to the first
order in ρ⊥ in Eq. (24), which will appear within the operator
δ⊥ = ρ⊥ · ∇⊥, with ∇⊥ = ∂/∂x+,⊥. By indicating as �(1) the

corresponding phase up to the first order in δ⊥, it is easily
shown that

�(1) = T−
2

{
m2ω

εε′ − ε

T 2−

[
R⊥ − T−

ε
(p⊥ − I(−)

in )

]2

+ 1

ε

(
I(−) 2

in − J (−)
in

) − 1

ε′
(
I(−) 2

out − J (−)
out

)

− ε

T 2−
ρ2

⊥ − 1

T−
ρ⊥ · δ⊥I(+)

in

− 1

T−

(
2ε

T−
ρ⊥ + δ⊥I(+)

in

)
·
[

R⊥ − T−
ε

(p⊥ − I(−)
in )

]

+ 1

ε

(
I(−)

in · δ⊥I(+)
in − δ⊥

2
J (+)

in

)

− 1

ε′

(
I(−)

out · δ⊥I(+)
out − δ⊥

2
J (+)

out

)}
. (25)

Here, we have introduced the quantities

I(sgn(s))
in/out = 1

T−

[∫ T

∓∞
dT̃A⊥(X̃ ) + s

∫ T ′

∓∞
dT̃ ′A⊥(X̃ ′)

]
, (26)

J (sgn(s))
in/out = 1

T−

[∫ T

∓∞
dT̃A2

⊥(X̃ ) + s
∫ T ′

∓∞
dT̃ ′A2

⊥(X̃ ′)
]
, (27)

where X̃ = (T̃ , x+,⊥ + R⊥/2, φ+) and X̃ ′ = (T̃ ′, x+,⊥ −
R⊥/2, φ+), and s = ±1. According to the above discussion,
the vector R⊥ is determined by imposing that the linear terms
in ρ⊥ in �(1) identically vanish. This condition, together
with an inspection at the terms in Eq. (25) quadratic in ρ⊥,
implies that the integral in ρ⊥ is formed within the region
|ρ⊥| � √

2|T−|/ε [note that the second term quadratic in ρ⊥
is in order of magnitude |ρ⊥ · δ⊥I(+)

in | � (λ0/σ )(mξ0/ε)
1]
[65]. Thus, we find l⊥ = √

2|T−|/ε = 2λC
√

ω0|T−|ξ0/χ0.
Now, since T = (t + z)/2, we can identify |T−| with the for-
mation time or, in our units, with the LFL. Now, if ξ0 � 1,
the LFL in nonlinear Compton scattering is typically much
smaller than the laser wavelength [39]. On the contrary, if
ξ0 � 1, the radiation is formed over the whole pulse length.
Here, one has to point out that in the case of a monochromatic
or quasimonochromatic pulse, the motion of the electron is pe-
riodic or quasiperiodic, such that the amplitude of the process
can be written (approximately in the quasimonochromatic
case) as the integral over a laser wavelength times the number
of wavelengths, and the LFL is identified with the wavelength
itself. However, the important point here is that the integral
over T− receives contributions from the overall time that the
electron spends inside the field. In this respect, in order to
estimate the size of the effects of the TFL on the differential
emission probability, we assume from now on that ξ0 � 1
and we can estimate |T−| ∼ min(2lR, τ ) for a pulse with fixed
focus and |T−| ∼ τ for a FF pulse with the focus moving at
the speed of light in the same initial direction of the electron.
Thus, for a pulse with fixed focus, l⊥ � 4πλC (σ/λ0)

√
ξ0/χ0

and, then, l⊥ 
 σ for any realistic optical laser. On the con-
trary, in the case of a FF pulse, it is l⊥ ∼ λC

√
8πnLξ0/χ0,

where nL = τ/λ0 is the number of cycles in the pulse, which
shows the possible large enhancement of the effects of the
TFL in this case for nL � 1 (in some sense, a FF beam
behaves as a conventional focused beam, but with a potentially
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extremely long focal region). Thus, we can expect that in the
case of a FF pulse, TFL effects can be enhanced as compared
with a traditional beam. Nevertheless, as is required by our
perturbative approach, we continue assuming that also in the
case of a FF pulse, it is l⊥ 
 σ . At this point, we have to
determine the vector R⊥, which, according to the above dis-
cussion and up to first order in the transverse field derivatives,
has to fulfill the nonlinear equation [see the second line of
Eq. (25)]

R⊥ = T−
ε

[
p⊥ − I(−)

in + T−
ε

(
I (−)
in, j ∇⊥I (+)

in, j − 1

2
∇⊥J (+)

in

)

− T−
ε′

(
I (−)
out, j∇⊥I (+)

out, j − 1

2
∇⊥J (+)

out

)]
, (28)

where a sum over j = x, y is understood (recall that the field
also depends on R⊥). The physical interpretation of this equa-
tion will allow us to further simplify it. In fact, the vector
R⊥ describes the transverse trajectory of the electron inside

the field, with the first term in Eq. (28) corresponding to the
free component of the motion if p⊥ = 0, the second term
corresponding to the oscillatory motion due to the laser field,
and the remaining terms corresponding to the corrections to
this motion due to the nontrivial transverse structure of the
field. Now, we notice that (|T−|/ε)|I(−)

in | ∼ λ0mξ0/ε 
 λ0 and
the corrections induced by this term can be ignored for a
leading-order result in η0. Correspondingly, one can also ap-
proximate R⊥ ≈ r⊥ = (p⊥/ε)T− inside the fields in Eq. (28),
which becomes an explicit expression for R⊥ as the fields are
evaluated at X̃ = (T̃ , x+,⊥ + r⊥/2, φ+) and X̃ ′ = (T̃ ′, x+,⊥ −
r⊥/2, φ+). A consistent computation of the first-order correc-
tion of the differential probability, however, requires one to
keep all the terms in R⊥ in Eq. (28) because x−,⊥ also appears
explicitly in the pre-exponent and not only inside the laser
field [see Eq. (23)].

At this point, it is straightforward to compute the leading-
order expression dW0(x+)/dω and the first-order correction
dW1(x+)/dω:

dW0(x+)

dω
= iαρ0

4πε2

∫
dT−
T−

ei�0

[
m2

(
ε′

ε
+ ε

ε′ − 4

)
+ 2iω

T−
+ ε′

ε

(
I(−)

in − ε

ε′ I
(−)
out + ω

2ε′A
(+)
⊥

)2

− (ε + ε′)2

4εε′ A(−) 2
⊥

]
, (29)

dW1(x+)

dω
= iαρ0

4πε2

∫
dT− ei�0

〈
ε′

ε

{(
I(+)

in − ε

ε′ I
(+)
out + ω

2ε′A
(−)
⊥

)

·
[

1

ε

(
I (−)
in, j ∇⊥I (−)

in, j − ∇⊥
2

J (−)
in

)
− 1

ε′

(
I (−)
out, j∇⊥I (−)

out, j − ∇⊥
2

J (−)
out

)]

−
(

I(−)
in − ε

ε′ I
(−)
out + ω

2ε′A
(+)
⊥

)
·
[

1

ε

(
I (−)
in, j ∇⊥I (+)

in, j − ∇⊥
2

J (+)
in

)

− 1

ε′

(
I (−)
out, j∇⊥I (+)

out, j − ∇⊥
2

J (+)
out

)]}
− ω

ε
I(+)

in ·
[

1

ε

(
I (−)
in, j ∇⊥I (−)

in, j − ∇⊥
2

J (−)
in

)

− 1

ε′

(
I (−)
out, j∇⊥I (−)

out, j − ∇⊥
2

J (−)
out

)]〉
, (30)

where

�0 = T−
2

[
m2ω

εε′ + 1

ε

(
I(−) 2

in − J (−)
in

) − 1

ε′
(
I(−) 2

out − J (−)
out

)]

(31)

and where A(±)
⊥ = A⊥(T, x+,⊥ + r⊥/2, φ+) ± A⊥(T ′,

x+,⊥ − r⊥/2, φ+). First, we notice that the expression of
dP0/dω = ∫

d4x+ dW0(x+)/dω reduces to the corresponding
quantity in Ref. [47] in the case p⊥ = 0 considered there.
Also, as we have mentioned, we are interested in the case
of long pulses such that the quantities I(±)

in/out are typically
much smaller than A(±)

⊥ . Instead, the quantities J (±)
in/out contain

integrals of the square of the fields, which accumulate, and
then we conclude that for long pulses,

dW1(x+)

dω
≈ iαρ0ω

16πε3

∫
dT− ei�0

∑
s=−1,+1

sA(sgn(s))
⊥ · ∇⊥J (sgn(s)),

(32)
where J (±) = J (±)

in /ε − J (±)
out /ε′. This equation shows that in

the case of a FF with pulse duration τ and at ω ∼ ε ∼ ε′, the

correction is about

θ = 1

2

τ

σ

mξ0

ε
= λC

σ

ξ 2
0

χ0
� (33)

times the leading-order contribution, with � = ω0τ . Since
this is a first-order correction, one would have expected a
scaling as |ρ⊥|/σ ∝ √

�. However, terms proportional to ρ⊥
in the pre-exponent vanish after integrating over ρ⊥ and only
terms even in ρ⊥ give a nonvanishing contribution, which
explains the scaling as �. Also, the parameter θ depends
on the transverse variation length scale σ of the laser beam,
such that in the plane-wave case (σ → ∞), the parameter θ

vanishes and TFL effects cannot even be estimated starting
from a plane-wave model. Finally, we note that the fact that,
after restoring cgs units, the parameter θ does not contain h̄
[see Eq. (33)] should not confuse, as in any case the correction
contains an additional factor ω/ε, which vanishes for h̄ → 0
[see Eq. (32)].

The odd number of powers of the external field in the
pre-exponential function in Eq. (32) suggests that a sup-
pression of the first-order correction is expected especially
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for long pulses, unless specially shaped fields can be em-
ployed. For this reason but also in order to confirm θ as
the parameter controlling the TFL interference effects at
the lowest orders, we carry out a second-order expansion

of the phase � in δ⊥ and perform the analogous anal-
ysis as that below Eq. (25) to determine the vector R⊥.
The final result for the phase � up to the second order in
δ⊥ is

�(2) = T−
2

{
m2ω

εε′ + 1

ε

(
I(−) 2

in − J (−)
in

) − 1

ε′
(
I(−) 2

out − J (−)
out

) − ε

T 2−
ρ2

⊥ − 1

T−
ρ⊥ · δ⊥I(+)

in − 1

4ε

(
δ⊥I(+)

in

)2 − 1

4T−
ρ⊥ · δ2

⊥I(−)
in

− T 2
−

4ε

[
1

ε

(
I (−)
in, j ∇⊥I (+)

in, j − ∇⊥
2

J (+)
in

)
− 1

ε′

(
I (−)
out, j∇⊥I (+)

out, j − ∇⊥
2

J (+)
out

)]2

+ 1

4ε

[(
δ⊥I(+)

in

)2 + I(−)
in · δ2

⊥I(−)
in − δ2

⊥
2

J (−)
in

]
− 1

4ε′

[(
δ⊥I(+)

out

)2 + I(−)
out · δ⊥I(−)

out − δ2
⊥
2

J (−)
out

]}
. (34)

Looking at �(2) as a function of ρ⊥, we conclude that the
term in the second line is the second-order correction to the
first three constant terms in the first line, whereas the terms
in the third line are the corrections to the zero-order term
−(ε/2T−)ρ2

⊥ and then to the TFL. Since the largest correc-
tions arise from the terms containing the quantities J (±)

in/out (this
is why we have ignored, in the discussion, the last two small
second-order terms in the first line), we see that indeed they
are, in all cases, about θ2 times the corresponding zero-order
terms, as expected from θ being the controlling parameter.
Two short remarks are in order: (1) if p⊥ = 0, then J (−)

in = J (−)
out

and a compensation takes place such that the correction to the
TFL acquires an additional factor ω/ε′; (2) limiting to higher-
order even corrections in δ⊥, the (2n)th-order correction is δ2

⊥
times smaller than the [2(n − 1)]th-order correction. As we
have already pointed out, the reason to compute the second-
order expansion of � was to confirm θ as a scaling parameter
for the lowest-order corrections, which will be employed
below for numerical estimations. However, a self-consistent
computation of the second-order expansion of the emission
spectrum would require additional terms in the phase arising
from the expansion of the states up to the second order in
the inverse of the energies, which goes beyond the present
semi-quantitative analysis.

The above results indicate that if we consider a feasible
setup of an optical (λ0 = 1 μm) FF pulse of peak intensity
I0 = 3×1018 W/cm2 (ξ0 ≈ 1), spot radius σ = 2 μm, and
of pulse duration τ = 100 ps (� ∼ 1.9×105 and total pulse
energy of about 40 J), colliding with an electron of energy
ε = 8 GeV (χ0 ≈ 0.08), we obtain that θ ≈ 0.5 and thus we
expect corrections to the leading-order differential probability
dP0/dω of the order of 50% of its value [see the discussion
below Eq. (33)]. Although a perturbative approach may be
questionable for corrections of the order of 50%, the above
considerations aim to show that for feasible laser and electron
parameters, we expect the TFL effects to substantially alter
the photon differential emission probability, i.e., that values of
the parameter θ of the order of unity are feasible. Indeed, FF
pulses with intensities of the order of 1014 W/cm2 have been
produced [66] and intensities beyond the relativistic threshold
ξ0 = 1 are already envisaged [52]. In this respect, we observe
that even though the focus moves along the same initial di-

rection of the electron, the value of the quantum parameter
χ is not suppressed as in the case, e.g., of a plane wave
copropagating with an ultrarelativistic electron. The reason is
that a FF beam, as that discussed above, has to be thought of as
being made of waves counterpropagating with respect to the
electron but all focused in different points at different times.
This can be explicitly verified via the expression of the field
given in the Appendix and recalling that the local value χ (x)
of the quantum nonlinearity parameter is approximately given
by χ (x) ≈ (p+/m)(|∂A⊥(x)/∂T |/Ecr ) [45].

In the estimation above, it has been implicitly assumed that
the electron stays, for the whole pulse duration, inside the
focus. This would be the case if |r⊥| < σ , i.e., for incoming
transverse momenta such that 2θ |p⊥| < mξ0. Experimentally,
this implies to use a sufficiently collimated electron beam in
order to maximize the effects of the TFL. Also, due to the
length of the pulses under consideration, we expect a large
number of emissions per electron, whereas here the emission
of a single photon has been investigated. On the one hand,
this does not impact the importance of the present results.
Referring to the above example, in fact, due to the relatively
small value of χ0, recoil effects are expected to be moderate
such that the number of emitted photons is approximately dis-
tributed according to a Poisson distribution, with the quantity
P = ∫ ε

0 dωd4x+ dW (x+)/dω representing the average num-
ber of photons emitted [67]. On the other hand, however,
the large number of emissions may significantly increase the
angular opening of the electrons and let them exit the FF beam
laterally. In the range of parameters at hand, the number nγ

of photons emitted can be estimated as αnL [13,39,42]. In
the above example, about 200 photons are emitted. Hence,
being the photons randomly emitted within a cone of angular
aperture m/ε, the actual condition on p⊥ has to be about√

nγ ≈ 15 more restrictive than the above one.

III. CONCLUSIONS

In conclusion, we have studied nonlinear Compton scat-
tering by an ultrarelativistic electron counterpropagating with
respect to a flying focus laser beam in the regime ξ0 ∼ 1 and
χ0 � 1 and we have shown that the effects of the transverse
formation length of radiation are potentially amplified by
orders of magnitude compared to a fixed focus beam. After
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identifying the parameter controlling these effects at the low-
est orders, we have shown that values of this parameter of the
order of unity can be reached and then substantial corrections
to the emission probability are expected for tightly focused
optical flying focus fields of peak intensity ∼1018 W/cm2

and duration ∼100 ps, with the focus counterpropagating at
the speed of light with respect to the laser beam. Finally,
we point out that the unique structure of flying focus beams
offers further potential applications in strong-field classical
and quantum electrodynamics, providing an experimental tool
to test these theories in the high-intensity regime.
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APPENDIX: AN EXACT SOLUTION OF MAXWELL’S
EQUATION SUITABLE FOR DESCRIBING

A FLYING FOCUS FIELD WITH THE FOCUS
COUNTERPROPAGATING AT THE SPEED

OF LIGHT WITH RESPECT TO THE PULSE

Here, we report an explicit expression of the electromag-
netic field, which is an exact solution of Maxwell’s equations
and which may be used to describe the main features of a
flying focus (FF) field, with the focus moving at the speed of
light in the opposite direction as that of the pulse propagation
(see Ref. [50] for a more accurate expression of the electro-
magnetic field of a FF beam). We recall that we consider a
laser beam whose focal plane corresponds to the x-y plane
and whose wave vector at the center of the focal area points
along the negative z direction. Thus, the focus moves at the
speed of light along the positive z direction. We closely follow
the approach reported in Ref. [68] by adapting it to the axial
gauge used here in which the four-vector potential Aμ(x)
of the background field satisfies the Lorenz-gauge condition
∂μAμ(x)=0 and the additional constraint A−(x) = 0, together
with the free wave equation ∂μ∂μAν (x) = 0 [in Ref. [68], the
gauge A0(x) = 0 is chosen].

First, we write the four-vector potential Aμ(x) in the mo-
mentum space corresponding to the light-cone variable T ,
which is convenient since the wave vector at the center of the
focal area points along the negative z direction:

Aμ(T, x⊥, φ) =
∫

dk

2π
Ãμ(k, x⊥, φ)e−ikT + c.c., (A1)

where c.c. stands for complex conjugated. Since A−(x) = 0,
the Lorenz-gauge condition ∂T A+(T, x⊥, φ) + ∇⊥ ·
A⊥(T, x⊥, φ) = 0 allows one to determine Ã+(k, x⊥, φ)
as a function of Ã⊥(k, x⊥, φ) as

Ã+(k, x⊥, φ) = − i

k
∇⊥ · Ã⊥(k, x⊥, φ), (A2)

such that the only unknown quantity to be determined is
Ã⊥(k, x⊥, φ). The free wave equation for Ã⊥(k, x⊥, φ) reads

−2ik
∂Ã⊥(k, x⊥, φ)

∂φ
− ∇2

⊥Ã⊥(k, x⊥, φ) = 0. (A3)

Having in mind a focused Gaussian beam, we notice that this
equation admits the exact analytical solution [68]

Ã⊥(k, x⊥, φ) = Ã0 f (k)
e
− x2⊥

2σ2 (1+iφ/lk )

1 + iφ/lk
, (A4)

where Ã0 is a real constant related to the field amplitude, σ is
a real constant related to the spot radius of the field, lk = kσ 2,
and f (k) is an arbitrary complex function of k describing the
field pulse shape in T . By considering a pulse with a Gaussian
shape in T , we choose

f (k) = k

k0
e−(k−k0 )2τ 2/8, (A5)

where the real constants k0 and τ will be related with the
central angular frequency and pulse length of the field, re-
spectively, and where the prefactor k/k0 has been inserted
in such a way that even if we do not need it here, the cor-
responding expression of Ã+(k, x⊥, φ) is well behaved [see
Eq. (A2)]. Finally, by indicating as E0 and ω0 the amplitude
and the central angular frequency of the resulting electric field
of the pulse, we can appropriately rewrite the exact solution of
the wave equation as

A⊥(T, x⊥, φ)

= E0
τ√
2π

Re
∫

dω

ω0

ω

ω0
e−(ω−ω0 )2 τ2

2 −2iωT e
− x2⊥

2σ2 (1+iφ/lω )

1 + iφ/lω
,

(A6)

where E0 = √
π/8ω0Ã0/τ , lω = 2ωσ 2, and we performed

the change of variable k = 2ω (ω0 = k0/2).
The integral in Eq. (A6), although representing an exact

solution of Maxwell’s equations, cannot be taken analytically
and approximated methods have to be employed. If we limit
the consideration to long pulses such that ω0τ � 1, we can
approximately write

A⊥(T, x⊥, φ)

≈ E0
τ√
2π

Re
∫

dω

ω0
e−(ω−ω0 )2 τ2

2 −2iωT e
− x2⊥

2σ2 (1+iφ/lω0 )

1 + iφ/lω0

. (A7)

Now, the integral in ω is Gaussian and it can be taken analyti-
cally, giving the final result,

A⊥(T, x⊥, φ) ≈ E0

ω0
e−2T 2/τ 2 σ

σφ

e−x2
⊥/2σ 2

φ

× cos

[
2ω0T − x2

⊥
2σ 2

φ

φ

lω0

+ arctan

(
φ

lω0

)]
,

(A8)

where σφ = σ
√

1 + φ2/l2
ω0

. We notice that the different but

similar solution found in Ref. [68] was interpreted as de-
scribing an ultrashort laser pulse with fixed focus (see, also,
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Refs. [69,70]) such that it was considered to be accurate
only for pulse lengths much shorter than the central Rayleigh
length [70]. Here, Eq. (A8) is interpreted as describing a
long FF pulse with the focus moving backwards at the speed

of light compared to the pulse propagation direction, which
precisely fits the physical situation of interest in the main
text without additional restrictions apart from the long-pulse
condition ω0τ � 1.
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