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Nonlinear quantum effects in electromagnetic radiation of a vortex electron
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There is a controversy of how to interpret interactions of electrons with a large spatial coherence with light
and matter. When such an electron emits a photon, it can do so either as if its charge were confined to a
point within a coherence length, the region where a square modulus of a wave function |ψ |2 is localized,
or as a continuous cloud of space charge spread over it. This problem was addressed in a recent study [R.
Remez et al., Phys. Rev. Lett. 123, 060401 (2019)] where a conclusion was drawn in favor of the first (point)
interpretation. Here we argue that there is an alternative explanation for the measurements reported in that
paper, which relies on a purely classical concept of a so-called prewave zone and does not allow one to refute
the second interpretation. We propose an experiment of Smith-Purcell radiation from a nonrelativistic vortex
electron carrying orbital angular momentum, which can unambiguously lead to the opposite conclusion. Beyond
the paraxial approximation, the vortex packet has a nonpoint electric quadrupole moment, which grows as the
packet spreads and results in a nonlinear L3 growth of the radiation intensity with the length L of the grating
when L is much larger than the packet’s Rayleigh length. Such a nonlinear effect has never been observed for
single electrons and, if detected, it would be a hallmark of the nonpoint nature of charge in a wave packet.
Thus, two views on |ψ |2 are complementary to each other and an electron radiates either as a point charge or as a
continuous charge flow depending on the experimental conditions and on its quantum state. Our conclusions hold
for a large class of non-Gaussian packets and emission processes for which the radiation formation length can
exceed the Rayleigh length, such as Cherenkov radiation, transition radiation, diffraction radiation, and so forth.

DOI: 10.1103/PhysRevA.103.012214

I. INTRODUCTION

The particle-wave duality underpinned by de Broglie [1]
lies in the core of quantum mechanics. Modern electron mi-
croscopes utilize beams the transverse coherence length of
which can exceed 1 mm, and in a single-particle regime—for
currents lower than 50 nA—the wave nature of individual
electrons is expected to reveal itself in electromagnetic radi-
ation generated during the interaction with matter and light.
However, it was found in a recent study [2] that optical Smith-
Purcell radiation [3] of electrons with a transverse coherence
length σ

(e)
⊥ larger than 33 μm occurs as if the charge were

confined to a point within this length where a square modulus
of a wave function |ψ |2 is localized. Similar conclusions were
also drawn in Ref. [4] for photoemission in a laser wave,
while dependence on the electron packet’s size was shown
to appear when the photons are in the coherent state [5] or
when the electron’s state is different from a simplified plane
wave [6–11], especially when an electron Wigner function
[12] is not everywhere positive [4]. The results of Ref. [2]
seem to refute a wavelike interpretation of |ψ |2 according
to which the charge e is spread continuously over the entire
coherence length akin to a multiparticle beam. On a more
fundamental level, the latter interpretation is due to correc-
tions to the classical radiation intensity that arise because of
the quantum character of the electron motion and not due to
the quantum recoil. These corrections due to the wave packet’s
shape and size can usually be safely neglected for relativistic

particles, which is implied in such quasiclassical approaches
as an operator method [13,14] and an eikonal approximation
[8].

Here we show that there is an alternative explanation for
the measurements reported in Ref. [2], which is based on a
purely classical concept of the so-called prewave zone [15–17]
and, therefore, it does not allow one to conclude in favor of
one of the interpretations. We demonstrate how to modify
the experimental scheme in order to come to the opposite
(continuous current density) conclusion without an alternative
classical explanation. Namely, we propose to use the vortex
electrons carrying orbital angular momentum (OAM) h̄� [18]
to generate Smith-Purcell radiation. Such electrons—unlike
the customary Gaussian beams—have an intrinsic electric
quadrupole moment beyond a paraxial approximation [19,20],
which is proportional to the packet’s coherence length, and the
wider the packet is the larger the quadrupole contribution to
the radiation. Spreading of a nonrelativistic vortex packet dur-
ing its propagation next to a grating can result in a nonlinear
L3 dependence of the radiation intensity on the grating length
L due to the quadrupole moment.

The nonlinear effects have previously been known only
for Smith-Purcell radiation from high-current beams, starting
from 1 mA [21,22], or for electrons exposed to a laser field
[23], but never for a single freely propagating electron. Here
we predict a nonlinear enhancement of the quantum correc-
tions to the classical radiation intensity for a single vortex
electron or, more generally, for any non-Gaussian packet with
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a quadrupole moment, which is also the case for an Airy
beam [24], for a Schrödinger’s cat state, etc. We argue that for
the available beams with � � 1 such a nonparaxial quantum
effect due to the packet’s finite size can be detected and it
would be a hallmark of the nonpoint nature of charge in a
wave packet, especially when the recoil is vanishing. Im-
portantly, our conclusions hold for a wide class of emission
processes for which the radiation formation length can exceed
the packet’s Rayleigh length, such as transition radiation or
diffraction radiation in a slab, emission in a laser pulse of a
finite length, and so on. A system of units h̄ = c = 1 is used.

II. PREWAVE ZONE EFFECT IN SMITH-PURCELL
RADIATION

Smith-Purcell radiation as a special case of diffraction ra-
diation [3,17,25–28] arises as the field of an electron induces a
time-varying current density j on a grating. Quantum mechan-
ically, the radiation arises due to elastic scattering of a virtual
photon by the grating. The transverse coherence length of the
virtual photon emitted by the electron is

σ
(γ )
⊥ ≈ βγλ � λ for β ≈ 0.4–0.7, (1)

where γ = ε/m = 1/
√

1 − β2 � 1. There are at least two
reasons why a nonrelativistic electron with a large transverse
coherence length

σ
(e)
⊥ � λ � σ

(γ )
⊥ (2)

emits Smith-Purcell (diffraction) radiation like a point particle
confined inside a region of the width σ

(e)
⊥ where |ψ |2 is local-

ized and not like a cloud of space charge e spread over this
region.

(1) As the radiation is due to scattering of the virtual pho-
tons, a radiation formation width is of the order of σ

(γ )
⊥ , not

the entire region of σ
(e)
⊥ , which is profoundly different from

radiation by an accelerated electron.
(2) If a detector is placed at a far distance, r � σ

(e)
⊥ , a

multipole expansion of the radiation intensity holds:

d2W

dωd

≡ dW = dWe + dWeμ + dWeQ + dWμ

+ dWQ + . . . , (3)

even if the packet is wide. Here dWe is due to the electron
charge e, dWeμ describes interference of the waves emitted by
the charge and by the electron’s point magnetic moment [29]
μ, dWeQ is due to a nonpoint electric quadrupole moment Qi j ,
etc. In a linear approximation, suitable for currents lower than
1 mA, these multipole moments are coupled to those of the
wave packet itself (see Sec. III C below). A key observation
here is that all the higher moments are vanishing if the packet
is Gaussian in its rest frame, at least approximately [19]. That
is why, whatever width a packet has, it always radiates like a
point charge,

dW = dWe, (4)

within the paraxial approximation.
Thus, the conclusions of Ref. [2] could have been expected

for the chosen experimental conditions but they do not allow
one to unambiguously refute the continuous current density
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FIG. 1. Azimuthal distributions of Smith-Purcell radiation for
λ = d , the parameters of Ref. [2], and different distances to the de-
tector according to Eq. (8) and the model [31]. The green dashed line
(r = 0.5 rp-w) and the red dash-dotted line (r = 0.3 rp-w) correspond
to the prewave zone, while the black solid line corresponds to the
wave zone (r � rp-w).

interpretation because the measurements could support it if
the conditions were different. Before we formulate them, we
demonstrate how the observed in Ref. [2] wide azimuthal
distributions can be explained by using a purely classical
concept of the prewave zone [15–17]. First, the models of
Smith-Purcell radiation from a point charge (see, for instance,
Refs. [17,26–28]) predict the far-field azimuthal distributions
that are much narrower than those in Fig. 3 of Ref. [2] (see
the black solid line in our Fig. 1). This width is a function of
the particle energy due to the envelope

dWe ∝ exp

{
− 4πh

βγλ

√
1 + β2γ 2 cos2 � sin2 

}
(5)

where h is an impact parameter. This envelope has a kinemat-
ical origin and is largely model independent (see Ref. [30]).
The distributions wider than those predicted by Eq. (5) can
be a hallmark that the measurements were performed in the
prewave zone, not in the far field.

When collecting many photons emitted by many electrons,
a transverse region of the grating, which participates in the
formation of radiation, is of the order of the beam width σ

(e)
b ,

which is much larger than the width of a packet σ
(e)
⊥ . So, the

condition of the wave zone in a plane  ≈ � ≈ π/2 (see
Fig. 2) is [16]

r � rp-w = (
σ

(e)
b

)2/
λ. (6)

For parameters of Ref. [2], the prewave zone radius rp-w is
found to be

rp-w ≈ 15 cm, σ
(e)
b = 300 μm,

rp-w ≈ 6.7 m, σ
(e)
b = 2 mm. (7)

Thus, the measurements of Ref. [2] are likely to have taken
place in the prewave zone where the azimuthal distributions
must be very broad [16].

To take this effect into account, one needs to average the
one-particle intensity, dW class(rT ), not with |ψ |2 as in Eq. (4)
of Ref. [2] but with a beam transverse distribution function
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FIG. 2. Smith-Purcell radiation of a vortex electron packet pos-
sessing a point charge e, a point magnetic moment μ, and a nonpoint
electric quadrupole moment Qαβ (t ), which grows as the packet
spreads. The radiation wavelength is λ = d (β−1 − cos )/g, g =
1, 2, 3, . . ..

ρb(rT ):

dW

dωd

=

∫
d2rT ρb(rT )

dW class(rT )

dωd

. (8)

The function ρb can be Gaussian, ρb ∝ Nb exp{−r2
T /2(σ (e)

b )2},
normalized to a number Nb of electrons in the beam. Impor-
tantly, both Eqs. (8) and (4) of Ref. [2] indirectly imply that
the detector can be placed in the prewave zone because the
far-field intensity does not depend on the transverse shift rT at
all. Indeed, this shift is a phase rotation,

ψ (p) → ψ (p) e−ip·rT , (9)

and the radiation intensity stays invariant under it (see
Sec. III B below). Unlike Eq. (8), the wave zone formula deals
with the momentum representation, which is quite natural.

To calculate dW class(rT ) at an arbitrary distance r we use
the model of Ref. [31], although the azimuthal distributions
are largely model independent. As can be seen in Fig. 1, the
green and red lines fit the data in Fig. 3 of Ref. [2] much
better than the far-field line does, which represents an alterna-
tive classical explanation of the unusually wide distributions
reported in Ref. [2].

III. RADIATION FROM A WAVE PACKET

A. Generalities

Consider radiation of a charged wave packet of arbitrary
shape either in external electromagnetic field or when inter-
acting with a medium in the lowest order of the perturbation
theory in quantum electrodynamics (QED). The formula (3)
is based on a multipole expansion of the transition current
density j f i, in which two quantum effects are present: (1)
the recoil and (2) the effects of the wave packet’s size and
shape. The possibility of such a multipole expansion not only
in classical electrodynamics but also in QED follows from
linearity of the latter on the tree level. Indeed, the radiation
intensity of the classical current jμ(x) in the far field is given

by Eq. (14.70) in Ref. [32], which can be written as follows:

d2W

dωd

= − ω2

(2π )2
jμ(k)[ jμ(k)]∗,

jμ(k) =
∫

d4x jμ(x) eitω−ikx,

(10)

when integrating over all space and time. A probability to emit
a photon by an electron in the lowest order of QED is

dν = |S f i|2 d3k

(2π )3
, S f i = −ie

∫
d4x jμf i(x) A∗

μ(x),

jμf i(x) = ψ̄ f (x)γ μψi(x).

(11)

When the photon is detected in the wave zone as a plane wave
with Aμ(x) =

√
4π√
2ω

eμ(k) exp{−itω + ikx}, the radiated en-
ergy summed over the photon polarizations by eμe∗

ν → −gμν

is found as

d2W

dωd

= ω

d2ν

dωd

= − ω2

(2π )2
e2 j f iμ(k)[ j f i

μ(k)]∗. (12)

The only difference from Eq. (10) is that the electron final
state does not coincide with its initial state, while both these
states are arbitrary and are not necessarily plane waves. This
correspondence is a manifestation of the Bohr’s complemen-
tarity principle and it is because of this that the general
quantum formulas for radiation intensity look similar to those
of the classical electrodynamics [see Sec. 45 in Ref. [14]].
This is in particular the case for such a wide class of processes
as polarization radiation beyond the dipole approximation,
including diffraction and Smith-Purcell radiation, in which
the quantum recoil is vanishing but the multipole structure
of the current is retained, which means that the “geometric”
corrections due to the size and shape of the packet are taken
into account (see below).

The contributions of higher multipole moments are de-
scribed in classical electrodynamics by keeping higher-order
terms in expansion of the Green’s function into series. Anal-
ogously, the multipole expansion of the radiation intensity
in QED can be obtained by expanding the plane-wave com-
ponent exp{−ikx} of the final photon into series over the
spherical waves—see Sec. 46 and 47 in Ref. [14]. Such a mul-
tipole expansion holds irrespective of the specific emission
process, also when the recoil is vanishing, which is implied in
Eq. (3). As a result, the matrix element S f i in (11) will repre-
sent a series over the multipole contributions and the intensity
will look like Eq. (3). However, as we show hereafter, for this
expansion to have a sense it is important that the current jμf i(x)
be spatially localized, which means that both the initial and
final electrons are described as wave packets rather than plane
waves.

B. Role of the size and shape of the electron packet

Now we are going to demonstrate how to take into account
the size and shape of an electron wave packet in radiation or
the shape of a beam in incoherent radiation of Nb electrons,
which is typical in an electron microscope. Let the initial elec-
tron be described as an arbitrary packet with a wave function
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being a superposition of plane waves:

ψi(x) =
∫

d3 p

(2π )3
ψ (p)

ui(p)√
2ε

e−itε+ipx,

ūi(p)ui(p) = 2m, ε =
√

p2 + m2,∫
d3x|ψi(x)|2 =

∫
d3 p

(2π )3
|ψ (p)|2 = 1.

(13)

The matrix element and the probability to emit a plane-wave
photon become

S f i =
∫

d3 p

(2π )3
ψ (p) S(pw)

f i (p),

dν =
∫

d3 p

(2π )3

d3 p′

(2π )3
ψ (p)ψ∗(p′) S(pw)

f i (p)
(
S(pw)

f i

)∗
(p′)

d3k

(2π )3

=
∫

d3 p

(2π )3

d3q′

(2π )3
ψ (p + q/2)ψ∗(p − q/2)

× S(pw)
f i (p + q/2)

(
S(pw)

f i

)∗
(p − q/2)

d3k

(2π )3
, (14)

where we use the new variables

(p, p′) → (p + q/2, p − q/2). (15)

If we deal with a single electron and not with a multiparticle
beam, one can completely neglect the dependence of S(pw)

f i on
q, which is called the paraxial approximation. The corrections
due to small q arise beyond the paraxial regime because of the
autocorrelation of the scattering amplitude or due to its phase
ζ f i:

S(pw)
f i (p) = ∣∣S(pw)

f i (p)
∣∣ eiζ f i (p).

If the phase is constant, which also depends on the final
electron state, the corrections vanish exactly. For a beam, the
leading term with |S(pw)

f i (p)|2 describes the incoherent emis-
sion of uncorrelated particles, while the first correction due to
nonvanishing q takes inter particle correlations (coherence ef-
fects) into account. The small-q expansion of S(pw)

f i is justified
because the electron wave packet is normalized and, therefore,
the function ψ (p) can behave at large p → ∞, for instance,
as ψ (p) ∝ exp {−(p − 〈p〉)2/2(δp)2}. Then

ψ∗(p − q/2)ψ (p + q/2)

∝ exp{−(p − 〈p〉)2/(δp)2 − q2/(2δp)2} (16)

at large p.
The leading term in the paraxial approximation is thus

dν (incoh) =
∫

d3 p

(2π )3

d3q′

(2π )3
ψ (p + q/2)ψ∗(p − q/2)

× ∣∣S(pw)
f i (p)

∣∣2 d3k

(2π )3

=
∫

d3 p

(2π )3
n(0, p, 0) dν(pw)(p), (17)

or for the radiation intensity in the wave zone [see Eqs. (3)
and (4) in Ref. [4]]

dW (incoh)

dωd

=

∫
d3 p

(2π )3
n(0, p, 0)

dW (pw)(p)

dωd

, (18)

where we have used the definition of a Wigner function [12]:

n(x, p, t ) =
∫

d3q

(2π )3
ψ∗(p − q/2, t )ψ (p + q/2, t ) eiqx,

ψ (p, t ) = ψ (p) e−itε(p). (19)

The formula (18) allows one to exactly take into account the
spatial shape and width of the radiating packet because the
momentum uncertainty δp is connected with the former as
σ

(e)
⊥ = 1/δp. Importantly, it is only for a Gaussian packet that

the Wigner function n(0, p, 0) coincides with |ψ (p)|2 [see
Eq. (3) in Ref. [4]], while for a vortex electron, for instance,
it does not—see Eq. (68) in Ref. [33]. Thus, for non-Gaussian
electron packets equations (17) and (18) also depend on a
phase ϕ(p) of the electron wave function

ψ (p) = |ψ (p)| eiϕ(p) (20)

and they are applicable for packets with the not-everywhere
positive Wigner functions—say, Schrödinger’s cat states, co-
herent superpositions of vortex states, etc.

The main difference of Eq. (18) from Eq. (4) in Ref. [2]
is that the former uses the momentum representation, while
the latter uses the coordinate one. The use of the momentum
representation is natural and even unavoidable for the wave
zone because the radiation source is completely delocalized,
which is why one has to deal with momenta, not coordinates.
As clearly seen from Eq. (11), the far-field radiation probabil-
ity does not depend on the transverse shift rT of the radiating
electron because such a shift changes only the phase of both
the initial and final electrons as

ψi, f (p) → ψi, f (p) e−ip·rT ,

to which the intensity is not sensitive. The intensity is sen-
sitive, however, to a phase rotation of the initial electron
alone, ψ (p) → ψ (p) eiϕ(p), which is why the higher multipole
moments can make a nonvanishing contribution to the far
field. We would like to emphasize that the quantum state of
the final electron is not specified here and the final photon
is described as a delocalized plane wave, which means that
the photon is detected in the wave zone. If the final electron
were also described as a plane wave, which means that it is
not detected, the radiation intensity would not depend on the
phase ϕ(p) of the initial electron when integrating over all
space and time from −∞ to +∞. Such a phase dependence
takes place only if the final electron is also described as a spa-
tially localized wave packet, which means that it is detected
at a certain distance (not too far) from the radiation region.
It is this case which is the most natural for comparison with
the classical theory because the transition current jμf i(x) is
spatially localized, while for the plane-wave final electron it
is not so and, therefore, the wave zone cannot be defined [34].

For emission of many photons by a beam of electrons, the
Wigner function is normalized to a number Nb of particles in
the beam: ∫

d3 p

(2π )3
n(0, p, 0) = Nb.

In this case, Eq. (18) describes incoherent radiation, which is
a good approximation for small radiation wavelengths λ �
σ

(e)
b and the low-current (single-electron) regime, typical for
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electron microscopes. The opposite case of λ � σ
(e)
b and the

bunched electrons can be realized in a particle accelerator,
for which the leading term (18) is no longer sufficient (see
Ref. [35]).

In contrast, to describe the radiation in the prewave zone
it is natural to use the coordinate representation. The corre-
sponding classical formula is

dW

dωd

=

∫
d2rT ρb(rT )

dW class(rT )

dωd

. (21)

When the detector is in the far field, the dependence of dW class

on rT vanishes and we are left with

dW far-field

dωd

= Nb

dW class

dωd

, (22)

which reflects the well-known fact that an incoherent form
factor for a beam equals unity [35,36]. As has been recently
shown in Ref. [36], the incoherent form factor can differ from
unity when the grating in Smith-Purcell radiation or a target in
transition and diffraction radiation is spatially limited—say,
when the grating has a width smaller than the transverse
coherence length of the virtual photon βγλ, so the radiation
formation width is defined by the geometrical sizes of the
target.

Analogously, the prewave effect also comes about due to
the finite radiation formation width but because the detector
is moved closer to the target. Equation (21) explicitly demon-
strates, therefore, that the incoherent form factor also differs
from unity for the radiation in the prewave zone. In this sense,
the wide azimuthal distributions measured in Ref. [2] can be
treated as an evidence of such a form factor. This conclusion
holds not only for Smith-Purcell radiation, but also for a
much wider class of emission processes, including diffraction
radiation, Cherenkov radiation, transition radiation, Compton
and Thomson scattering in laser fields, and so forth.

C. The quasiclassical regime of emission by a wave packet

Now we are going to demonstrate how to study emission
in a regime in which the quantum effects are small and treated
as corrections to the classical formula. Along with the recoil,
these corrections depend on the shape and size of the electron
wave packet via the multipole expansion. Both these effects
are inherently quantum, so the separation of them in radia-
tion intensity is a rather delicate task even for the Gaussian
packets—see, for instance, [9–11]. However when the quan-
tum numbers defining the shape of a non-Gaussian packet
are large—say, � � 1 for a vortex electron—the emission is
always quasiclassical [14] and one can neglect the spin con-
tribution [O(ω/ε)] compared to the contributions originating
from the non-Gaussianity of the packet. For the vortex packet
with � � 1, such a quasiclassical regime of emission implies
(see also Ref. [37])

ω

ε
� 1, |�| ω

ε
� 1. (23)

Thus the geometric corrections to the classical intensity due
to the wave packet’s shape and size are |�| times enhanced
compared to those due to recoil.

We start again with the general matrix element

S f i = −ie
∫

d4x jμf i(x) A∗
μ(x), jμf i(x) = ψ̄ f (x)γ μψi(x),

(24)

and take both the incoming electron and the final electron as
some wave packets:

ψi(x) =
∫

d3 p

(2π )3
ψi(p)

ui(p)√
2εi

e−itεi+ipx, ūi(p)ui(p) = 2m,

ψ f (x) =
∫

d3 p

(2π )3
ψ f (p)

u f (p)√
2ε f

e−itε f +ipx, ū f (p)u f (p) = 2m.

(25)

Depending on the external field, these packets can be coherent
superpositions of the Volkov states in a plane wave, of the
Landau states in magnetic field, etc. The transition current
looks as follows:

jμf i(x) =
∫

d3 p

(2π )3

d3 p f

(2π )3
ψ∗

f (p f )ψi(p)
ū f (p f )√

2ε f

× γ μ ui(p)√
2εi

e−ix(p−p f )

=
∫

d3 p

(2π )3

d3q

(2π )3

ψ∗
f (p − q/2)√

2ε(p − q/2)

ψi(p + q/2)√
2ε(p + q/2)

× ū f (p − q/2) γ μui(p + q/2)

× exp {−it[ε(p + q/2) − ε(p − q/2)] + ixq},
(26)

where we again use the variables (15) and no approximations
are used at this stage. The indices i and f denote all the
remaining quantum numbers the packets can possess (spin,
orbital angular momentum, etc.)

Now we notice that the variable q = p − p f is a momen-
tum transfer for each plane-wave component comprising the
wave packets. The large values |q| � δp are suppressed in the
quasiclassical case f → i analogously to Eq. (16). However,
even in the general quantum regime the large momentum
transfers are attenuated by the rapidly oscillating exponent
exp{ixq}. So the effective values of q are

|q| � 1/|x| ∼ 1/σ⊥ = δp, (27)

whatever shape the packets have.
An expansion of the bispinors into series over q yields

(i and f are just spin indices here)

ū f (p − q/2) γ μui(p + q/2) = ū f (p)γ μui(p) + q
2

(
ū f (p)γ μ ∂ui(p)

∂p
− ∂ ū f (p)

∂p
γ μui(p)

)
+ O(q2). (28)
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The first correction due to recoil here depends on the electron spin [38] ζ, and in the quasiclassical regime with f → i (no spin
flip) it looks as follows (we omit the index i) [39]:

ū(p)γ μ ∂u(p)

∂ p j
− ∂ ū(p)

∂ p j
γ μu(p) = 2i

{
1

ε + m
[ζ × p] j,

p j

ε

ζ × p
ε + m

+ e j × ζ,

}
, (29)

where e j is a unit vector along the jth axis. So, this correction is generally attenuated as ω/ε � 1, coincides with the
corresponding term in Eq. (2.4) of Ref. [9], and vanishes for an unpolarized electron. Therefore, for an unpolarized electron
we have simply

ū f (p − q/2) γ μui(p + q/2) → 2pμ = 2muμ, (30)

even if the recoil is not vanishing. In this case, the integral over q in (26) yields the following function:

ñ(x, p, t ) =
∫

d3q

(2π )3

ψ∗(p − q/2, t )√
2ε(p − q/2)

ψ (p + q/2, t )√
2ε(p + q/2)

eiqx, (31)

which is very similar to the electron Wigner function Eq. (19), but transforms differently under the Lorentz boosts. So the current
for an polarized electron looks like

jμf →i(x) =
∫

d3 p

(2π )3
2pμ ñ(x, p, t ) (32)

and depends on the electron’s phase ϕ. We stress that this current is not fully classical because the quantum recoil and the packet’s
phase are taken into account, but the remaining quantum numbers (say, orbital angular momentum) do not change during the
radiation.

Let us now analyze effects of the packet’s shape and size for an unpolarized electron. The former are defined by the phase ϕ,
while the latter arise due to the finite momentum width δp = 1/σ

(e)
⊥ ≡ 1/σ⊥. Let us first denote

�(p) = ψ (p)√
2ε(p)

. (33)

Then we represent the new wave functions according to Eq. (20) and find

�∗(p − q/2)�(p + q/2) =
{
|�|2 + 1

4
qiq j

[
|�| ∂2|�|

∂ pi∂ p j
−

(
∂|�|
∂ pi

)(
∂|�|
∂ p j

)]
+ O(q4)

}
exp

{
iq

∂ϕ

∂p
+ O(q3)

}
, (34)

where � ≡ �(p), ϕ ≡ ϕ(p). The exponent here is due to electric and magnetic dipole moments of the packet. The mean value
of the former is [19]

d = −
〈
∂ϕ(p)

∂p

〉
. (35)

However, the true intrinsic electric dipole moment of an electron packet is vanishing as it is prohibited by the CPT theorem of
the standard model. The mean value of the electric moment (but not of the magnetic one) can be killed by shifting the origin of
coordinates or by the choice of initial conditions x0 [19], which implies the following phase rotation:

� → � exp {−ix0p}, x0 = −d =
〈
∂ϕ

∂p

〉
. (36)

As a result, we have instead

�∗(p − q/2)�(p + q/2) =
{
|�|2 + 1

4
qiq j

[
|�| ∂2|�|

∂ pi∂ p j
−

(
∂|�|
∂ pi

)(
∂|�|
∂ p j

)]
+ O(q4)

}
exp

{
iq

(
∂ϕ

∂p
−

〈
∂ϕ

∂p

〉)
+ O(q3)

}
.

(37)

This ambiguity—that is, dependence of the matrix element on the initial conditions—is well-known (see, for instance, [7,8]) and
for a non-Gaussian packet such a choice of the origin guarantees that we work with intrinsic values of the multipole moments.

One can also expand the energies in the exponent as follows:

ε(p + q/2) − ε(p − q/2) = qu + O(q3), u ≡ u(p) = p
ε(p)

. (38)
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After this, the integral over q yields a delta function and the current looks as follows (note that we use both ψ and � = ψ/
√

2ε

here):

jμf →i(x) =
∫

d3 p

(2π h̄)3

pμ

ε

(
|ψ |2 + 1

4
Di j p̂i p̂ j + O(h̄4)

)
δ

[
x − ut + h̄

(
∂ϕ

∂p
−

〈
∂ϕ

∂p

〉)]

≡
∫

d3 p

(2π h̄)3

(
|ψ |2 + 1

4
Di j p̂i p̂ j + O(h̄4)

)
jμquasi-cl.(x, p, t ; h̄),

jμquasi-cl.(x, p, t ; h̄) = pμ

ε
δ

[
x − ut + h̄

(
∂ϕ

∂p
−

〈
∂ϕ

∂p

〉)]
,

Di j = 2ε

[
|�| ∂2|�|

∂ pi∂ p j
−

(
∂|�|
∂ pi

)(
∂|�|
∂ p j

)]
, (39)

where p̂ = −ih̄∇ and we have restored Planck’s constant h̄. Comparing this with Eq. (32), we see that the unpolarized electron’s
Wigner function is everywhere positive now, even though the packet is not Gaussian (see Ref. [4]). Treating the term O(h̄) as a
perturbation, one can also write this via the fully classical current as follows:

jμf →i(x) =
∫

d3 p

(2π h̄)3

{
|ψ |2 + i|ψ |2

(
∂ϕ

∂p
−

〈
∂ϕ

∂p

〉)
p̂

+1

4

[
Di j − 2|ψ |2

(
∂ϕ

∂ pi
−

〈
∂ϕ

∂ pi

〉)(
∂ϕ

∂ p j
−

〈
∂ϕ

∂ p j

〉)]
p̂i p̂ j + O(h̄3)

}
jμcl.(x, p, t ),

jμcl.(x, p, t ) = pμ

ε
δ(x − ut ). (40)

Depending on the boundary conditions, the rectilinear motion
here corresponds either to Cherenkov radiation or to transition
radiation, etc. A generalization of this for arbitrary classical
motion in a given field is obvious:

ut → r(t ).

Thus the transition current represents a functional of the
classical current and of the classical trajectory [7–9] and its
quantum corrections due to the recoil are proportional to h̄ and
depend on the derivatives of the packet’s phase. Remarkably,
even when the recoil is vanishing (h̄ω/ε → 0) the current
still represents a superposition of trajectories with the differ-
ent momenta [7,8] defined by the wave function |�|2, about
which we have not made any assumptions. If this function is,
for instance, of a Gaussian form,

|�|2 ∝ exp

{
− (p − 〈p〉)2

(δp)2

}
, (41)

the current is equal to

jμf →i(x) = jμcl.(x, 〈p〉, t ) + O
(

(δp)2

m2

)
, (42)

and it acquires an inherently quantum nonparaxial correction
[39]

(δp)2

m2
= λ2

c

σ 2
⊥

� 1 (43)

due to the packet’s finite size σ⊥ = h̄/δp. Thus this size can
influence the radiation, although only when the packet is very
narrow, σ⊥ � λc, so the ratio λ2

c/σ
2
⊥ does not exceed 10−6 for

relevant parameters. It is these corrections that are neglected
in such quasiclassical methods as, for instance, the operator
method [13,14] or the eikonal approximation [8].

The packet’s shape, defined by the phase ϕ, influences the
first quantum correction to the current but not the leading
term. An important exception here, however, is the vortex
electrons because for them [19,39]

|ψ |2 ∝ p2|�|
⊥ ,

and the transition current depends on the absolute value of the
electron OAM |�| already in the leading order, which results
in an enhancement of the nonparaxial correction (43) [39]:

λ2
c/σ

2
⊥ → |�| λ2

c/σ
2
⊥. (44)

Let us now derive a more general expression for the cur-
rent, which allows one to study two opposite limiting cases:
(1) a delocalized plane-wave electron and (2) a pointlike clas-
sical particle. We suppose that the electron wave function has
a Gaussian envelope, analogously to Eq. (16):

ψ (p) = ψ̃ (p) exp

{
− (p − 〈p〉)2

2(δp)2

}
, ψ̃ (p) = |ψ̃ | eiϕ. (45)

Then instead of the delta function the integral over q yields
the following result:

jμf →i(x) = (δp)3

π3/2h̄3

∫
d3 p

(2π h̄)3

pμ

ε

(
|ψ̃ |2 + (δp)2

2

{
Tr Di j − 2σ−2

⊥

[
x − ut + h̄

(
∂ϕ

∂p
−

〈
∂ϕ

∂p

〉)]
i

×
[

x − ut + h̄

(
∂ϕ

∂p
−

〈
∂ϕ

∂p

〉)]
j

Di j

}
+O[(δp)4]

)
exp

{
− (p − 〈p〉)2

(δp)2
− σ−2

⊥

[
x − ut + h̄

(
∂ϕ

∂p
−

〈
∂ϕ

∂p

〉)]2}
, (46)
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where σ⊥ = h̄/δp = O(h̄). When σ⊥ → 0 (or h̄ → 0) for ar-
bitrary δp, we return to Eq. (40). However when δp → 0 for
nonvanishing σ⊥, we have

jμf →i(x) = const |ψ̃ (〈p〉)|2 〈p〉μ
ε

≡ 1

V

〈p〉μ
〈ε〉 , (47)

which is a delocalized current of the plane-wave state:

ψ (x) = (2〈ε〉V )−1/2 ui(〈p〉) exp{−i〈p〉x}. (48)

We now return to Eq. (40) and notice that the first
correction due to recoil in the matrix element S f i =
−ie

∫
d4x jμf i(x)A∗

μ(x) looks as follows after the integration by
parts (we again omit h̄):

S f i ∝ ie
∫

d4x
d3 p

(2π )3
|ψ |2

(
∂ϕ

∂p
−

〈
∂ϕ

∂p

〉)
× jμcl.(x, p, t ) ∇A∗

μ(x)|x=ut . (49)

Analogously, the second quantum correction contains

∇i∇ jA
∗
μ(x)|x=ut .

Thus we see that the series in powers of the recoil—that is,
ω/ε—automatically generates a multipole series in the ma-
trix element. In particular, the second correction in Eq. (40)
depends on

(∂ϕ/∂ pi )(∂ϕ/∂ p j )

and, therefore, on the packet’s electric quadrupole moment
[19,20]. For a plane-wave photon, we have ∇A∗

μ(x)|x=ut =
−ikA∗

μ(t, ut ). The radiation intensity dW defined by |S f i|2
thus includes the leading classical term and two sorts of quan-
tum corrections: (1) those due to the recoil, which also depend
on the packet’s multipole moments due to the phase ϕ, and
(2) the nonparaxial corrections due to the packet’s finite size.
The intensity also depends on the interference between the
multipole contributions—see Eq. (3). Importantly, these con-
clusions hold both (i) for radiation of an accelerated electron
in an external field and (ii) when the particle interacts with a
medium and no acceleration is required (Cherenkov radiation,
transition radiation, Smith-Purcell radiation, etc.).

Finally, when the packet’s quantum numbers, which define
its shape, are large, we can neglect the terms of the order
of ω/ε compared to the contribution from the phase ϕ, as
we noted in the beginning of this section. Say, for a vortex
electron we have

ϕ = �φ

and the first quantum correction to the current and to the ma-
trix element depends on the sign of the OAM � via ∂ϕ/∂p. One
can retrieve this magnetic dipole contribution by the following
asymmetry:

dW (�) − dW (−�)

dW (�) + dW (−�)
= dWeμ

dWe
= O

(
�
ω

ε

)
, (50)

analogously to Ref. [37], which is � times larger than the
corresponding spin asymmetry for a Gaussian packet. Like-
wise, the quadrupole contribution without the spreading is
attenuated as �2 λ2

c/σ
2
⊥ (see the next section), which can also

be much larger than ω/ε for |�| � 1. Compared to the qua-
siclassical regime of emission by relativistic particles [8,13],

in which the electron motion is classical but the recoil is kept,
here we have the opposite situation: the recoil is vanishing but
the effects due to non-Gaussianity of the electron packet are
enhanced.

Before we come to calculations of the Smith-Purcell ra-
diation, we emphasize that while the above first-order QED
approach is applicable not only to processes in the given
external fields but also to radiation in a given medium, the
diffraction radiation and Smith-Purcell radiation from a con-
ducting grating cannot, strictly speaking, be described in a
model-independent way within the first order of the perturba-
tion theory in QED. This is because we either have to take
the incident field of the moving electron as given (that is, to
neglect the electron’s recoil) and to consider radiation of the
induced surface current (as in Refs. [17,25,27,28,31,40,41])
or to take a given surface wave and to consider radiation of
the electron in its field (as in Refs. [2,5]), that is, to neglect
the recoil of the surface wave. Clearly, the predictions of
both these phenomenological approaches can be different,
exactly as they are so already in the classical framework (see
Ref. [30]). In what follows, we rely on the former (surface
current) approach, the validity of which was experimentally
verified for diffraction radiation and Smith-Purcell radiation
(see, for instance, Ref. [42]) and which is a limiting case of
a more general polarization current method, applicable for
arbitrary permittivity [28].

IV. SMITH-PURCELL RADIATION FROM A VORTEX
PACKET

Here we study how quantum dynamics of the emitting
electron packet—that is, nonvanishing 〈ρ〉(t )—influences the
radiation characteristics. A freely propagating packet always
spreads, but this does not affect the radiation intensity for
packets that are Gaussian in the rest frame with the equal
transverse and longitudinal uncertainties, σ (e)

⊥ = σ
(e)
|| , because

for such packets all the higher multipole moments are van-
ishing [19] and the particle radiates as if its charge were
confined to a point, dW = dWe. The packets that are ei-
ther non-Gaussian or nonsymmetric in the rest frame, σ

(e)
⊥ �=

σ
(e)
|| , can possess a magnetic dipole moment, an electric

quadrupole moment, and so on. For such packets there ap-
pear additional terms in Eq. (3) because the far-field intensity
dW is generally sensitive to the size of the electron packet
and to its shape defined by the phase ϕ(p) of the wave
function. The vortex electrons with OAM � [18], the Airy
beams [24], as well as coherent superpositions of states
can serve as such non-Gaussian packets and they also have
an electric quadrupole moment, which—unlike the magnetic
moment—has a finite radius defined by the packet’s coher-
ence length. Importantly, the quadrupole contribution comes
about only beyond the paraxial approximation [39], which
implies that the packet is narrow (unlike that of Ref. [2])
and the OAM is large � � 1. In this nonparaxial regime,
an electron radiates in the far field as if it had its charge
spread over the entire region of σ

(e)
⊥ , while the contribution

depending on the coherence length can be nonlinearly en-
hanced.
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Consider Smith-Purcell radiation generated by a nonrela-
tivistic vortex electron moving with a mean momentum 〈p〉 =
βm along the z axis at the impact parameter h with respect

to an ideally conducting grating of N strips with a period d
(see Fig. 2). The vortex electron is described as a generalized
(nonparaxial) Laguerre-Gaussian packet [39,43]:

ψ�,n(x, t ) =
√

n!

(n + |�|)!
i2n+�

π3/4

ρ|�|

(σ (e)
⊥ (t ))|�|+3/2

L|�|
n

(
ρ2

(σ (e)
⊥ (t ))2

)
exp

{
− it〈p〉2/2m + i〈p〉z + i�φr

− i(2n + |�| + 3/2) arctan(t/td ) − 1

2(σ (e)
⊥ (t ))2

(1 − it/td )[ρ2 + (z − 〈u〉t )2]

}
,

∫
d3x |ψ�,n(x, t )|2 = 1, σ

(e)
⊥ (t ) = σ

(e)
⊥

√
1 + t2/t2

d , (51)

which is an exact solution to the Schrödinger equation and
where λc = 1/m ≈ 3.9 × 10−11 cm is the Compton wave-
length, and td is an effective diffraction time. The difference
of this nonparaxial solution from the paraxial (approximate
solution) Laguerre-Gaussian packets described in Ref. [18] is
important for nonrelativistic particles due to symmetry prop-
erties of the Gouy phase and the CPT theorem [39,43]. Here,
L|�|

n are associated Laguerre polynomials; n = 0, 1, 2, . . . de-
fines the number of radial maxima; and in what follows we
study the case n = 0 with one maximum only. The magnetic
moment and the electric quadrupole moment of such a vortex
packet are [19,20,43]

μ = ẑ
�

2m
, Qi j (t ) = |�| [σ (e)

⊥ (t )]2 diag{1/2, 1/2,−1}.
(52)

The mean radius of such a packet is
√|�| times larger than

σ
(e)
⊥ ≡ σ

(e)
|| [39,44]:

〈ρ〉 ≈
√

|�| σ (e)
⊥ . (53)

Neglecting both the recoil and the quadratic corrections
dWμ, dWQ, etc., we have the following radiation intensity:

dW = dWe + dWeμ + dWeQ, (54)

where neither dWe nor dWeμ depends on the packet’s width,
but dWeQ does. We calculate these terms according to the
model in Ref. [31] in which the surface current density

js(x, ω) = 1

2π
ek × [n × E(x, ω)] (55)

is induced by the given field

E = Ee + Eμ + EQ (56)

of the first three moments of the vortex packet (51) derived
in Ref. [43]. Here n is a unit vector normal to the grating
(see Fig. 2), and ek = {sin  cos �, sin  sin �, cos }. The
radiation field in the wave zone and the intensity are [31]

ER = iω
eir0ω

r0

∫
S

d2x js(x, ω) e−ikr,
d2W

dωd

= r2

0 |ER|2,
(57)

where the integration is performed along the surface of the
grating and r0 is a distance to the detector.

The leading (classical) term dWe is defined by Eqs. (57)
and (58) in Ref. [28], while the quantum contribution of the
magnetic moment is found as [45]

d2Weμ

dωd

= �

m

ω cos � sin (βγ 2 sin2  + cos )

γ 2(1 − β cos )2
√

1 + β2γ 2 cos2 � sin2 

× |F |2 exp

(
− 4πh

βγλ

√
1 + β2γ 2 cos2 � sin2 

)
,

F = 2
sin

[
aω
2 (β−1 − cos )

]
ω(β−1 − cos )

sin
[

Nd
2 ω(β−1 − cos )

]
sin

[
d
2 ω(β−1 − cos )

] .

(58)

When the number of strips is large, N � 1, the factor F yields
a delta function the zeros of which give the Smith-Purcell
dispersion relation:

λg = d

g
(β−1 − cos ), g = 1, 2, 3, . . . . (59)

By using this delta function, one can integrate over frequen-
cies, d2W/dωd
 → dW/d
. Clearly, the magnetic moment
contribution compared to the classical contribution of a charge
is attenuated as [see Eq. (50)]

dWeμ

dWe
∼ �

ω

ε
cos �, (60)

it vanishes at � = π/2 due to the symmetry considerations in
accord with Ref. [37], and it depends on the sign of the OAM.
This ratio can reach 10−4 for � ∼ 103 and λ ∼ 1 μm. Impor-
tantly, both dWe and dWeμ linearly grow with the number of
strips N or with the grating’s length L = Nd (see, for instance,
Refs. [28,30]).

The next quantum correction due to the quadrupole mo-
ment also has a common envelope (5) and it represents a sum
of three different terms:

dWeQ = dWeQ0 + dWeQ1 + dWeQ2 , (61)
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where

dWeQ0

dWe
∼ |�| (σ (e)

⊥ )2

h2
eff

− quasiclassical quadrupole contribution,

dWeQ1

dWe
∼ |�| λ2

c

(σ (e)
⊥ )2

− nonparaxial quantum correction [39],

dWeQ2

dWe
∼ N2 |�| λ2

c

(σ (e)
⊥ )2

− dynamically enhanced nonparaxial quantum correction. (62)

Here heff = βγλ/2π is denoted. The enhancement of dWeQ2

comes about due to spreading of the packet [see Eq. (51)] and
the corresponding integration of the spreading term along the
grating in Eq. (57):

dWeQ ∝
∫

dz
z2

z2
R

∝ (Nd )3

z2
R

, zR = βtd . (63)

When σ
(e)
⊥ � λ, two nonparaxial terms in (62) dominate and

we present here only the last one, needed for our purposes.
After the integration over frequencies for N � 1 and for the
first diffraction order g = 1 it is

dWeQ2

d

= |�| λ2

c

(σ (e)
⊥ )2

dWe

d


1

3β4γ 4

f (N )

λ2
1

,

f (N ) = 3πad cot
(aπ

d

)
+ 3π2 a2 + 3π ad (N − 1)

+ d2 [π2(2N2 − 3N + 1) − 3]

≈ 2π2d2N2 when N � 1. (64)

For very wide packets, σ
(e)
⊥ � λ, the quadratic corrections

dWμ and dWQ and the higher-order terms in the multipole
expansion can become important, which is why we do not
consider the case σ

(e)
⊥ � 33 μm of Ref. [2].

Importantly, both the corrections to dWe in Eq. (54) have a
quantum origin and they vanish for the symmetric Gaussian
packet with � = 0. While dWeμ is � times larger than the
recoil (i.e., �ω/ε � ω/ε, see Ref. [37]), the term dWeQ is due
to quantum character of the trajectory [6,9,10,14], which is
also supposed to be larger than the recoil. Such geometric
corrections can be noticeable for the emission of a coher-
ent superposition of packets with a not-everywhere positive
Wigner function [4,11]. However, as we show here, they can
also be nonlinearly enhanced due to the spreading, while the
recoil stays vanishing, ω � ε, which can take place even for
a single-electron state with an everywhere positive Wigner
function.

Expectedly, the dynamical contribution (64) is suppressed
in relativistic case, γ � 1, when the spreading is marginal
or when the radiation formation length is smaller than the
Rayleigh length zR. For nonrelativistic energies, however, the
Rayleigh length does not exceed a few cm for relevant param-
eters and the spreading can noticeably modify the radiation if
the length L of the grating of N strips is large: L = Nd � zR.
For a long grating, N � 1, the ratio dWeQ2/dWe can be only
moderately attenuated,

dWeQ2/dWe � 1,

while both the ordinary nonparaxial contribution and the re-
coil can still be small:

dWeQ1/dWe � 1, ω/ε � 1.

Most importantly, while the classical intensity dWe linearly
grows with the number of strips N , the nonparaxial contribu-
tion dWeQ2 grows nonlinearly as N3. This remarkable feature
is a direct consequence of the delocalized nature of charge
in the spreading twisted packet and it puts an upper limit on
the grating length Lmax = Nmaxd for which the radiation losses
stay small compared to the particle’s energy. This limit can be
derived by demanding that both the recoil and the quadratic
corrections can be neglected, ω/ε ∼ λc/λ � dWeQ2/dWe �
1, which yields √

λc

λ

σ
(e)
⊥

λc|�| � N � σ
(e)
⊥

λc|�| . (65)

For the moderately large OAM, |�| ∼ 10–100, and σ
(e)
⊥ ∼

1 nm–1 μm, we have σ
(e)
⊥ /λc|�| ∼ 10–105, so the number

Nmax can be taken as 0.1–0.2 of this value. Note that in
contrast to the magnetic moment effects [37], the observation
of this nonlinear enhancement does not necessarily require as
large an OAM as possible.

The easiest way to detect this nonlinear effect is to perform
measurements in the perpendicular plane, around

 = � = π/2,

FIG. 3. Dependence of Smith-Purcell radiation on the number
of strips for d = 10 μm, σ

(e)
⊥ = 100 nm, h = 2.7 μm, zR ≈ 1.3 mm,

Nmax ≈ 3500, Lmax ≈ 3.5 cm,  = � = π/2. While for a point
charge this dependence is linear (the solid line), a nonpoint vortex
packet with a quadrupole moment reveals an N3 dependence for
Nd � zR, where zR is the Rayleigh length from Eq. (63).
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FIG. 4. Polar dependence of Smith-Purcell radiation for d =
100 μm, σ

(e)
⊥ = 20 nm, � = 10, h = 33 μm, zR ≈ 70 μm, Nmax ≈

800, Lmax ≈ 8 cm,� = π/2. The maximum (the dot) is shifted due
to the quadrupole contribution.

and to compare the radiation from at least three gratings of
different length. In this geometry, the magnetic moment term
vanishes, dWeμ = 0, and dWeQ2 can reach some 10–20% of
the leading term dWe. The effect can more easily be detected
in IR and THz ranges, for which the grating period should be
larger than 10 μm. In Fig. 3 we present the nonlinear growth
of the intensity with the number of strips, which can be seen
with the naked eye, while in Fig. 4 the enhancement for the
small polar angles,

dWeQ2 ( = 0)/dWeQ2 ( = π/2) ≈ 4,

is shown accompanied with a several-degree shift of the max-
imum. If detected, this shift could also serve as an evidence of
the quadrupole contribution.

As the electron coherence length in the vicinity of a cath-
ode does not exceed a few nm [46,47] and for vortex packets
it scales as σ

(e)
⊥ ∝ √|�|, the grating must be placed not too far

from the vortex electron source or, alternatively, the focusing
can be applied. When detecting many photons from electrons
of a beam, it is important to have the beam angular divergence
as small as possible, otherwise many electrons could hit the
grating well before they reach the part where the quadrupole
contribution becomes noticeable. For the optical range and
the grating period d = 416 nm, the maximal grating length
Lmax ∼ 10 μm matches the effective interaction length of the
beam used in Ref. [2] (the distance before an electron hits

the grating) for σ
(e)
⊥ ∼ 10 nm and |�| ∼ 200, which seems

feasible, although the beam focusing could be needed. Instead
of minimizing the beam divergence, one could also rotate the
grating so as to minimize the electron losses, although at the
expense of statistics.

The above nonlinear enhancement can also reveal itself in
other processes with the nonrelativistic non-Gaussian packets
for which the radiation formation length can be much larger
than the Rayleigh length, such as Cherenkov radiation and
diffraction radiation in a cylindrical channel of a finite length,
transition radiation in a slab, Compton emission in a laser
pulse, and so on.

V. CONCLUSION

Concluding, we have argued that the classical prewave
zone effect could have been the reason for the wide azimuthal
distributions of Smith-Purcell radiation reported in Ref. [2].
The continuous current density interpretation of the wave
function can still be used when the radiation intensity de-
pends on the electron coherence length, which is generally the
case but mostly for nonrelativistic electrons. Taking the same
example of Smith-Purcell radiation, we have predicted a non-
linear enhancement of the quantum nonparaxial corrections to
the classical radiation intensity due to the nonlocal nature of
charge in a spreading packet of the vortex electron. Moreover,
any nonrelativistic and non-Gaussian or highly nonsymmetric
packet with an electric quadrupole moment can emit radiation
in the far field as if its charge were spread over the entire
coherence length. This nonpoint contribution can reveal itself
in a nonlinear growth of the intensity for a family of emission
processes when the radiation formation length exceeds the
Rayleigh length. Our findings support Bohr’s complementar-
ity principle and demonstrate that a choice between the two
seemingly contradictory interpretations of a square modulus
of the wave function depends on the experimental conditions,
in particular, on a distance to the detector, and on a quantum
state and energy of the projectile.
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