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Quantum state smoothing is a technique to construct an estimate of the quantum state at a particular time,
conditioned on a measurement record from both before and after that time. The technique assumes that an
observer, Alice, monitors part of the environment of a quantum system and that the remaining part of the
environment, unobserved by Alice, is measured by a secondary observer, Bob, who may have a choice in how
he monitors it. The effect of Bob’s measurement choice on the effectiveness of Alice’s smoothing has been
studied in a number of recent papers. Here we expand upon the Letter which introduced linear Gaussian quantum
(LGQ) state smoothing [Phys. Rev. Lett. 122, 190402 (2019)]. In the current paper we provide a more detailed
derivation of the LGQ smoothing equations and address an open question about Bob’s optimal measurement
strategy. Specifically, we develop a simple hypothesis that allows one to approximate the optimal measurement
choice for Bob given Alice’s measurement choice. By “optimal choice” we mean the choice for Bob that will
maximize the purity improvement of Alice’s smoothed state compared to her filtered state (an estimated state
based only on Alice’s past measurement record). The hypothesis, that Bob should choose his measurement so
that he observes the back-action on the system from Alice’s measurement, seems contrary to one’s intuition
about quantum state smoothing. Nevertheless, we show that it works even beyond a linear Gaussian setting.

DOI: 10.1103/PhysRevA.103.012213

I. INTRODUCTION

In parameter estimation, the task is to estimate unknown
parameters, denoted by a vector x, from available information
such as measurement records. A powerful tool for parameter
estimation is the probability density function (PDF), often
called the state of the system, as it is possible to compute
from this any estimate of x, e.g., the mean or the mode
of the PDF. This turns the problem into one of state es-
timation. There are numerous techniques for classical state
estimation. Specifically, for continuous measurements there
are the techniques of filtering and smoothing [1–6] for classi-
cal states. Filtering uses any measurement information prior
to the estimation time τ , the “past” measurement record←−
O , to estimate the state of the system, yielding the filtered

state ℘F(x) := ℘(x|←−O ). The complement to the filtered state
is the retrofiltered effect ER(x) := ℘(

−→
O |x), more commonly

referred to as the likelihood function [3,4,7] for the future
measurement record

−→
O given x. The estimation technique of

smoothing combines the filtered state and retrofiltered effect
to obtain a smoothed state ℘S(x) := ℘(x|←→O ) ∝ ER(x)℘F(x),
conditioned on both past and future measurement records, the
“past-future” measurement record

←→
O . While smoothing may

be inapplicable for some purposes, as it requires information
after the estimation time, it is a more accurate estimation
technique for data postprocessing than filtering as it utilizes
more information.

As we make the transition to quantum technologies, it
becomes increasingly important to estimate the quantum state

ρ of a system. There are well-known techniques to estimate
quantum state preparation from an ensemble of measurement
results, e.g., tomography [8]. Here, however, we are interested
in techniques using a single realization of a continuous mea-
surement record, such as quantum trajectory theory [9–11].
This technique is analogous to the classical technique of filter-
ing in that it only uses the past measurement record to obtain
the filtered quantum state ρF(τ ). As in the classical case, the
complement of the filtered quantum state is the retrofiltered
quantum effect ÊR(τ ), a positive operator defined such that
Tr[ÊRρ] = ℘(

−→
O |ρ).

For the quantum analog of smoothing, it is not as simple
as combining the filtered state and the retrofiltered effect as it
was in the classical case. If we were to combine them follow-
ing the pattern of the classical case, �(τ ) ∝ ρF(τ )ÊR(τ ), the
resulting operator would not be a valid quantum state. That
is, in general the operator is not positive semidefinite [12–18].
We do not want to give the reader the impression that this
operator is useless; in fact, it has an interesting connection to
weak values [13,19,20]. Consequently, a symmetrized version
of �(τ ) has been referred to as the smoothed weak-value
(SWV) state �SWV [18,21].

There is, however, a quantum state smoothing formalism
developed by Guevara and Wiseman [15] which guarantees
a valid smoothed quantum state. The formalism considers
a quantum system partially observed by an observer, Alice,
whose task is to estimate the true state of the systems using
only her observed record. However, for Alice to obtain a valid
smoothed quantum state, that is, a state conditioned on her
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FIG. 1. A diagrammatic representation of the quantum state
smoothing formalism. Bob, who has access to both the observed
record O and the unobserved record U, is able to obtain the best esti-
mate of the quantum state, the true state ρT := ρ←−

O
←−
U of the quantum

system Q. Alice, on the other hand, has access to only the observed
record O. If Alice does not know of the existence of the U, then her
best estimate would be the filtered estimate ρF := ρ←−

O . However, if
Alice knows the measurement setting Bob used to obtain U, she can
utilize the full past-future observed record to obtain the smoothed
state ρS := ρ←→

O , which is a more accurate estimate of Bob’s true state
than the filtered state.

past-future measurement record, it is necessary to introduce
a secondary observer, say Bob, who gathers all information
unobserved by Alice, see Fig. 1. By using both Alice’s and
Bob’s measurement records to estimate the quantum state,
we would obtain the true quantum state, a state containing
maximal information about the quantum system. The true
state is crucial to calculating the smoothed state.

The smoothed quantum state has been shown to offer a
better estimate of the true state than the conventional filtered
state, where the improvement is quantified by the state pu-
rity [15,21,22]. Interestingly, the purity improvement of the
smoothed state over the filtered state depends on both Al-
ice’s and Bob’s choices of measurement on their parts of the
system’s environment. Note, these choices do not affect the
unconditioned system evolution, described by a master equa-
tion. This raises an interesting question: How should Alice
observe and “unobserve” (that is, Bob observe) the quantum
system in order to obtain the maximum purity improvement
for the smoothed quantum state? Recently [22], the optimal
measurement strategy for Alice and Bob has been investigated
for a single qubit example. However, due to the vast number
of unobserved measurement records that are needed in order
to calculate the smoothed quantum state in such a system, the
authors were only able to consider a handful of measurement
scenarios.

Since the original proposal in 2015 [15], the quantum state
smoothing theory has been adapted by the present authors to
linear Gaussian quantum (LGQ) systems [21]. Thanks to the
nice properties of LGQ systems, the theory of Ref. [21] pro-
vided simple closed-form solutions for the smoothed quantum
state, enabling its properties to be investigated either analyti-
cally or semianalytically [18,21]. If we restrict our analysis to

LGQ systems, though we are also restricting to diffusive-type
unravelings of the system, we can drastically increase the
number of measurement scenarios for Alice and Bob in the
search for the optimal measurement strategy. As a result, we
can numerically determine the optimal diffusive measurement
scenario for Alice and Bob for any type of LGQ system. But
can we understand the results intuitively?

In this paper, we first review the necessary theory re-
quired for LGQ state smoothing and provide a more detailed
derivation of the theory than that presented in Ref. [21]. We
then present numerically simulated LGQ trajectories, show-
ing their means and covariances, of the filtered, SWV, and
smoothed quantum states. This is to observe the differences
in these estimators and analyze their properties as a function
of time. As expected, we observe that the smoothed quantum
state estimates the true state better than the filtered state could.
The SWV state, on the other hand, performs very differently.

As the main focus of this paper, we present three possible
hypotheses for the optimal measurement strategy for Alice
and Bob, and study how well they predict the optimal mea-
surements found numerically for two LGQ physical systems:
an on-threshold optical parametric oscillator and a stochastic
linear attenuator. The most successful strategy has a surpris-
ingly counterintuitive logic to it. Lastly, we generalize the
logic behind the most successful hypotheses from the LGQ
setting to the qubit setting by defining analogous quantities for
a driven qubit measured using homodyne detections. More-
over, we find that the success of the counterintuitive strategy
is replicated in the qubit system.

The structure of this paper is as follows. In Sec. II we will
briefly review the classical linear Gaussian (LG) state estima-
tion. Then, in Sec. III we review LGQ systems along with the
LGQ state smoothing theory. Next, in Sec. IV we introduce
the two physical systems that we will consider throughout the
paper. We simulate the trajectories for the filtered, true, SWV,
and smoothed quantum states in Sec. V. Finally, in Sec. VI we
find a simple hypothesis for the best measurement strategy for
Alice and Bob to maximize the purity of the smoothed state
compared to the filtered state, which works for our two LGQ
examples and, suitably generalized, for a very different qubit
example.

II. CLASSICAL LG STATE ESTIMATION

For a classical dynamical system, a state of knowl-
edge of the system is defined as the PDF ℘(x̌), where
x̌ = (x̌1, x̌2, ..., x̌D)� is the vector of D parameters required to
completely describe the system, with � denoting the trans-
pose. Note, we have used the wedge mark on x̌ to make it
clear that this is a dummy variable for the PDF and not the
corresponding random variable which we denote by x. We will
restrict our analysis to Gaussian states, ℘(x̌) = g(x̌; 〈x〉,V ).
That is, the state is specified by its mean 〈x〉 and covariance
matrix V = 〈xx�〉 − 〈x〉〈x〉�. In order to guarantee that the
state remains Gaussian throughout its evolution even when
conditioned on continuous observation, the system must be
initialized in a Gaussian state and must satisfy the following
constraints [1–6,11]. First, the system’s dynamical evolution
must be described by a linear Langevin equation

dx = Axdt + Edvp. (1)
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Here A and E are constant matrices and dvp is the process
noise, which is a vector of independent Wiener increments
that satisfies

E[dvp] = 0, dvp(dvp)� = Idt, (2)

where E[...] denotes an ensemble average over all possible
realizations of the noise. The second constraint is that any
measurement record obtained must be linear in x, i.e.,

ydt = Cxdt + dvm, (3)

where C is a constant matrix and dvm is the measurement
noise, a vector of independent Wiener increments satisfying
similar conditions to Eq. (2). There may exist some correla-
tions between the measurement noise and the process noise
of the system, for example, from measurement back-action,
which can be described by a cross-correlation matrix ��dt =
Edvp(dvm)� [11]. We will note that the majority of classical
texts [1–6] on this topic assume that � = 0.

The classical LG systems are defined by the above con-
straints. We can condition the estimate of the LG state on
the past measurement record to obtain the filtered estimate
℘F(x̌) = g(x̌, 〈x〉F,VF), whose mean and covariance are given
by the Kalman-Bucy filtering equations [11,23–26],

d〈x〉F = A〈x〉Fdt + K+[VF]dwF, (4)

dVF

dt
= AVF + VFA�+ D − K+[VF]K+[VF]�, (5)

with initial conditions 〈x〉F(t0) = 〈x〉0 and VF(t0) = V0. Here,
dwF := ydt − C〈x〉Fdt is a vector of innovations, D = EE�
is the diffusion matrix, and

K±[V ] := VC�± �� (6)

is the optimal Kalman gain matrix as a function of the covari-
ance.

As mentioned earlier, if we want to obtain a more accurate
estimate of the state, we can utilize the past-future measure-
ment record

←→
O as opposed to the past record

←−
O the filtered

state uses. The smoothed state obtained by using
←→
O can be

calculated using the filtered state according to

℘S(x̌) := ℘(x̌|←→O ) ∝ ER(x̌)℘F(x̌), (7)

where we have assumed that the system is Markovian. To
explicitly see the dependence on the measurement records,
we remind the reader that the filtered state is a function of
the past measurement record, ℘F(x̌) := ℘(x̌|←−O ). The retro-
filtered effect is the likelihood of a particular realization of
a future measurement record occurring from a configuration
x̌, i.e., ER(x̌) := ℘(

−→
O |x̌). Using Bayes’ theorem [27] results

in Eq. (7). As we already have calculated the filtered state,
all we need to calculate to obtain the smoothed state is the
retrofiltered effect.

If we apply Bayes’ theorem to the retrofiltered ef-
fect, we obtain ER(x̌) ∝ ℘(x̌|−→O )℘(

−→
O ). As we are using

the retrofiltered effect to calculate the smoothed state, the
future measurement record will be fixed and the prob-
ability ℘(

−→
O ) for that fixed record will be a constant.

As a result, the retrofiltered effect is ER(x̌) ∝ ℘(x̌|−→O ),

from which we can define a normalized retrofiltered effect
E ′

R(x̌) = ℘(x̌|−→O ). As we are limiting our discussion to Gaus-
sian systems, the normalized retrofiltered effect will be
a Gaussian, E ′

R(x̌) = g(x̌; 〈x〉R,VR), where the retrofiltered
mean 〈x〉R and corresponding covariance matrix VR are given
by

− d〈x〉R = −A〈x〉Rdt + K−[VR]dwR, (8)

− dVR

dt
= −AVR − VRA�+ D − K−[VR]K−[VR]�. (9)

Here dwR = ydt − C〈x〉Rdt , and K−[VR] is defined in Eq. (6).
These retrofiltering equations evolve backwards in time, as
evident from the negative sign on the left-hand side of both
equations, from a final uninformative state with VR(T ) = ∞.
However, due to the infinite final retrofiltered covariance,
there is no sensible final condition for the retrofiltered mean.

One can obtain more practical equations [28], which can
be used in numerical computations and the upcoming SWV
state, by instead solving for the inverse retrofiltered covari-
ance �R = V −1

R , referred to as an information matrix, and
defining a new “informative” mean zR = �R〈x〉R. Using the
identity

d

dt
V −1 = −V −1 dV

dt
V −1, (10)

we obtain the equations for the retrofiltered informative mean
and the information matrix

− dzR = (Ã − D̃�R)�zRdt + (C�− �R��)ydt, (11)

− d�R

dt
= �RÃ + Ã��R − �RD̃�R + C�C, (12)

with Ã = A − ��C and D̃ = D − ���. We can now simply
set the final conditions to be zR(T ) = 0 and �R(T ) = 0.

Finally, now that we have equations for both the filtered
state and the retrofiltered effect, we can compute the smoothed
state using Eq. (7). Due to the proportionality in Eq. (7), we
can replace the retrofiltered effect ER(x̌) with its normalized
counterpart E ′

R(x̌), as any proportionality constants will be
accounted for during the normalization process. Since both
the filtered state and retrofiltered effect are Gaussians, then by
the multiplicative property of Gaussians, the smoothed state
will also be Gaussian. That is, ℘S(x̌) = g(x̌; 〈xS〉,VS), with
smoothed mean and covariance [1,4,7,28–30]

〈x〉S = VS
[
V −1

F 〈x〉F + V −1
R 〈x〉R

]
, (13)

VS = [
V −1

F + V −1
R

]−1
. (14)

Using the definition of the retrofiltered informative mean and
information matrix in Eqs. (11)–(12), the equations can be
simplified to

〈x〉S = VS
[
V −1

F 〈x〉F + zR
]
, (15)

VS = [
V −1

F + �R
]−1

. (16)

We can see that the smoothed state is more accurate than the
filtered state through the covariances, where it is simple to see
that VF � VS in the N = 1 case.

012213-3



LAVERICK, CHANTASRI, AND WISEMAN PHYSICAL REVIEW A 103, 012213 (2021)

III. LGQ STATE ESTIMATION

A. Unconditioned quantum state

In the quantum state estimation, we are concerned with es-
timating a density operator ρ of a quantum system as opposed
to a PDF ℘(x̌). For an open quantum system, the evolution of
the state ρ, without observation, is governed by the Lindblad
master equation h̄ρ̇ = Lρ, with the initial condition ρ(t0) =
ρ0, where the Lindbladian superoperator L is

L• = −i[Ĥ, •] + D[ĉ] • . (17)

Here the Hamiltonian Ĥ describes the unitary dynamics of the
system, and ĉ ≡ (ĉ1, ĉ2, ..., ĉM )� is the vector of Lindblad op-
erators describing the interacting channels between the system
and the environment. It will also be useful to define the row
vector form of ĉ, which we denote by ĉ� = (ĉ1, ĉ2, ..., ĉM ),
where the reader should notice that the transpose does not act
on the operators within the vector. Furthermore, the conjugate
transpose is defined as the row vector ĉ† = (ĉ†

1, ĉ†
2, ..., ĉ†

M ).
Thus to obtain a column vector form for ĉ†, we need to take
the transpose. To denote this we will adopt the double dagger
notation of Ref. [31], i.e., ĉ‡ = (ĉ†

1, ĉ†
2, ..., ĉ†

M )�. We can now
express the nonunitary part of Eq. (17) as

D[ĉ]• = ĉ�• ĉ‡ − {ĉ†ĉ/2, •}, (18)

where {A, B} = AB + BA is the anticommutator. Without
monitoring the environment to gain information about the
quantum system, a solution to Eq. (17) is the most accurate
estimate of the system’s quantum state.

We now assume that we can describe the quantum sys-
tem by N bosonic modes. From this we define a vector of
2N operators x̂ = (q̂1, p̂1, ..., q̂N , p̂N )�, where q̂k and p̂k are
the canonical position and conjugate momentum operators,
respectively, describing the kth bosonic mode and satisfy-
ing the commutation relation [q̂k, p̂l ] = ih̄δkl . Furthermore,
we assume that the system’s Hamiltonian is quadratic and
the vector of Lindblad operators is linear in x̂, i.e., Ĥ =
x̂�Gx̂/2 and ĉ = (IN , iIN )C̄x̂, where G and C̄ are constant
real matrices and In denotes an n × n identity matrix. These
assumptions ensure that a state initially prepared in a Gaussian
state will remain Gaussian throughout the evolution. By a
Gaussian state we mean one whose Wigner function is Gaus-
sian, W (x̌) = g(x̌; 〈x̂〉,V ), with mean 〈x̂〉 and covariance V .
The mean and covariance are defined as 〈x̂k〉 = Tr[x̂kρ] and
Vk,l = Tr[{x̂k x̂l + x̂l x̂k}ρ/2] − 〈x̂k〉〈x̂l〉, respectively, where x̂k

is an element of x̂. For any state ρ the covariance matrix will
satisfy the Schrödinger-Heisenberg uncertainty relation [11],

V + ih̄	/2 � 0, (19)

where 	kl = −i[x̂k, x̂l ]/h̄ is a real symplectic matrix.
With these assumptions we can calculate the evolution of

the unconditioned LGQ state via its mean and covariance,

d〈x̂〉 = A〈x̂〉dt, (20)

dV

dt
= AV + VA�+ D, (21)

with the initial conditions for the mean and covariance
〈x̂〉(t0) = 〈x̂〉0 and V (t0) = V0, respectively. Here the drift and

diffusion matrices are [11]

A = 	(G + C̄�SC̄), D = h̄	C̄�C̄	�, (22)

respectively, with S = (
0 IN

−IN 0

)
being another symplectic

matrix.

B. Filtered quantum state

In order to obtain a better estimate of the system’s state
than the unconditioned state, we need to gain more informa-
tion about the system by measuring the environment. In this
work we focus on diffusive-type unravelings of the master
equation as opposed to a jump unraveling, as the former pre-
serves Gaussian states. The corresponding stochastic master
equation, sometimes referred to as a quantum filtering equa-
tion [9,10] for reasons that will become apparent, in the M
representation [31] is

h̄dρF = LρFdt +
√

h̄dw�
F H[M†ĉ]ρF. (23)

Here, H[â]• = â • + • â‡ − Tr[•(â + â‡)]•, and the initial
condition is ρF(t0) = ρ0. We have also implicitly introduced
a vector of measurement currents ydt = 〈M†ĉ + M�ĉ‡〉Fdt +
dwF where 〈•〉F := Tr[•ρF] through the vector of innovations
dwF, which satisfies similar conditions to Eq. (2).

To ensure that evolution under Eq. (23) does not result in
an invalid quantum state, it is necessary and sufficient [31] for
M to satisfy MM† = diag(η1, η2, ..., ηM ), where ηk can be in-
terpreted as the monitoring efficiency of the channel ĉk . Note,
we can also define an un-normalized filtered state ρ̃F, which
explicitly depends on the measurement results ydt (instead
of the innovation dwF), reflecting the observer’s knowledge
of the system. This un-normalized filtered state satisfies the
stochastic master equation

h̄dρ̃F = Lρ̃Fdt +
√

h̄y�H̃[M†ĉ]ρ̃Fdt, (24)

where H̃[â]• = â • + • â‡.
Restricting the discussion to LGQ systems, we can express

the vector of measurement current as

ydt = C〈x̂〉Fdt + dwF, (25)

where C = 2
√

h̄−1T �C̄, T � = (Re[M�], Im[M�]), and
dwF ≡ ydt − C〈x̂〉Fdt . From the stochastic master equation
in Eq. (23), we can derive the equations for the mean and
covariance of the filtered state, giving

d〈x̂〉F = A〈x̂〉Fdt + K+[VF]dwF, (26)

dVF

dt
= AVF + VFA�+ D − K+[VF]K+[VF]�, (27)

with initial conditions 〈x〉F(t0) = 〈x̂〉0 and VF(t0) = V0. The
optimal Kalman gain matrix K+[VF], which we will later refer
to as a kick matrix, is defined in Eq. (6), with the measurement
back-action � = −√

h̄T �SC̄	�. Note that these equations for
the filtered quantum state have exactly the same form as the
classical Kalman-Bucy filtering equations.

012213-4



LINEAR GAUSSIAN QUANTUM STATE SMOOTHING: … PHYSICAL REVIEW A 103, 012213 (2021)

C. Retrofiltered effect and smoothed weak-value state

The retrofiltered effect gives the probability density of a
measurement result occurring at a later time given a particular
quantum state at the current time:

℘(
−→
O |ρ) = Tr[ρÊR], (28)

where ÊR is a function of the future record
−→
O . The effect

ÊR can be computed backward in time from a final unin-
formative effect ÊR(T ) ∝ Î . The stochastic equation for the
(un-normalized) retrofiltered effect ÊR is obtained by taking
the adjoint of Eq. (24), giving

−h̄dÊR = L†ÊRdt +
√

h̄yH̃[M�ĉ‡]ÊRdt, (29)

where L† is the adjoint of the Lindbladian superoperator. Note
that Eq. (29) is not trace-preserving and evolves backward
in time, as evident by the negative sign. Following a similar
logic to that presented in the classical case, we will normalize
the retrofiltered effect, as ultimately we are interested in a
smoothed state which will require normalization regardless. In
doing so, we obtain a normalized retrofiltered effect Ê ′

R [32],

−h̄dÊ ′
R = L†Ê ′

Rdt − 〈κ̂〉RÊ ′
Rdt +

√
h̄dwRH[M�ĉ‡]Ê ′

R,

(30)

where dwR = ydt − 〈M†ĉ + M�ĉ‡〉Rdt with 〈•〉R :=
Tr[•Ê ′

R] and κ̂ = ĉ�ĉ‡ − ĉ†ĉ.
Considering an LGQ system, the Wigner function for the

normalized retrofiltered effect is a normalized Gaussian, i.e.,
WR(x̌) = g(x̌; 〈x̂〉R,VR). Consequently, we can obtain, in a
similar way to the filtered case in Eqs. (26)–(27), the equations
for the retrofiltered mean and covariance,

− d〈x̂〉R = −A〈x̂〉Rdt + K−[VR]dwR, (31)

−dVR

dt
= −AVR − VRA�+ D − K−[VR]K−[VR]�. (32)

These equations completely describe the effect, with the final
condition VR(T ) = ∞. Once again, there is no sensible final
condition for the retrofiltered mean due to the infinite covari-
ance. Following the same procedure presented in the classical
case, we obtain Eqs. (11)–(12), where in the quantum case
zR := �R〈x̂〉R.

Following the classical equations, one might think that we
could obtain a Gaussian smoothed quantum state WSWV(x̌) =
g(x̌; 〈x̂〉SWV,VSWV), with mean 〈x̂〉SWV and covariance VSWV

given by

〈x̂〉SWV = VSWV
[
V −1

F 〈x̂〉F + V −1
R 〈x̂〉R

]
, (33)

VSWV = [
V −1

F + V −1
R

]−1
. (34)

While this construction might seem valid, we will show using
an example in Sec. V that the SWV covariance does not al-
ways satisfy the Schrödinger-Heisenberg uncertainty relation
Eq. (19), as it would if it were a valid quantum state.

The problem lies with how the classical smoothed state
converts to the quantum analog. The above procedure for
Gaussian states is equivalent to taking the symmetrized prod-

uct of the filtered state and the retrofiltered effect [18,21],

�SWV = ρF ◦ ÊR

Tr[ρF ◦ ÊR]
. (35)

Here A ◦ B = (AB + BA)/2 denotes the Jordan prod-
uct [33,34], and the denominator Tr[ρF ◦ ÊR] ensures
that the state is normalized. We are using � to denote
the SWV state to stress that this is not a valid quantum
state which is represented by a density matrix ρ. The reason
�SWV is not a valid quantum state is because, in general,
the retrofiltered effect does not commute with the filtered
quantum state. As a result, the SWV state is not guaranteed
to be positive semidefinite [13,18]. Thus we turn to quantum
state smoothing theory instead.

D. LGQ state smoothing

For the quantum state smoothing theory [15], we consider
an open quantum system coupled to two baths. In principle,
each of these baths can comprise any number of physically
distinct baths, but for simplicity we will consider them col-
lectively. An observer, Alice, monitors one of the baths and
is able to construct a measurement record O, which we will
refer to as the “observed” record. A (perhaps hypothetical)
secondary observer, Bob, monitors the remaining bath and
constructs his own measurement record U that is unobserved
by Alice, which we will call the “unobserved” record. See
Fig. 1. Now Bob, assumed to have access to both the observed
and the unobserved record, can estimate the quantum state
conditioned on both

←−
O and

←−
U . That is, he obtains a state

with maximal information about the quantum system, which
can be regarded as the true state ρT := ρ←−

O
←−
U

. However, since

Alice does not have access to
←−
U , she can only obtain an

estimate of the true state based on her observed measurement
record. In this case she can construct a conditioned state with
the form

ρC =
∑
←−
U

℘C(
←−
U )ρT, (36)

where the conditioning C depends on the amount of the ob-
served measurement record used in the estimation. If Alice
wishes to obtain a filtered state, i.e., C ≡ F, the conditioned
probability distribution for the unobserved record becomes
℘F(

←−
U ) = ℘(

←−
U |←−O ). To obtain a smoothed state, i.e., C ≡ S,

the conditional probability becomes ℘S(
←−
U ) = ℘(

←−
U |←→O ).

For LGQ state smoothing [21], the true state of the sys-
tem is represented by a Gaussian Wigner function WT(x̌) =
g(x̌; 〈x̂〉T,VT). We introduce an unobserved measurement cur-
rent yudt = Cu〈x̂〉Tdt + dwu to account for Bob’s monitoring
of the environment, in addition to Alice’s observed measure-
ment current yodt = Co〈x̂〉Tdt + dwo, where dwu and dwo

are the unobserved and observed innovations, respectively.
The true state of the system can be obtained by conditioning
the estimate on both Alice’s and Bob’s past measurement
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records, giving

d〈x̂〉T = A〈x̂〉Tdt + K+
o [VT]dwo + K+

u [VT]dwu, (37)

dVT

dt
=AVT+VTA�+ D−K+

o [VT]K+
o [VT]�−K+

u [VT]K+
u [VT]�,

(38)

where K±
r [V ] = VC�

r + ��
r for r ∈ {o, u}, and the initial

conditions are 〈x̂〉T(t0) = 〈x̂〉0 and VT(t0) = V0. This follows
trivially by extending Eqs. (26)–(27) to two measurement
records.

Since we are restricting to Gaussian states, the true state
depends on

←−
U only via the mean in Eq. (37). This means that

we can replace the (symbolic) summation in Eq. (36) by an
integral over the true mean so that the smoothed state (C = S)
is given by

ρS =
∫

℘S(〈x̂〉T)ρT(〈x̂〉T)d〈x̂〉T, (39)

where the PDF ℘S(〈x̂〉T) is for the true mean conditioned on
the past-future observed record.

We can replace the smoothed state and the true state
by their Wigner functions, the latter of which is replaced
by a Gaussian g(x̌;

◦
x,VT). Here we have defined a haloed

variable
◦
x= 〈x̂〉T for notational simplicity.1 To obtain the

smoothed state in Eq. (39), we convolve the true state with
the conditional PDF (which is a classically smoothed LG
distribution) ℘S(

◦
x ) = g(

◦
x; 〈◦x〉S,

◦
VS), where 〈◦x〉S and

◦
VS will

be determined later. Since both functions in the convolution
are Gaussian, the resulting smoothed state is also Gaussian.
Consequently, we can rewrite Eq. (39) as

g(x̌; 〈x̂〉S,VS) =
∫

g(
◦
x; 〈◦x〉S,

◦
VS)g(x̌;

◦
x,VT)d

◦
x . (40)

From the properties of a Gaussian convolution, we find that
〈x̂〉S = 〈◦x〉S and VS =◦

VS +VT.
All that remains is to determine the haloed mean and

covariance of the smoothed Gaussian PDF ℘S(〈x̂〉T). By
rewriting the equation for the true mean, Eq. (37), as

d
◦
x= A

◦
x dt+ ◦

Ed
◦
vp, (41)

where
◦
Ed

◦
vp= K+

o [VT]dwo + K+
u [VT]dwu, we see that the sys-

tem evolves according to a classical linear Langevin equation
of the form in Eq. (20). Furthermore, the observed measure-
ment record yo = Co

◦
x +dwo is linear in

◦
x , and we can define

a new cross-correlation
◦
�

�= K+
o [VT]. Since the PDF satisfies

the requirements for classical LG state estimation, we can
use Eqs. (13)–(14) and obtain the haloed smoothed mean and
covariance, given by

〈◦x〉S =◦
VS

[ ◦
V −1

F 〈◦x〉F+ ◦
V −1

R 〈◦x〉R
]
, (42)

◦
VS = [ ◦

V −1
F + ◦

V −1
R

]−1
. (43)

1We use this halo notation because these haloed variables are effec-
tively a mediary between an estimate known only to an omniscient
observer (i.e., the true state) and estimates available to partially
ignorant observers (e.g., the smoothed state).

We can obtain the haloed filtered mean and covariance, 〈◦x〉F

and
◦
V F, and haloed retrofiltered mean and covariance, 〈◦x〉R

and
◦
V R, by conditioning

◦
x on the past observed and future

observed measurement records, respectively.
By conditioning Eq. (41) on only the past observed mea-

surement record, we obtain the haloed filtered variables

d〈◦x〉F = A〈◦x〉Fdt + K+
o [

◦
V F +VT]d

◦
wF, (44)

d
◦
V F

dt
= A

◦
V F + ◦

V F A�+ ◦
D

− K+
o [

◦
V F +VT]K+

o [
◦
V F +VT]�, (45)

where
◦
D= K+

o [VT]K+
o [VT]�+ K+

u [VT]K+
u [VT]� and d

◦
wF=

yodt − Co〈◦x〉Fdt . From Eqs. (27)–(45), it can easily be shown
that

◦
V F= VF − VT, and using this relationship we can show

that 〈x̂〉F = 〈◦x〉F. Similarly, the haloed retrofiltered variables
are given by

−d〈◦x〉R = − A〈◦x〉Rdt + K−
o [

◦
V R −VT]d

◦
wR, (46)

−d
◦
V R

dt
= − A

◦
V R − ◦

V R A�+ ◦
D

− K−
o [

◦
V R −VT]K−

o [
◦
V R −VT]�, (47)

where d
◦
wR= yodt − Co〈◦x〉R. It can be shown, using Eq. (32),

that
◦
V R= VR + VT, and from this we can also show that 〈x̂〉R =

〈◦x〉R. Finally, using Eqs. (42)–(43), we can compute the mean
and covariance of the smoothed quantum state:

〈x̂〉S = (VS − VT)
[
(VF − VT)−1〈x̂〉F + (VR + VT)−1〈x̂〉R

]
,

(48)

VS = [
(VF − VT)−1 + (VR + VT)−1

]−1 + VT. (49)

Interestingly, we notice that the equations for the smoothed
quantum state are similar to the equations for the SWV state
in Eqs. (33)–(34). In fact, they are identical if we allow for
VT → 0, which is equivalent to a classical limit where we set
h̄ → 0 in Eq. (19). Unsurprisingly, we can see that the LGQ
smoothed covariance places less emphasis on the retrofiltered
covariance than the SWV covariance. This can be seen from
Eq. (53), where (VR + VT)−1 is smaller than V −1

R . The reason
this is unsurprising is because combining the filtered covari-
ance with the retrofiltered covariance resulted in the SWV
covariance violating the Schrödinger-Heisenberg uncertainty
relation, which is avoided when combining with the smaller
(VR + VT)−1.

As was the case with the retrofiltered mean, the haloed
retrofiltered mean 〈◦x〉R does not have a well-defined final con-
dition due to the haloed retrofiltered covariance being infinite
at the final time. However, we can solve this problem in the
same way as we did for the retrofiltered mean and covariance
by defining the haloed retrofiltered informative mean

◦
zR=◦

�R

〈◦x〉R and corresponding information matrix
◦
�R=◦

V −1
R . Using

Eq. (10), we obtain

−d
◦
zR =(Ā−D̄

◦
�R)�◦zR dt+(C�

o −◦
�RVTC�

o −◦
�R ��)yodt,

(50)

−d
◦
�R

dt
= ◦

�R Ā + Ā�◦
�R −◦

�R D̄
◦
�R +C�

o Co, (51)
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where Ā = A − ��
o Co − VTC�

o Co and D̄ = K+
u [VT]K+

u [VT]�.
The final conditions become

◦
zR(T ) = 0 and

◦
�R(T ) = 0. With

these definitions, we can further simplify the LGQ smoothing
equations, Eqs. (52)–(53), to

〈x̂〉S = (VS − VT)
[
(VF − VT)−1〈x̂〉F+ ◦

zR
]
, (52)

VS = [
(VF − VT)−1+ ◦

�R
]−1 + VT. (53)

IV. PHYSICAL LGQ SYSTEMS

For the remainder of this paper, we will consider two ex-
amples of LGQ systems: an on-threshold optical parametric
oscillator and a noisy linear attenuator. In both examples,
Alice and Bob perform homodyne measurements on the envi-
ronment, where we use measurement efficiencies to quantify
the fraction of the environment that they can observe.

A. On-threshold optical parametric oscillator

The first system we consider is an optical parametric oscil-
lator (OPO) with one output channel (loss, at rate unity). This
is described by the master equation

h̄ρ̇ = iχ [(q̂ p̂ + p̂q̂)/2, ρ] + γD[(q̂ + i p̂)]ρ, (54)

where the number of modes is N = 1 and x̂ = (q̂, p̂)�. We
will consider the on-threshold parameter regime, when χ = γ

and for simplicity we measure time in units of χ−1. The first
term is generated by the squeezing Hamiltonian Ĥ = (q̂ p̂ +
p̂q̂)/2 and the second term is the Lindblad term with ĉ = q̂ +
i p̂ describing photon loss. From these we find that

G =
(

0 1
1 0

)
, C̄ = I2, (55)

by remembering that Ĥ = x̂�Gx̂/2 and ĉ = (I2, iI2)C̄x̂. We
then find the drift and diffusion matrices A = diag(0,−2) and
D = h̄I2.

Let us assume that the output (loss) channel is monitored
by Alice and Bob using homodyne measurements with homo-
dyne phases θo and θu and measurement efficiencies ηo and ηu,
respectively. The resulting measurement current for this type
of measurement is

yrdt = √
ηr〈e−iθr a + eiθr a†〉T + dwr (56)

for r ∈ {o, u} and the annihilation operator a = (q̂ + i p̂)/
√

2.
As a result, we can define Mr = √

ηreiθr , where M is
the unraveling matrix introduced in Eq. (23). Thus, Al-
ice’s measurement and back-action matrices are Co =
2
√

ηo/h̄(cos θo, sin θo) and �o = −h̄Co/2, respectively. Sim-
ilarly, Bob’s unobserved measurement and back-action ma-
trices are Cu = 2

√
ηu/h̄(cos θu, sin θu) and �u = −h̄Cu/2,

respectively.

B. Noisy linear attenuator

The second system we consider is a single-mode (N = 1)
noisy linear attenuator, described by the master equation

h̄ρ̇ = γ↓D[q̂ + i p̂]ρ + γ↑D[q̂ − i p̂]ρ, (57)

where γ↓ and γ↑ are the rate of photon loss and gain, respec-
tively. The fact that this system acts as an attenuator can be

seen in how the annihilation operator changes, on average,
over time,

〈 ˙̂a〉 = (γ↑ − γ↓)〈â〉, (58)

where for the system to be classed as an attenuator and not an
amplifier, we consider the case when γ↓ > γ↑.

Since there are no Hamiltonian dynamics for this system,
i.e., G = 0, we only need to concern ourselves with the vector
of Lindblad operators,

ĉ = [
√

γ↓(q̂ + i p̂),
√

γ↑(q̂ − i p̂)]�. (59)

Note, this vector of Lindblad operators is not to be confused
with a commutator. From this we calculate

C̄ =
(√

γ↓
√

γ↑ 0 0

0 0
√

γ↓ −√
γ↑

)�
(60)

and arrive at A = (γ↑ − γ↓)I2 and D = h̄(γ↑ + γ↓)I2.
In this case, since we are considering homodyne

measurements on both channels, we can take Mr =
diag(

√
η↓,reiθ↓,r ,

√
η↑,reiθ↑,r ) for r ∈ {o, u}. Here we have in-

troduced the measurement efficiencies η↓,r and η↑,r for the
attenuation and the amplification channels, respectively, to
indicate the fraction of each output that is measured by Alice
(o) and Bob (u), with the homodyne phases θ↓,r and θ↑,r .
The measurement and back-action matrices, for either Alice
or Bob, are given by

Cr = 2√
h̄

(√
η↓,rγ↓ cos θ↓,r

√
η↓,rγ↓ sin θ↓,r

√
η↑,rγ↑ cos θ↑,r −√

η↑,rγ↑ sin θ↓,r

)
(61)

and

�r =
√

h̄

(−√
η↓,rγ↓ cos θ↓,r −√

η↓,rγ↓ sin θ↓,r
√

η↑,rγ↑ cos θ↑,r −√
η↓,rγ↑ sin θ↓,r

)
, (62)

respectively.
For this system there are many scenarios we could consider

for Alice and Bob. For example, Alice and Bob could each
perfectly monitor one of the channels, or they could both mon-
itor the same output channel with some fractions. However,
for simplicity, we will only consider the case where Alice
perfectly measures the attenuation channel, i.e., η↓,o = 1 and
η↑,o = 0, with a homodyne phase θ↓,o = θo, and Bob perfectly
measures the amplification channel, i.e., η↓,u = 0 and η↑,u =
1, with a homodyne phase θ↑,u = θu.

V. EXAMPLE TRAJECTORIES

In this section we will compare the filtered, SWV, and
smoothed quantum states in order to see the differences be-
tween these estimated states and how well they estimate the
true state. We will only consider the OPO system in this
section, since the results are similar for the noisy linear at-
tenuator. The measurement scenario we are considering is
θo = π/4 and θu = −π/8. We have chosen this scenario,
as it gives an unbiased impression of how the smoothing
technique will perform, i.e., it is not the best nor worst
measurement scheme for the system but somewhere in be-
tween. Let us choose the system’s initial state with a mean
〈x̂〉0 = (0, 0)� and covariance V0 = (h̄/2) diag(10, 1/2). We
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FIG. 2. A sample realization of the OPO system’s state trajectory, where ηo = ηu = 0.5, θo = π/4, and θu = −π/8, where the time t is in
units of χ−1 and the total run time T = 4. We have set h̄ = 2 for this simulation. The evolutions in the q and p quadratures, in panels (a) and
(b), respectively, clearly show that the smoothed mean (red) outperforms the filtered mean (blue) in terms of estimating the true mean (black).
The SWV mean (green), on the other hand, does a terrible job of estimating the true mean, as expected. The disparity between the SWV state
and the remaining states can clearly be seen in the phase-space diagrams, plotted at four snapshots in time in the panels (c)–(f). In (c), the
filtered, smoothed, and true states all begin at the same point, with the same covariance (where the ellipse indicates the 1-SD region of the
Wigner function). However, the mean of the SWV state (green dot) is largely displaced from the rest and its covariance is significantly smaller.
As time progresses, the filtered, smoothed, and true states begin to separate and the covariances decrease, where the smoothed covariance sits
somewhere between the filtered and true covariance. At the final time T , only the true state is displaced from the remaining states, which are
all the same, as there is no future record left.

have chosen the initial condition for the covariance so that it
is similar to the unconditioned steady-state covariance, V =
(h̄/2) diag(∞, 1/2), while still being finite.

The trajectories for the q and p quadratures [Figs. 2(a)
and 2(b)] show that the smoothed mean (red line) seems to
be closer, on average, to the true mean (black line) than the
filtered mean (blue line). Therefore, as expected, the smoothed
state provides a better estimate of the true state than the
filtered state. The SWV mean (green line), on the other hand,
bares very little similarity to the true mean in both quadra-
tures, showing how poorly even the mean of the SWV state
works for this purpose.

We can also see how the covariances, which determine
the purity of a Gaussian state, defined as P = (h̄/2)N

√
|V |−1,

evolve over time in Figs. 2(c)–2(f). At t = 0, in Fig. 2(c), the
filtered, smoothed, and true states all begin with the same ini-
tial covariance V0. As time progresses, the covariances begin
to shrink, indicating the increase of the purity, until they all
reach their steady states at around t = 0.5T in Fig. 2(e). At
this time the true state is guaranteed to be a pure state, and the
smoothed state is purer than the filtered state (as the smoothed
covariance can fit within the filtered covariance). Moreover, at
the final time in Fig. 2(f), the smoothed covariance is exactly
the same as the filtered covariance, as expected, since there is
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no more future information to condition on. By contrast, the
true state remains in its steady state.

The covariance of the SWV state, as one might expect by
now, behaves very differently. Initially, the covariance is not
the same as that of the initial true state; it is substantially
smaller. As time progresses, the SWV covariance reaches its
steady state in Fig. 2(e), where it is clear that the SWV state
is unphysical. It has a purity greater than unity (the SWV
covariance can fit entirely within the pure true covariance),
violating the Schrödinger-Heisenberg uncertainty relation. At
the final time, Fig. 2(f), the SWV covariance matches the
filtered state (as well as the smoothed state), as it must since
there is no future record left.

VI. OPTIMAL MEASUREMENT STRATEGIES FOR
QUANTUM STATE SMOOTHING

In the previous section we looked at the improvement in
the purity that the smoothed state offered over the filtered
state. However, the degree of improvement offered by the
smoothed state depends on the choice of Alice’s and Bob’s
measurements. In this section we study this phenomenon and
seek a method for predicting the best measurement strategy
for Alice and Bob to maximize the purity improvement.

In general, the purity of the filtered and smoothed quan-
tum states varies depending on a particular realization of the
measurement record O. As a result, it is necessary to average
over all possible realizations of the observed record O in order
to draw any conclusions about the purity improvement. The
measure of purity improvement we will investigate in this
paper is the relative average purity recovery of a smoothed
state. This is the same measure considered in Ref. [22], given
by

R = EO[P(ρS)] − EO[P(ρF)]

E
O

←−
U

[P(ρT)] − EO[P(ρF)]
. (63)

Here EO[...] (E
O

←−
U

[...]) represents averaging over all possible
realizations of the observed record O (and the past unobserved
record

←−
U ), and P(ρ) = Tr[ρ2] represents the purity of a state

ρ. The relative average purity recovery is a measure of the
purity increase given from smoothing compared to filtering on
average, relative to the maximum average recovery possible.

For Gaussian systems, the expression for the purity re-
covery can be greatly simplified. The purity of a Gaussian
state is independent of observed and unobserved measurement
records, and depends solely on the state’s covariance matrix.
Consequently, we only need to consider a relative purity
recovery (RPR) [21], which simplifies the relative average
purity recovery to

R = PS − PF

PT − PF
. (64)

Here, for Gaussian states, the purity of the conditioned state
is PC = (h̄/2)N

√
|VC|−1. We will now construct three different

hypotheses for the optimal measurement scheme for Alice and
Bob in order to maximize the purity recoveries and compare
their predictions to the numerical optimal for the physical
examples.

A. Hypothesis A

The first and simplest guess at the optimal strategy would
be for both Alice and Bob to gather information about the
same quantity, e.g., both measuring the same quadrature.
Since in the LGQ case the measurement matrices Co and Cu

provide information about how Alice and Bob measure the
system, we can look at the overlap between Alice’s and Bob’s
measurement matrices,

Oθu
m (θo) = Tr

[
Cθo

o

(
Cθu

u

)�Cθu
u

(
Cθo

o

)�]
. (65)

Here, for simplicity, we have used the notation θo and θu

to denote the parameters specifying Alice’s and Bob’s mea-
surement matrices because in this paper we are restricting
to homodyne measurements of a single channel so that only
one angle is needed. For the fully general case, we would
have to replace θ by the unraveling matrix M as introduced
in Sec. III B.

It is easiest to see why we call Eq. (65) an overlap function
when Alice and Bob only have a single measurement chan-
nel at their disposal, like in the OPO example presented in
Sec. IV A. In this case, Co and Cu become vectors and Eq. (65)
is exactly the square of their scalar product. This intuition
also works for the noisy linear attenuator example where
the only nonzero element in the resulting matrix corresponds
to the squared overlap between Alice’s measurement on her
channel and Bob’s measurement on his channel. Note that the
square is important here, because there is no difference in the
information obtained by a measurement with matrix C and
one with matrix −C, so the objective function O should be
invariant under a sign change.

Thus, for hypothesis A, that Alice should obtain infor-
mation about the same quantity as Bob, she should choose
her measurement by maximizing the measurement overlap
function Eq. (65) over the allowed range �o of homodyne
angles. That is, she should choose

θ�
o (θu) = arg max

θ∈�o

Oθu
m (θ ), (66)

where we have written Alice’s optimal phase θ�
o (θu) as a func-

tion of Bob’s homodyne phase. In Eq. (66) we point out that
there is no reason to maximize over Alice’s homodyne phase
as opposed to Bob’s homodyne phase as the measurement
overlap is identical if Co and Cu are swapped.

We test this intuition by considering the two physical sys-
tems presented in Sec. IV in the steady state. For the noisy
linear attenuator system, Eq. (66) results in Alice and Bob
measuring their respective channels with homodyne phases
such that θo = −θu. The negative sign arises from the fact
that Alice and Bob measure different types of channels, that
is, Alice measures an attenuation channel with the Lindblad
operator

√
γ↓(q̂ + i p̂), and Bob measures the amplification

channel with the Lindblad operator
√

γ↑(q̂ − i p̂). Comparing
the measurement overlap function in Fig. 3(a) to the RPR in
Fig. 3(d), for all θo = θ↓ and θu = θ↑, we see that hypothesis A
[dashed black line in (a)] matches perfectly with the optimal
measurement strategy [solid white line in (d)] obtained by a
numerical search. In fact, the measurement overlap function
has a striking resemblance to the RPR for the noisy linear
attenuator.
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FIG. 3. Contour plots of (a) the measurement overlap Eq. (65), (b) the unobserved overlap Eq. (69), (c) the observed overlap Eq. (71), and
(d) the RPR for the noisy linear attenuator system in the steady state for different values of the observed (Alice) and unobserved (Bob) homo-
dyne phases. In this example, the range of the unobserved and observed homodyne phases are �u = [−π/2, π/2) and �o = [−π/2, π/2),
respectively. Note that while (a), (b), and (c) look identical, the scales of the contours are very different due to Alice and Bob measuring
different channels. In (d) we see that the RPR closely resembles the objective functions in (a)–(c), and the optimal RPR (solid white line),
obtained numerically, perfectly matches the maximum of the objective functions. In all plots we consider the case where γ↑ = 0.999γ↓. Alice
perfectly measures the attenuation channel (η↓,o = 1, θ↓,o = θo), and Bob perfectly measures the amplification channel (η↑,u = 1, θ↓,u = θu).
We have set h̄ = 2.

The noisy linear attenuator is, however, a very simple sys-
tem without any unitary dynamics, so we should not jump
to any conclusions about hypothesis A’s success in predicting
the optimal measurement. We thus examine the on-threshold
OPO system to see how well hypothesis A works. Based
on Eq. (66), the optimal measurement strategy for the OPO
system is θo = θu. This is clearly incorrect, as we can see by
comparing the measurement overlap function Fig. 4(a) to the
RPR in Fig. 4(d). The numerically obtained optimal strategies
[solid black lines in (d)] are drastically different from the
hypothesis θo = θu [dashed black lines in (a)]. Furthermore,
the measurement overlap function does not resemble the RPR.
Consequently, we have to come up with a more refined argu-
ment to explain the optimal strategy.

B. Hypothesis B

On reflection, it is perhaps not surprising that hypothesis
A failed. Alice’s ultimate goal is to guess Bob’s state as well
as possible. Why should that be achieved by trying to get the
same type of information as Bob? Rather, it would seem, Alice
should try to get information about how Bob’s state changes
in reaction to his measurement results, which are unknown to

her. That is, it seems that a better hypothesis would take into
account the correlation between the measurement setups and
the measurement back-action affecting the system.

We can see how a measurement and its corresponding
back-action affects the state by comparing the unconditioned
equations, Eqs. (20)–(21), to the filtered equations, Eqs. (26)–
(27). Specifically, the effect of back-action is given by the kick
matrix K+

r [V←−
R

], from which we define a mean-square kick
tensor

Bθr
r = K+

r

[
V θr←−

R

]
K+

r

[
V θr←−

R

]�
. (67)

Here the superscript θr specifies the homodyne phase used
to calculate the measurement matrix Cr , the cross-correlation
matrix �r , and the covariance matrix V←−

R
(which all feed into

K+
r [V←−

R
]). The covariance matrix is conditioned on the past

measurement record
←−
R = ←−

O ,
←−
U , for r = o, u respectively.

Note that for r = u we are considering the state conditioned
only on Bob’s records

←−
U , with a filtered covariance matrix

V θu←−
U

satisfying

dV θu←−
U

dt
= AV θu←−

U
+ V θu←−

U
A�+ D − K+

u

[
V θu←−

U

]
K+

u

[
V θu←−

U

]�
, (68)
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FIG. 4. Contour plots of (a) the measurement overlap Eq. (65), (b) the unobserved overlap Eq. (69), (c) the observed overlap Eq. (71),
and (d) the RPR for the on-threshold OPO in steady state for different values of the observed (Alice) and unobserved (Bob) homodyne
phases. In this example, the range of the unobserved and observed homodyne phases are �u = [−π/2, π/2) and �o = [0, π ), respectively.
In (a), we immediately see that the optimal measurement strategy according to hypothesis A (dashed black line) is very different from the
optimal measurement strategy, obtained numerically, for RPR [solid black line in (d)], indicating that it is incorrect. In (b), both the solution to
Eq. (70) (dashed black line) and the unobserved overlap behave very differently compared to the optimal measurement strategy and the RPR,
respectively, in (d). On the contrary, in (c) the solution to Eq. (66) (dashed black line) gives a close approximation to the optimal measurement
strategy. Furthermore, the square overlap has developed some of the characteristics of the RPR. In all plots, both Alice and Bob measure the
same damping channel (with homodyne phases θo and θu, respectively) but with ηo = ηu = 0.5. We have set h̄ = 2.

similar to Eq. (27).
As Alice is trying to estimate Bob’s true state of the

system, the obvious hypothesis is that Alice should choose
her measurement to observe the back-action (kick) Bob’s
measurement induces on the system. By choosing this mea-
surement scheme, one would think that Alice’s measurement
would contain the most relevant information about Bob’s mea-
surement results and consequently provide a good estimate
of the true state. With this in mind, we can construct another
objective function, the unobserved overlap function,

Oθu
u (θ ) = Tr

[
Cθ

o Bθu
u

(
Cθ

o

)�]
, (69)

where we have just replaced Bob’s measurement matrix in
Eq. (65) with his kick matrix. Thus our hypothesis B is that
Alice should choose her measurement in order to maximize
the unobserved overlap, i.e.,

θ�
o (θu) = arg max

θ∈�o

Oθu
u (θ ). (70)

Unsurprisingly, when we consider the noisy linear atten-
uator example, we see in Fig. 3(b) that the maximum of

the unobserved overlap (dashed black line) is obtained when
Alice chooses her measurement angle such that θo = −θu.
However, the same cannot be said for the OPO system, as
shown in Fig. 4(b), where both the hypothesized optimal strat-
egy Eq. (70) (dashed black line) and the unobserved overlap
function bears little resemblance to the optimal strategy and
the RPR in Fig. 4(d), respectively.

C. Hypothesis C

Even though hypothesis B also failed, the construction is
still useful. Specifically, we consider the same construction
but with Alice and Bob swapped. That is, we consider the
counterintuitive hypothesis that it is best for Bob to observe
as well as possible the kick from Alice’s measurement on
the system. Consequently, we define the observed overlap
function

Oθo
o (θ ) = Tr

[
Cθ

u Bθo
o

(
Cθ

u

)�]
, (71)

where, compared to Eq. (69), we have swapped the labels o
and u. With this overlap function defined, our third and last
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FIG. 5. The hypothesized and optimal unobserved measurement
phases (left-hand-side axis) and the RPR (right-hand-side axis)
for the OPO system in the steady state with varying observed
measurement efficiency ηo (ηu = 1 − ηo), for two fixed observed
measurement phases (top: θo = π/8, bottom: θo = 3π/8). We con-
sider two hypotheses of the optimal measurement strategy for Bob,
hypothesis A, Eq. (66) (blue dotted line), and hypothesis C, Eq. (72)
(red dashed line), comparing to the numerically obtained optimal
strategy (black solid line). The results show that the strategy in
Eq. (72) gives a very close approximation to the optimal RPR.

hypothesis for the optimal unobserved homodyne phase is

θ�
u (θo) = arg max

θ∈�u

Oθo
o (θ ), (72)

where we have written Bob’s optimal homodyne phase θ�
u (θo)

as a function of Alice’s homodyne phase and �u is the range
of Bob’s homodyne phase.

Once again, when we consider the noisy linear attenuator,
hypothesis C, Eq. (72), still gives the correct optimal solution
θo = −θu, as can be seen in Fig. 3(c). And this time when
we consider the OPO system in Fig. 4(c), we finally do see
remarkably good agreement between Eq. (72) (dashed black
line) and the optimal measurement strategy [solid black line in
Fig. 4(d)]. Furthermore, the objective function for hypothesis
C is qualitatively similar to the RPR, with the distinctive
asymmetrical peaks close to θo = π/2 in Fig. 4(d) appearing
also in (c).

The above results were for ηo = ηu, but we can also
check that hypothesis C can reasonably well predict the op-
timal measurement strategy for any value of measurement
efficiencies. We consider the OPO system, choosing two mea-
surement phases for Alice (θo = π/8 and 3π/8), and compare
the optimal measurement angle for Bob from the hypotheses
and from numerics, for all possible observed measurement
efficiencies ηo with ηu = 1 − ηo; see Fig. 5. Comparing the
numerically optimal measurement strategy (solid black lines)
to hypothesis C (dashed red lines), we observe, in both of
Alice’s measurement phases, that this hypothesis very well
captures the optimal measurement phases θu when Alice’s
efficiency is low. At higher efficiencies the agreement in

optimal phases (see curves associated with the left axis) is
not as perfect. However, when comparing the resulting RPR
(curves for the right axis) we observe that the phases given
by hypothesis C can still give an RPR extremely close to the
maximum value. We can also see how well this approximately
optimal solution does compared to another (suboptimal) mea-
surement strategy, hypothesis A (the blue dotted lines), where,
especially in the case that θo = 3π/8, the differences in the
RPR are much larger.

While hypothesis C seems to provide a good approxima-
tion of the optimal strategy; it is not based on any simple
physical intuition, unlike hypothesis A and B. However, fur-
ther evidence that its success here is not a fluke can be gained
by applying similar logic to a very different type of quantum
system, namely, a qubit.

D. Qubit example

The single-qubit example we consider in this section is
the same as that presented in Refs. [15,22]. The qubit has
Hamiltonian Ĥ0 = h̄ωσ̂z and is coherently driven at frequency
ω and is coupled to a bosonic bath. In a frame that removes Ĥ0,
the master equation for the qubit’s unconditioned dynamics is
given by

h̄ρ̇ = i[(�/2)σ̂x, ρ] + γD[σ̂−]ρ, (73)

where (�/2)σ̂x is the driving Hamiltonian, and σ̂− ≡ (σ̂x −
iσ̂y)/2 is the Lindblad operator. Here σ̂k are the standard
Pauli matrices. The system-bath coupling rate is denoted by
γ . Alice and Bob could measure the bosonic bath in many
different ways [11]. In this work, we only consider homodyne
measurements, as we did for the LGQ systems. The resulting
homodyne photocurrent from monitoring the bath is

yrdt = √
γ ηCr〈r̂〉←−R dt + dwr . (74)

Here, r̂ is the 3-vector of Pauli operators

r̂ = (σ̂x, σ̂y, σ̂z )�, (75)

whose mean is the Bloch vector, which represents the quan-
tum state. In Eq. (74), this mean is conditioned on the past
record

←−
R = ←−

O ,
←−
U corresponding to r = o, u respectively.

As before, η is the measurement efficiency and the qubit
analog of the measurement matrix is

Cr = [cos(θr ), sin(θr ), 0] (76)

for this particular example.
We will restrict our analysis to two cases for the mea-

surement: x homodyne and y homodyne, i.e., θr = 0 and
θr = π/2, respectively. These choices are the natural ones
given the symmetries of Eq. (73). These are named the x
and y homodyne because of the corresponding Pauli operator
appearing in the mean photocurrent signal, from Eq. (76).
These two cases best illuminate the effect of measurement
choices on the relative average purity recovery in the limit
of large �. Here we choose � = 5γ . We will also assume
that Alice and Bob monitor this bath with equal measurement
efficiencies, i.e., ηo = ηu = 1/2. We follow the analysis of the
qubit’s relative average purity recovery presented in Ref. [22],
using numerical analyses, because there is no closed-form
solution for the qubit case.
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FIG. 6. Analysis of hypothesis A, B, and C and the relative av-
erage purity recovery (R) for the example of a driven qubit coupled
dissipatively to a bosonic bath. We restrict Alice and Bob to only two
measurement choices, either x or y homodyne. The numerical values
in tables (a), (b), and (c) are the objective functions for the respective
hypotheses. For B and C this required stochastic simulated, and we
used 3000 records each. The qubit’s relative average purity recovery
[Table (d)] is obtained using the numerical techniques presented in
Ref. [22], simulating 3000 observed and 10 000 unobserved records
for both measurement settings. Here the colored cells indicate good
(green), moderate (yellow), and bad (red) improvement. Only hy-
pothesis C [Table (c)] correctly predicts the pattern of the relative
average purity recovery.

By numerically generating a large ensemble of measure-
ment records and qubit trajectories (including true states,
filtered states, and smoothed states) as functions of time,
we can calculate the purity recovery averaged over the ob-
served records as in Eq. (63). Since we are interested in the
steady-state regime, we need to consider the time period in
the simulation to study the qubit’s dynamics independently
of the transient effects at the start and end of the interval.
Using the dephasing time defined as Tγ = 1/γ and the final
time T = 8Tγ , we choose the steady-state period to be Tss =
[4.5Tγ , 6Tγ ]. We show in Fig. 6(d), the 2 × 2 table of the
relative average purity recovery averaged over the steady-state
period quoted from Ref. [22], considering four options of
Alice’s (O) and Bob’s (U) measurements. The combination
with the best performance is when Alice and Bob measure
the same quadrature and the worst performance when Alice
measures the y quadrature and Bob measures the x quadrature.
Thus we next ask whether hypothesis A, B, or C can correctly
predict all features of the relative average purity recovery.

As we have already defined the measurement matrix for
this qubit example, Cr in Eq. (74), the measurement overlap
and optimal measurement strategy for hypothesis A are as
defined in Eq. (65) and (66), respectively. As we are only
considering two measurement possibilities for Alice and Bob,
the maximization over the range of the unobserved homo-
dyne phases can be replaced by maximizing over the set
�o = {0, π/2}. Calculating the measurement overlap for the
four possible measurement combinations for Alice and Bob,
we see, in Fig. 6(a), that the optimal measurement strategy,

according to hypothesis A, occurs when Alice and Bob choose
the same measurement. This is consistent with the greatest
improvement in the average purity of the smoothed state, as
seen in Fig. 6(d). However, in the cases where Alice and Bob
choose different measurements, we see that the measurement
overlap function suggest that there is no difference between
these last two cases, which clearly is not true when we look at
the relative average purity recovery. Once again, hypothesis A
is not very accurate.

To analyze hypotheses B and C for the qubit case, we need
to define a quantity that resembles the mean-square kick ten-
sor of the LGQ system. The kick matrix is defined in Eqs. (26)
and (37) and describes the measurement back-action for an
LGQ system in terms of the change in the system’s expecta-
tion values in the q and p quadratures. Given a measurement
setting r ∈ {o, u} and its corresponding measurement record←−
R ∈ {←−O ,

←−
U }, respectively, we can rewrite the mean-square

kick tensor as

Brdt = K+
r [V←−

R
]K+

r [V←−
R

]�dt = E←−
R

[
d〈x̂〉←−

R
d〈x̂〉�←−

R

]
. (77)

Here 〈x̂〉←−
R

is the LGQ phase-space mean conditioned on a

realization of the (past) record
←−
R , and the expected average

on the right-hand side of Eq. (77) is over all possible record
realizations. The right-hand side is exactly the mean-square
change (during an infinitesimal time dt) of the system’s ex-
pectation values, in a tensorial sense, averaging over all the
possible records. Therefore we can define an analogous quan-
tity to the mean-square kick tensor for the qubit system as

Br = E←−
R

{
1

|Tss|
∑
t∈Tss

[
d〈r̂〉←−

R
(t ) d〈r̂〉←−

R
(t )�

]}
, (78)

for the steady-state period Tss of length |Tss|.
Now that we have defined the mean-square kick tensor

for the qubit setting, we can formalize and analyze both hy-
pothesis B and C. We will begin with hypothesis B, where
the unobserved overlap and optimal measurement strategy
are as defined in Eqs. (69)–(70), where, as in hypothesis A,
we maximize over the set �o = {0, π/2}. As seen from the
four possible measurement combinations for Alice and Bob in
Fig. 6(b), the optimal measurement choice for Alice, accord-
ing to Eq. (70), occurs when Alice and Bob choose the same
measurement, and best of all is when both choose homodyne
measurements along the y direction. This is consistent with the
actual relative average purity recovery, as seen in Fig. 6(d).
However, when we investigate the other measurement com-
binations, specifically when Alice and Bob choose different
measurements, we see that the unobserved overlap function
does not reproduce the pattern seen for the relative average
purity recovery. That is, it predicts that smoothing would be
better if Alice chose y and Bob x rather than the other way
around, whereas the truth is the opposite.

For hypothesis C, the roles of Alice and Bob are reversed
compared to hypothesis B, and the optimal measurement for
Bob is given by Eq. (72) and the observed overlap defined in
Eq. (71). As was the case for hypothesis B, we are restricting
our analysis to two measurement choices for Alice and Bob,
and the maximization is instead over the set �u = {0, π/2}.
For the four possible measurement choices for Alice and Bob,
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shown in Fig. 6(c), the best combination is when both measure
y and the second best when both measure x, consistent with
the relative average purity recovery, Fig. 6(d), and the same
as in hypothesis B. However, unlike for hypothesis B, this
time the objective function for the cases when Alice and
Bob choose different measurements also matches the relative
average purity recovery. This shows that hypothesis C is better
at predicting when smoothing will work well than either hy-
pothesis A or hypothesis B. This is consistent with the results
obtained for the LGQ systems.

VII. CONCLUSION

In this paper we provided a detailed derivation of the
smoothed quantum state for LGQ systems and contrasted it
with the theory of the smoothed weak-value state. To exem-
plify the differences between these techniques, we simulated
a single trajectory and witnessed clear differences in the dy-
namics of the estimates by looking at the filtered, the SWV
state, and the smoothed quantum states for LGQ systems. As
expected, the last of these provides the best estimate of the true
state conditioned on the results of measurements on a channel
unavailable to the observer, Alice, as well as on the results of
Alice’s measurements.

A key question of interest is how much improvement
smoothing can offer relative to filtering and how this depends
on the measurement choices of Alice and Bob (the observer
of the channel unavailable to Alice). We studied this through
the purity recovery of smoothing over filtering relative to
the maximum possible purity recovery. We constructed three
different hypotheses about what properties of Alice and Bob’s
measurements would lead to higher relative purity recovery.

We found that the only hypothesis that worked, quali-
tatively, for the two LQG systems we studied is the most
counterintuitive of the three. It is the hypothesis that says Bob
should choose his measurement so that his signal tells him
as much as possible about the disturbance to the state caused
by Alice’s measurements. This is counterintuitive because one

would have thought that it is Alice, the one doing the smooth-
ing, who needs to be able to infer as accurately as possible the
disturbance to the state caused by Bob’s measurement. After
all, it is the existence of this disturbance that makes Alice’s
filtered state impure and allows the possibility of increasing
the purity by smoothing.

The qualitative success of our third hypothesis is the main
result of this paper. However, it presents a puzzle because it
is not grounded in physical intuition. For this reason we also
put our three hypotheses to the test on a very different system,
specifically, a qubit system, not an LGQ system. We formu-
lated the problem in a closely analogous way to that used for
LGQ systems and found that, once again, our third hypothesis
was clearly superior to the other two in predicting which
combinations of measurements by Alice and Bob would give
better relative purity recovery than the other combinations.

It can be hoped that further study will elucidate why it is
preferable for Bob to measure the system so as to detect the
“kick” to the state by Alice’s measurement, rather than the
converse. Another interesting question is what would happen
to the smoothed state if Alice were to assume the incorrect
type of measurement for Bob. Could the smoothed state be
a worse estimate of the true state than the filtered state?
The LGQ formalism offers a convenient way to explore this
because of the possibility of semianalytic solutions. There
is also a great deal of work to be done in comparing the
various other ways of utilizing past and future measurement
information, such as the most likely path formalism [35,36],
and in applying these theories to the LGQ scenario.

ACKNOWLEDGMENTS

We would like to thank Prahlad Warszawski for useful
discussions regarding the retrofiltered effect. This research
is funded by the Australian Research Council Centre of Ex-
cellence Program through Grant No. CE170100012. A.C.
acknowledges the support of the Griffith University Postdoc-
toral Fellowship scheme.

[1] H. L. Weinert, Fixed Interval Smoothing for State Space Models
(Kluwer Academic, New York, 2001).

[2] S. Haykin, Kalman Filtering and Neural Networks (Wiley, New
York, 2001).

[3] R. G. Brown and P. Y. C. Hwang, Introduction to Random
Signals and Applied Kalman Filtering, 4th ed. (Wiley, New
York, 2012).

[4] G. A. Einicke, Smoothing, Filtering and Prediction: Estimating
the Past, Present and Future (InTech Rijeka, Rijeka, Croatia,
2012).

[5] B. Friedland, Control System Design: An Introduction to State-
Space Methods (Courier Corporation, North Chelmsford, MA,
2012).

[6] H. L. V. Trees and K. L. Bell, Detection, Estimation, and
Modulation Theory, Part I: Detection, Estimation, and Fil-
tering Theory, 2nd ed. (John Wiley and Sons, New York,
2013).

[7] S. Särkkä, Bayesian Filtering and Smoothing (Cambridge Uni-
versity Press, Cambridge, England, 2013), Vol. 3.

[8] G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, Adv. Imaging
Electron Phys. 128, 205 (2003).

[9] V. P. Belavkin, in Information, Complexity and Control in Quan-
tum Physics, edited by A. Blaquíere, S. Dinar, and G. Lochak
(Springer, New York, 1987).

[10] V. P. Belavkin, Commun. Math. Phys. 146, 611 (1992).
[11] H. M. Wiseman and G. J. Milburn, Quantum Measurement

and Control (Cambridge University Press, Cambridge, England,
2010).

[12] M. Tsang, Phys. Rev. Lett. 102, 250403 (2009).
[13] M. Tsang, Phys. Rev. A 80, 033840 (2009).
[14] S. Gammelmark, B. Julsgaard, and K. Mølmer, Phys. Rev. Lett.

111, 160401 (2013).
[15] I. Guevara and H. Wiseman, Phys. Rev. Lett. 115, 180407

(2015).

012213-14

https://doi.org/10.1016/S1076-5670(03)80065-4
https://doi.org/10.1007/BF02097018
https://doi.org/10.1103/PhysRevLett.102.250403
https://doi.org/10.1103/PhysRevA.80.033840
https://doi.org/10.1103/PhysRevLett.111.160401
https://doi.org/10.1103/PhysRevLett.115.180407


LINEAR GAUSSIAN QUANTUM STATE SMOOTHING: … PHYSICAL REVIEW A 103, 012213 (2021)

[16] K. Ohki, in 2015 54th IEEE Conference on Deci-
sion and Control (CDC) (IEEE, New York, 2015),
pp. 4350–4355.

[17] M. Tsang, arXiv:1912.02711.
[18] K. T. Laverick, A. Chantasri, and H. M. Wiseman, Quantum

Stud.: Math. Found. (2020).
[19] Y. Aharonov, P. G. Bergmann, and J. L. Lebowitz, Phys. Rev.

134, B1410 (1964).
[20] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60,

1351 (1988).
[21] K. T. Laverick, A. Chantasri, and H. M. Wiseman, Phys. Rev.

Lett. 122, 190402 (2019).
[22] A. Chantasri, I. Guevara, and H. M. Wiseman, New J. Phys. 21,

083039 (2019).
[23] T. Kailath and P. Frost, IEEE Trans. Autom. Control 13, 655

(1968).
[24] T. Kailath, Proc. IEEE 58, 680 (1970).
[25] T. Kailath, IEEE Trans. Inf. Theory 19, 750 (1973).

[26] F. Badawi, A. Lindquist, and M. Pavon, IEEE Trans. Autom.
Control 24, 878 (1979).

[27] A. H. Jazwinski, Stochastic Processes and Filtering Theory
(Courier Corporation, North Chelmsford, MA, 2007).

[28] D. C. Fraser, Ph.D. thesis, Massachusetts Institute of Technol-
ogy, 1967.

[29] D. Q. Mayne, Automatica 4, 73 (1966).
[30] D. Fraser and J. Potter, IEEE Trans. Autom. Control 14, 387

(1969).
[31] A. Chia and H. M. Wiseman, Phys. Rev. A 84, 012119 (2011).
[32] J. Zhang and K. Mølmer, Phys. Rev. A 96, 062131 (2017).
[33] P. Jordan, Z. Phys. 80, 285 (1933).
[34] P. Jordan, J. v. Neumann, and E. Wigner, Ann. Math. 35, 29

(1934).
[35] A. Chantasri, J. Dressel, and A. N. Jordan, Phys. Rev. A 88,

042110 (2013).
[36] S. J. Weber, A. Chantasri, J. Dressel, A. N. Jordan, K. W.

Murch, and I. Siddiqi, Nature (London) 511, 570 (2014).

012213-15

http://arxiv.org/abs/arXiv:1912.02711
https://doi.org/10.1103/PhysRev.134.B1410
https://doi.org/10.1103/PhysRevLett.60.1351
https://doi.org/10.1103/PhysRevLett.122.190402
https://doi.org/10.1088/1367-2630/ab396e
https://doi.org/10.1109/TAC.1968.1099019
https://doi.org/10.1109/PROC.1970.7723
https://doi.org/10.1109/TIT.1973.1055104
https://doi.org/10.1109/TAC.1979.1102174
https://doi.org/10.1016/0005-1098(66)90019-7
https://doi.org/10.1109/TAC.1969.1099196
https://doi.org/10.1103/PhysRevA.84.012119
https://doi.org/10.1103/PhysRevA.96.062131
https://doi.org/10.1007/BF01333854
https://doi.org/10.2307/1968117
https://doi.org/10.1103/PhysRevA.88.042110
https://doi.org/10.1038/nature13559

