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In the present work, the averaged fidelity is introduced as the steering parameter. According to the definitions
of steering from Alice to Bob, a general scheme for designing linear steering criteria is developed for a high-
dimensional system. For a given set of measurements on Bob’s side, two quantities, the so-called nonsteering
thresholds, can be defined. If the measured averaged fidelity exceeds these thresholds, the state shared by
Alice and Bob is steerable from Alice to Bob, and the measurements performed by Alice are also verified
to be incompatible. Within the general scheme, we also construct a linear steering inequality when the set of
measurements performed by Bob has a continuous setting. Some applications are also provided.
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I. INTRODUCTION

The concept of steering can date back to 1930s, introduced
by Schrödinger [1] as a generalization of the Einstein-
Podolsky-Rosen (EPR) paradox [2]. For a bipartite state,
steering infers that an observer on one side can affect the state
of the other spatially separated system by local measurements.
In quantum information processing, steering can be defined
as the task for a referee to determine whether two parties
share entanglement with an untrusted party [3–5]. In 2007,
Wiseman, Jones, and Doherty [3] formally defined quantum
steering as a type of quantum nonlocality that is logically
distinct from inseparability [6,7] and Bell nonlocality [8]. In
the modern view, quantum steering can be understood as the
impossibility of describing the conditional states at one party
by a local hidden state (LHS) model.

A fundamental property is that steering is inherently
asymmetric with respect to the observers [9,10], which is
quite different from the quantum nonlocality and entangle-
ment. Actually, there are entangled states which are one-way
steerable [10,11]. Besides its foundational significance in
quantum information theory, steering has been found useful
in many applications. For example, steering has a vast range
of information-theoretic applications in one-sided device-
independent scenarios where the party being steered has trust
on his or her own quantum device while the other’s device
is untrusted, such as one-sided device-independent quantum
key distribution [12], advantage in subchannel discrimination
[13], secure quantum teleportation [14,15], quantum commu-
nication [14], detecting bound entanglement [16], one-sided
device-independent randomness generation [17], and one-
sided device-independent self-testing of pure maximally as
well as nonmaximally entangled state [18].
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Meanwhile, the detection and characterization of steering,
especially the steering inequities, have been widely discussed.
In 1989, the variance inequalities violated with EPR cor-
relations for the continuous variable system were derived
by Reid [19], and this was generalized to discrete variable
systems [20]. EPR-steering inequalities were defined [21],
where the violation of any such inequality implies steering.
Following these works, further schemes have been proposed
to signalize steering, for instance, the linear and nonlinear
steering criteria [5,22–26], steering inequalities based on mul-
tiplicative variances [27], steering criteria from uncertainty
relations [28–33], steering with Clauser-Horne-Shimony-Holt
(CHSH)-like inequalities [34–37], moment matrix approach
[38–40], steering criteria based on local uncertainty relations
[41,42], and the universal steering criteria [43]. The discussed
criteria or small variation thereof have been used in sev-
eral experiments [5,22,44–46]. Quite recently, the connection
between quantum steering and quantum coherence was dis-
cussed [47,48].

Our work is originated from one of the open questions
summarized in Ref. [49]: Though a complete characteriza-
tion of quantum steerability has been obtained for two-qubit
systems and projective measurements, it is still desirable to
extend such a characterization to higher-dimensional systems.
Although there is indication that such an extension is possible,
much remains to be worked out. Here, we shall focus on find-
ing the sufficient criteria for steerability with linearly steering
inequalities (LSIs) [5,21,50]. The LSIs have an advantage that
they can work even when the bipartite state is unknown. They
also have a deep relation with the joint measurement problem:
If an LSI is violated, the state is steerable from Alice to Bob
and the measurements performed by Alice are also verified to
be incompatible [51–55].

In this paper, according to the definitions of steering [56],
we develop a general scheme to design linear steering criteria
for high-dimensional systems by introducing the averaged
fidelity as the steering parameter. The content of this work
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is organized as follows. In Sec. II, we give a brief review on
the definition of steering from Alice to Bob, the Werner states,
and the isotropic states. In Sec. III, a detailed introduction to
the nonsteering threshold is given. In Sec. IV, we address the
problem of constructing linear criteria for high-dimensional
systems, and an explicit LSI is constructed. Some applications
of the LSI are discussed in Sec. V. Finally, we end our work
with a short conclusion.

II. PRELIMINARY

A. Steering from Alice to Bob

A bipartite state W shared by Alice and Bob can be ex-
pressed by a pure (entangled) state and a one-sided linear map
ε [57,58],

W = Id ⊗ ε(|�〉〈�|), (1)

where Id is an identity map. Let ρA be the reduced density
matrix on Alice’s side, and |�〉 could be fixed as |�〉 =
|√ρA〉〉. The details about ε and |√ρA〉〉 are shown in Ap-
pendix A. Usually, ρA has an eigendecomposition ρA =∑d

i=1 λi|i〉〈i|, with d the dimension of the Hilbert space, and
|�〉 = ∑d

i=1

√
λi|i〉 ⊗ |i〉. In the field of quantum information

and computation, entanglement is one of the most important
quantum resources, and it is important to verify whether a
bipartite state W is entangled or not. Based on this decom-
position, the state W should be a mixture of products states if
and only if ε is entanglement breaking (EB) [57,58].

Before one can show how to demonstrate a state is steer-
able from Alice to Bob, some necessary conventions are
required. First, Alice can perform N projective measurements
on her side, labeled by μ = 1, 2, ..., N , each having d out-
comes a = 0, 1, ..., d − 1, and the measurements are denoted
by �̂a

μ,
∑d

a=1 �̂a
μ = Id , with Id the identity operator on the

d-dimensional Hilbert space. The unnormalized postmeasure-
ment states for Bob are

ρ̃a
μ = TrA

[(
�̂a

μ ⊗ Id
)
W

]
, (2)

and from the decomposition in Eq. (1), it can be rewritten as

ρ̃a
μ = ε

(√
ρA

(
�̂a

μ

)∗√
ρA

)
, (3)

where “∗” represents the complex conjugate. The set of un-
normalized states, {ρ̃a

μ}, is usually called an assemblage.
In 2007, Wiseman, Jones, and Doherty formally defined

quantum steering as the possibility of remotely generating
ensembles that could not be produced by a local hidden states
(LHS) model [3]. A LHS model refers to the case where a
source sends a classical message ξ to one of the two par-
ties, say, Alice, and a corresponding quantum state ρξ to the
other party, say Bob. Given that Alice decides to perform
the μth measurement, the variable ξ instructs the output a of
Alice’s apparatus with the probability p(a|μ, ξ ). The variable
ξ also can be interpreted as a local hidden variable (LHV)
and chosen according to a probability distribution �(ξ ). Bob
does not have access to the classical variable ξ , and his final
assemblage is composed by

ρ̃a
μ =

∫
dξ�(ξ )p(a|μ, ξ )ρξ . (4)

Note that Trρ̃a
μ is the probability that the outcome is a when

the μth measurement is performed by Alice, and in the LHS
model above, there is Tr[ρ̃a

μ] = ∫
dξ�(ξ )p(a|μ, ξ ).

In this paper, the definition of steering is directly cited from
the review article [56]: An assemblage is said to demonstrate
steering if it does not admit a decomposition of the form in
Eq. (4). Furthermore, a quantum state W is said to be steerable
from Alice to Bob if the experiments in Alice’s part produce
an assemblage that demonstrates steering. On the contrary,
an assemblage is said to be LHS if it can be written as in
Eq. (4), and a quantum state is said to be unsteerable if a LHS
assemblage is generated for all local measurements.

For a given class of bipartite states, how to construct the
necessary and sufficient condition of steerability is one of the
elementary tasks in quantum steering. Until now, the neces-
sary and sufficient criteria have been obtained only for the
Werner states [59], isotropic states [3], and T states [60]. In
the present work, sufficient criteria for steerability will be
constructed. Some known results in Refs. [3,59] are required
in the derivation of LSI for the continuous setting in the
following. Therefore, for the convenience of readability, we
would like to give a brief review of the the Werner states [59]
and isotropic states [3]. Especially, some formulas, which are
very useful in this work, will be introduced below.

B. Werner states

The Werner states are defined as [4,59]

W w
d = d − 1 + w

d − 1

Id ⊗ Id

d2
− w

d − 1

V
d

, (5)

with 0 � w � 1, and V is the “flip” operator V|ψ〉 ⊗
|φ〉 = |φ〉 ⊗ |ψ〉. Werner states are nonseparable iff w >

1/(d + 1). If Alice performs a projective measurement �A
a =

|a〉〈a|, ∀a ∈ {0, 1, ..., d − 1} on her side, the unnormalized
conditional state on Bob’s side is

ρ̃A
a = d − 1 + w

d (d − 1)

Id

d
− w

d (d − 1)
|a〉〈a|. (6)

It was shown that the original derivation by Werner in
Ref. [59] can be equivalently expressed in terms of steering
[3]. Denote the d-dimensional unitary group by U(d ), and
with a unitary operator Ûω ∈ U(d ), a state |ψω〉 can be ex-
pressed as |ψω〉 = Ûω|0〉, where |0〉 is a fixed state in the
d-dimensional Hilbert space and ω represents the group pa-
rameters. The complete set of pure states in the d-dimensional
system is denoted by F � ≡ {|ψω〉〈ψω|dμHaar (ω)}, with
dμHaar (ω) the Harr measure on the group U(d ). If Alice is
trying to simulate the conditional state above, the optimal set
of LHS should be F � [3]. Formally, the simulation can be
described as

ρ̃A
a =

∫
dω�(ω)p(a|A, ψω )|ψω〉〈ψω|, (7)

with the constraint
∑d−1

a=0 p(a|A, ψω ) = 1 and a probability
distribution �(ω). For an explicit conditional state in Eq. (6),
the optimal choice of {p(a|A, ψω )} is

p�(a|A, ψω ) =
{

1 if 〈ψω|�̂A
a |ψω〉 < 〈ψω|�̂A

a′ |ψω〉. a �= a′
0 otherwise

.

(8)
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As shown by Werner [59], for any positive normalized distri-
bution p(a|A, ψω ), there should be

〈a|
∫

dμHarr (ω)|ψω〉〈ψω|p(a|A, ψω )|a〉 � 1

d3
. (9)

The equality is attained for the optimal p�(a|A, ψω ) specified
in Eq. (8). From it, it can be found that Alice cannot simulate
the conditional state in Eq. (6) iff (1 − w)/d2 < 1/d3.

C. Isotropic states

The isotropic states, which were introduced in Ref. [61],
can be parametrized similarly to the Werner states with a
mixing parameter η,

W η

d = (1 − η)
Id ⊗ Id

d2
+ ηP+. (10)

Here P+ = |ψ+〉〈ψ+|, where |ψ+〉 = ∑d
i=1 |i〉 ⊗ |i〉/√d is a

maximally entangled state. For d = 2, the isotropic states are
identical to Werner states up to local unitary transformations.
These states are entangled if η > 1/(d + 1).

If Alice makes a projective measurement, the conditional
state for Bob is

ρA
a = 1 − η

d

Id

d
+ η

d
|a〉〈a|. (11)

When Alice tries to simulate this state, the ensemble F � :=
{|ψω〉〈ψω|dμHaar (ω)} has been proved to be the optima one
[3]. Especially, the choice of the p(a|A, ψω ),

p�(a|A, ψω ) =
{

1 if 〈ψω|�̂A
a |ψω〉 > 〈ψω|�̂A

a′ |ψω〉, a �= a′
0 otherwise

(12)
is optimal for Alice to simulate the conditional states in
Eq. (11). It has been found that for any positive normalized
distribution {p(a|A, ψω )},

〈a|
∫

dμHarr (ω)|ψω〉〈ψω|p(a|A, ψω )|a〉 � Hd

d2
, (13)

where Hd = ∑d
n=1(1/n) is the Harmonic series and the equal-

ity is attained for the optimal p�(a|A, ψω ) specified in Eq. (12).
Therefore, Alice cannot simulate the conditional states iff
η/d + (1 − η)/d2 > Hd/d2 [3].

III. NONSTEERING THRESHOLD

A. Sufficient criteria for steering

The conditional state ρ̃a
μ on Bob’s side can be measured

with a set of rank-one projective operators {M̂a
μ}, M̂a

μ ≡ �̂a
μ =

|φa
μ〉〈φa

μ|, 〈φa
μ|φb

μ〉 = δab,
∑d−1

a=0 M̂a
μ = Id , and the fidelity for

the μth run of experiment is defined as

Fμ =
d−1∑
a=0

Tr
[
ρ̃a

μ�̂a
μ

]
. (14)

Let 〈A ⊗ B〉 = Tr(A ⊗ BW ) be the expectation value of the
operator A ⊗ B, and in experiment, Fμ can be measured as

Fμ =
d−1∑
a=0

〈
�̂a

μ ⊗ �̂a
μ

〉
. (15)

Assume the probability of the μth measurement performed by
Alice is qμ,

∑N
μ=1 qμ = 1, and the averaged fidelity F̄ can be

defined

F̄ ≡
N∑

μ=1

qμFμ. (16)

The averaged fidelity plays an important role in the de-
tection of entanglement. Let us recall the decomposition
in Eq. (1), and now the channel ε is restricted to be an
EB one, denoted by εEB. With the assemblage resulted
from the EB channel, {ρ̃a

μ = εEB(
√

ρA(�̂a
μ)∗

√
ρA)}, and fol-

lowing the above definitions, one has the fidelity F EB
μ =∑d−1

a=0 Tr[�̂a
μεEB(

√
ρA(�̂a

μ)∗
√

ρA)] and the averaged fidelity
F EB

avg = ∑
μ qμF EB

μ . The classical fidelity threshold (CFT) can
be defined as FCFT = maxεEB F EB

avg , where the maximum is
taken over the set of all EB channels {εEB} [61–69]. If the
experiment data F̄ exceeds this threshold, F̄ > FCFT, one may
conclude that the channel ε in Eq. (1) cannot be a EB channel
and the state W is an entangled state.

The above idea to detect entanglement is heuristic and
sheds light on the detection of steering. Similarly, by taking
the averaged fidelity as the steering parameter, a steer-
ing inequality can also be constructed by just considering
the measurement performed by Bob [5,21,50]. Assume that
the assemblage {ρ̃a

μ} introduced in Eq. (2) has a LHS de-
composition in Eq. (4), and one can have Tr[ρ̃a

μ�̂a
μ] =∫

dξ�(ξ )p(a|μ, ξ )Tr(ρξ �̂
a
μ). With the definition of averaged

fidelity above, one may introduce an averaged fidelity,

F LHS
avg ≡

N∑
μ=1

d−1∑
a=0

qμ

∫
dξ�(ξ )p(a|μ, ξ )Tr

(
ρξ �̂

a
μ

)
, (17)

for the case where the assemblage {ρ̃a
μ} admits a LHS model.

Formally, it can be rewritten as F LHS
avg ≡ ∫

dξ�(ξ )Tr(ρξ ρ̄ ),
with ρ̄ defined as

ρ̄ =
N∑

μ=1

d−1∑
a=0

qμp(a|μ, ξ )�̂a
μ, (18)

with the probability p(a|μ, ξ ) interpreted as the value of �̂a
μ in

the local hidden variable (LHV) model. ρ̄ is a density matrix,
and formally, can be expanded as ρ̄ = ∑

ν λν |λν〉〈λν |, with
λν the eigenvalues and |λν〉 the corresponding eigenvectors.
Defining λmax = maxp(a|μ,ξ ) maxμ{λμ}, and together with the
facts Tr[ρξ ρ̄] � λmax and

∫
�(ξ )dξ = 1, one can conclude

that λmax is an upper bound of F LHS
avg , say, λmax � F LHS

avg . From
the definition of unsteerable states, we know that the assem-
blage resulted from the unsteerable state always admits a LHS
model. Therefore, λmax also can be interpreted as the upper
bound of the averaged fidelity derived from the unsteerable
states, when the measurement on Bob’s has been fixed as
{qμ, Ma

μ}. To emphasize this property of λmax, we define it as
the nonsteering threshold (NST) and denote it by the symbol
F+

NST hereafter,

F+
NST

({
qμ, Ma

μ

}) = max
|φ〉

max
p(a|μ,ξ )

〈φ|ρ̄|φ〉. (19)
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In a similar way, the minimum eigenvalue of ρ̄ is the other
NST, and denoted by F−

NST hereafter,

F−
NST

({
qμ, Ma

μ

}) = min
|φ〉

min
p(a|μ,ξ )

〈φ|ρ̄|φ〉. (20)

With Tr[ρξ ρ̄] � F−
NST and

∫
�(ξ )dξ = 1, one can conclude

that F−
NST is a lower bound of F LHS

avg , say, F−
NST � F LHS

avg . There-
fore, an LSI can be defined,

F−
NST

({
qμ, Ma

μ

})
� F̄ � F+

NST

({
qμ, Ma

μ

})
. (21)

Since the following two conditions—(a) the state is steer-
able from Alice to Bob and (b) the set of measurements
{�a

μ} performed by Alice is incompatible—are necessary so
that the assemblage {ρ̃a

μ} does not admit a LHS model, one
may conclude that the violation of the steering inequality,
is a sufficient condition for Bob to make the statements (a)
and (b).

To show a state W is steerable from Alice to Bob, the
extremal values of the averaged fidelity should be considered.
For a fixed measurement {�̂a

μ}d−1
a=0 performed by Bob, let F+

μ

(F−
μ ) be the maximum (minimum) value of Fμ with the cor-

responding measurement {�̂a
μ}d−1

a=0 performed by Alice. The
extremal values of the fidelity are

F̄±({
qμ, Ma

μ

}) =
N∑

μ=1

qμF±
μ , (22)

and obviously, F̄− � F̄ � F̄+. Now, two types of steering cri-
teria can be introduced. For the reason which will be clarified
in the following, one can define the Wiseman-Jones-Doherty
(WJD)-type criterion,

F̄+({
qμ, Ma

μ

})
> F+

NST

({
qμ, Ma

μ

})
, (23)

and the Werner-type one,

F̄−({
qμ, Ma

μ

})
< F−

NST

({
qμ, Ma

μ

})
. (24)

The two criteria above are independent, which means that if
either is verified, the state W is demonstrated to be steerable
from Alice to Bob. It will be shown that both types of the
criteria should be considered for the high-dimensional system
(d > 2).

B. The optimal eigenvectors

First, let us consider the probabilistic LHV model. For the
μth measurement {�a

μ}, ∑d−1
a=0 �a

μ = Id , and

0 � p(a|μ, ξ ) � 1,

d−1∑
a=0

p(a|μ, ξ ) = 1. (25)

From Eqs. (18) and (19), a quantity fμ(φ) can be introduced,

fμ(φ) = 〈φ|
d−1∑
a=0

p(a|μ, ξ )�̂a
μ|φ〉, (26)

as a function of |φ〉, and for a fixed |φ〉, its maximum value,

f max
μ (φ) = max

a
〈φ|�̂a

μ|φ〉, (27)

can be obtained with the optimal choice of the probabilities
{p(a|μ, ξ )},

p�(a|μ, ξ ) =
{

1 if 〈φ|�̂a
μ|φ〉 > 〈φ|�̂a′

μ |φ〉, a �= a′

0 otherwise
, (28)

where a, a′ ∈ {0, 1, ..., d − 1}. F+
NST can be rewritten as

F+
NST = max

|φ〉

N∑
μ=1

qμ f max
μ (φ). (29)

Next, one may seek the optimal state |φ+〉 corresponding to
the largest eigenvalue of ρ̄, and then, the result can be formally
expressed as

F+
NST =

N∑
μ=1

d−1∑
a=0

qμ〈φ+|p�(a|μ, ξ )�̂a
μ|φ+〉. (30)

On the other hand, F−
NST can be derived similarly. With the

optimal probabilities,

p�(a|μ, ξ ) =
{

1 if 〈φ|�̂a
μ|φ〉 < 〈φ|�̂a′

μ |φ〉, a �= a′

0 otherwise
, (31)

the same quantity fμ(φ) in Eq. (26) achieves its minimum
value,

f min
μ (φ) = min

a
〈φ|�̂a

μ|φ〉. (32)

Therefore,

F−
NST = min

|φ〉

N∑
μ=1

qμ f min
μ (φ), (33)

and by choosing the optimal vector |φ−〉 corresponding to the
minimum eigenvalue of ρ̄, one can come to the final result,

F−
NST =

N∑
μ=1

d−1∑
a=0

qμ〈φ−|p�(a|μ, ξ )�̂a
μ|φ−〉. (34)

Until now, we have considered the case where the number of
the experiment settings is finite, and the above conclusions
can be easily generalized to the case where the experiment
settings are continuous.

C. Deterministic LHV model

In the above discussion, a general protocol to calculate
NSTs through finding the optimal eigenvectors has been con-
structed. From the optimal choice of {p(a|μ, ξ )}, it is shown
that the NSTs are unchanged if a deterministic LHV is ap-
plied. For the μth measurement {�a

μ}d−1
a=0 ,

∑d−1
a=0 �a

μ = Id , and

p(a|μ, ξ ) ∈ {0, 1},
d−1∑
a=0

p(a|μ, ξ ) = 1. (35)

So, one may have another way to derive the NSTs, shown
in the following. For the measurements {qμ, �̂a

μ}, a density
matrix can be introduced:

ρ̄k1,k2,...,kN =
N∑

μ=1

qμ�̂
kμ

μ , (36)
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where kμ ∈ {0, 1, ..., d − 1} for all μ = 1, 2, ..., N . There are
totally dN matrices of such kind. For ρ̄k1,k2,...,kN , the largest
eigenvalue and the minimum eigenvalue are

λmax
k1,k2,...,kN

= max
|φ〉

〈φ|ρ̄k1,k2,...,kN |φ〉, (37)

λmin
k1,k2,...,kN

= min
|φ〉

〈φ|ρ̄k1,k2,...,kN |φ〉, (38)

respectively. The NSTs can be expressed as

F+
NST = max

k1,k2,...,kN

λmax
k1,k2,...,kN

, (39)

F−
NST = min

k1,k2,...,kN

λmin
k1,k2,...,kN

. (40)

As an illustration, let us consider a two-settings case as
a specific example. Two sets of orthogonal basis {|φa

1〉} and
{|φb

2〉} with a, b = 0, 1, ..., d − 1 can be chosen, which are
related by a unitary matrix U . Uab are matrix elements and
|φb

2〉 = ∑d−1
a=0 Uba|φa

1〉. Fixing the probability for each setting
as q1 = q2 = 1/2 and with the deterministic LHV model, a
series of states ρ̄a,b = (�̂a

1 + �̂b
2)/2 can be introduced and

NST can be obtained:

F+
NST = max

a,b
λmax

a,b , F−
NST = min

a,b
λmin

a,b . (41)

For a mixed state ρ = (|e1〉〈e1| + |ϕ〉〈ϕ|)/2, where the state
|ϕ〉 = s|e1〉 +

√
1 − |s|2|e2〉 with two orthogonal bases |e1〉

and |e2〉, its maximum eigenvalue is λmax(ρ) = (1 + |s|)/2.
Based on this fact, λmax

a,b = (1 + |Uab|)/2 and

F+
NST = 1

2 (1 + max
a,b

|Uab|). (42)

One can select out the optimal element U opt
ab , whose modu-

lus |U opt
ab | has the largest value, from all the unitary matrix

elements. Then, F+
NST = (1 + |U opt

ab |)/2. Note that each ρ̄a,b is
a density matrix in d-dimensional system, and it has a total
number of d eigenvalues. From the definition above, ρ̄a,b is
composed of two pure states; it has two nonzero eigenvalues,
1
2 (1 ± |Uab|), and a number of d − 2 eigenvalues to be zero.
Therefore, λmin

a,b = 1
2 (1 − |Uab|) for d = 2, and λmin

a,b = 0 for
d > 2. With the definition F−

NST = mina,b λmin
a,b , we have

F−
NST =

{ 1
2 (1 − |U opt

ab |) if d = 2

0 if d > 2
. (43)

It is known that a set of mutually unbiased bases (MUBs)
consists of two or more orthonormal bases {|φa

x 〉} in a d-
dimensional Hilbert space satisfying∣∣〈φa

x

∣∣φb
y

〉|2 = 1

d
, ∀a, b ∈ {0, 1, ..., d − 1}, x �= y, (44)

for all x and y [70]. Formally, one can introduce a
unitary matrix U with |φa

x 〉 = ∑d−1
a=0 Uab|φb

y 〉. From the def-

inition for MUBs, |Uab| = 1/
√

d, ∀a, b ∈ {0, 1, ..., d − 1}.
With F+

NST = (1 + 1/
√

d )/2 and the averaged fidelity F̄ =
1
2

∑d−1
a=0

∑2
μ=1〈�̂a

μ ⊗ �̂a
μ〉, one can have the WJD-type steer-

ing criterion,

d−1∑
a=0

2∑
μ=1

〈
�̂a

μ ⊗ �̂a
μ

〉
> 1 + 1√

d
, (45)

with �̂a
μ one of MUBs. This result has appeared in previous

works with different approaches [71,72].

D. Geometric steering inequality

Here, the geometric averaged fidelity, which is related to
the averaged fidelity F̄ in a simple way, can be defined as

f̄ ≡ dF̄ − 1

d − 1
. (46)

Correspondingly, one can define the so-called geometric
NSTs,

g±
NST

({
qμ, Ma

μ

}) = dF±
NST

({
qμ, Ma

μ

}) − 1

d − 1
, (47)

and the criteria about Eq. (21) can be equivalently expressed
as the following: If the geometric inequality,

g−
NST � f̄ � g+

NST, (48)

is violated, the state W is steerable from Alice to Bob. This
type of inequality is convenient for the qubit case. With σx,
σy, and σz the Pauli matrices and a three-dimensional Bloch
vector r = ryx̂ + ryŷ + rzẑ (x̂, ŷ, and ẑ are unit vectors along
coordinate axes), a density matrix can be expressed as ρ =
(I2 + r · σ )/2, with r · σ = rxσx + ryσy + ryσz. The geometric

length of r is |r| =
√

r2
x + r2

y + r2
z . Furthermore, the measure-

ment results of Alice are usually denoted by a = +,−. Then,
the measurements performed by Alice can be expressed as
�̂±

μ = (I2 ± r̂μ · σ )/2, and the target states can be written as
�̂±

μ = (I2 ± n̂μ · σ )/2, where r̂μ and n̂μ are unit vectors. Now,
one can define a quantity A(μ, ξ ) = p(+|μ, ξ ) − p(−|μ, ξ ),
and by the constraint p(+|μ, ξ ) + p(−|μ, ξ ) = 1, it can be
obtained that −1 � A(μ, ξ ) � 1. In fact, A(μ, ξ ) may be
viewed as the predetermined value of the operator r̂μ · σ in an
LHV model. With the vector r̄ = ∑N

μ=1 qμA(a|μ, ξ )n̂μ, the
state ρ̄ in Eq. (18) can be expressed as ρ̄ = (I2 + r̄ · σ)/2, and
introducing the optimal length of r̄,

|r̄|opt = max
−1�A(μ,ξ )�1

|r̄|, (49)

the geometric NSTs can be obtained as follows:

g±
NST = ±|r̄|opt. (50)

With Eq. (46), the geometric averaged fidelity can be ex-
pressed as f̄ = ∑N

μ=1 qμ〈r̂μ · σ ⊗ n̂μ · σ〉, and the geometric
steering inequality for the qubit case becomes

−|r̄|opt �
N∑

μ=1

qμ〈r̂μ · σ ⊗ n̂μ · σ〉 � |r̄|opt. (51)

For the deterministic LHV model, A(μ, ξ ) ∈ {−1,+1},
and introducing 2N vectors r̄±±...± = ∑N

μ=1(±qμn̂μ), the op-
timal length of r̄ can be expressed as

|r̄|opt = max±±...± |r̄±±...±|. (52)

The known result in Ref. [5] is recovered here.
As a simple example, let us consider the case where

Bob’s measurements are MUBs: n̂ · σ and n̂⊥ · σ, where
n̂ and n̂⊥ are two orthogonal unit vectors. With q(n̂) and
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q(n̂⊥) the probabilities for each measurement, respectively,
all the possible four vectors are r̄±± = ±q(n̂)n̂ ± q(n̂⊥)n̂⊥,
and it is easy to calculate the geometric length for each
vector |r̄±±| =

√
q2(n̂) + q2(n̂⊥). Thus, the optimal length is

|r̄|opt =
√

q2(n̂) + q2(n̂⊥) and the geometric steering inequal-
ity above has a more explicit form,

−1 � q(n̂)〈â ⊗ n̂〉√
q2(n̂) + q2(n̂⊥)

+ q(n̂⊥)〈b̂ ⊗ n̂⊥〉√
q2(n̂) + q2(n̂⊥)

� 1, (53)

where 〈â ⊗ n̂〉 = 〈â · σ ⊗ n̂ · σ〉.
If the CHSH inequality [73],

−2 � 〈â ⊗ (n̂1 − n̂2)〉 + 〈b̂ ⊗ (n̂1 + n̂2)〉 � 2, (54)

is violated, the state is Bell nonlocal. By some algebra shown
in Refs. [55,74,75], the CHSH inequality in Eq. (54) can take
an equivalent form,

−1 � | cos θ |〈â ⊗ n̂〉 + | sin θ |〈b̂ ⊗ n̂⊥〉 � 1, (55)

where

n̂1 − n̂2 = 2| cos θ |n̂, n̂1 + n̂2 = 2| sin θ |n̂⊥. (56)

It could be found that Eq. (55) is very similar to the criteria in
Eq. (53). In fact, the two operators,

T̂steer = q(n̂)â · σ ⊗ n̂ · σ + q(n̂⊥)b̂ · σ ⊗ n̂⊥ · σ√
q2(n̂) + q2(n̂⊥)

,

T̂CHSH = | cos θ |â · σ ⊗ n̂ · σ + | sin θ |b̂ · σ ⊗ n̂⊥ · σ,

are equal T̂steer = T̂CHSH, under the following one-to-one map-
ping,

| cos θ | = q(n̂)√
q2(n̂) + q2(n̂⊥)

, | sin θ | = q(n̂⊥)√
q2(n̂) + q2(n̂⊥)

.

Based on the results above, one may conclude that if the
geometric inequality in Eq. (53) is violated, the state must be
Bell nonlocal. A similar result has also been found in [34,35].

IV. CONTINUOUS SETTINGS

A. Qubit case

In the above sections, we have developed a general scheme
for constructing LSIs for the discrete case. In this section, two
explicit LSIs will be constructed for the case where the mea-
surement performed by Bob has a continuous form. Before
the LSIs for an arbitrary dimensional system can be derived,
a detailed discussion about the qubit case is required first, and
this is useful to show what are necessary to construct the LSIs.

Now, instead of the symbol μ, a three-dimensional unit
vector n̂ = (sin θ cos φ, sin θ sin φ, cos θ ) with 0 � θ � π

and 0 � φ < 2π , is employed to label Bob’s measurement
as �̂a

n̂ with a = +,− the outcomes. One can introduce the
measure 1

4π
d2n̂ ≡ 1

4π
sin θdθdφ, and certainly, 1

4π

∫∫
d2n̂ ≡

1
4π

∫ 2π

0

∫ π

0 sin θdθdφ = 1. In general, the measurements �̂a
n̂

have a probability distribution q(n̂), and in this work, we
just consider the case that the experimental settings are equal
weighted, say, q(n̂) = 1. Now, the density matrix in Eq. (18)

becomes

ρ̄ = 1

4π

∫∫
d2n̂

∑
a

p(a|n̂, ξ )�̂a
n̂. (57)

Correspondingly, the expressions for its maximum and mini-
mum eigenvalues can be obtained from Eq. (19) and Eq. (20),
respectively.

The set of measurements performed by Bob can be de-
noted by {�̂a

n̂,
1

4π
d2n̂}. This set of measurements has a special

property: The optimal vector |φ+〉 should be the eigenvector
of the measurement which belongs to the set { 1

4π
d2n̂, �̂a

n̂}.
Without loss of generality, one may fix it as an eigenvector of
σ̂z, |φ+〉 ≡ |+〉, where σ̂z|±〉 = ±|±〉. As a comparison, one
may recall the case where Bob’s measurements are MUBs:
n̂ · σ and n̂⊥ · σ, where |φ+〉 should be the eigenvector of
r̄±± · σ. However, this property does not hold anymore. With
Ûn̂ a unitary matrix transforming |+〉 to a state represented
by a unit Bloch vector n̂, |φn̂〉 = Ûn̂|+〉, one may rewrite
�̂a

n̂ = Û †
n̂ |a〉〈a|Ûn̂, and obtain a complete set of pure states

{|φn̂〉}. By some simply algebra, 〈+|�̂a
n̂|+〉 = 〈a|φn̂〉〈φn̂|a〉,

and Eq. (30) becomes

F+
NST = 1

4π

[
〈+|

( ∫∫
d2n̂p�(+|n̂, ξ )|φn̂〉〈φn̂|

)
|+〉

+ 〈−|
( ∫∫

d2n̂p�(−|n̂, ξ )|φn̂〉〈φn̂|
)

|−〉
]
, (58)

with the optimal probabilities,

p�(a, |n̂, ξ ) =
{

1 if 〈a|�̂n̂|a〉 > 〈a′|�̂n̂|a′〉, a �= a′
0 otherwise

, (59)

where a, a′ ∈ {+,−}, and �̂n̂ = |φn̂〉〈φn̂|. Now, only the pure
states on the northern hemisphere of the Bloch sphere (0 �
θ < π/2) contribute to the first term in Eq. (58),

1

4π

[
〈+|

( ∫∫
d2n̂p�(+|n̂, ξ )|φn̂〉〈φn̂|

)
|+〉

]

= 1

2

∫ π/2

0
sin θdθ

1

2
(1 + cos θ ) = 3

8
, (60)

while only the pure states on the southern hemisphere of the
Bloch sphere contribute to the second term in Eq. (58),

1

4π

[
〈−|

( ∫∫
d2n̂p�(−|n̂, ξ )|φn̂〉〈φn̂|

)
|−〉

]

= 1

2

∫ π

π/2
sin θdθ

1

2
(1 − cos θ ) = 3

8
. (61)

Collecting the results above together, one can obtain the NST
F+

NST = 3/4.
With a suitable basis, the optimal vector |φ−〉 can be fixed

as the eigenvector of σ̂z, |φ−〉 ≡ |+〉, σ̂z|±〉 = ±|±〉. In a sim-
ilar way to the one for deriving F+

NST, and with the optimal
probabilities,

p�(a, |n̂, ξ ) =
{

1 if 〈a|�̂n̂|a〉 < 〈a′|�̂n̂|a′〉, a �= a′
0 otherwise

, (62)

where a, a′ ∈ {+,−}, and one can have F−
NST = 1/4. From the

derivation above, one can see that the optimal probabilities
in Eqs. (59) and (62) play an important role in deducing the
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NSTs. Finally, one can come to a state-independent LSI for
the qubit case,

1

4
� F̄

({
1

4π
d2n̂, �̂a

n̂

})
� 3

4
, (63)

where the measurements by Bob are fixed as { 1
4π

d2n̂, �̂a
n̂}.

B. High-dimensional case

With a set of basis vectors {|a〉, a = 0, ..., d − 1}, the
parameter ω can be used to label the experiment settings
by Bob’s measurements, �̂a

ω = Û †
ω |a〉〈a|Ûω, where Uω can

take all the unitary operators in the d-dimensional unitary
group U(d ), and a represents the outcomes. It is assumed
that the probability for each measurement is equal weighted,
and a Harr measure dμHaar (ω) on U(d ) can be introduced,∫

dμHaar (ω)
∑d−1

a=0 �̂a
ω = Id . Formally, the measurements by

Bob are denoted by {dμHaar (ω), �̂a
ω}. Meanwhile, |φω〉 =

Ûω|0〉 is a pure state in the d-dimensional Hilbert space.
Analogously as the qubit case, without loss of generality, the
optimal eigenvector is chosen as |φ+〉 ≡ |0〉. Now, Eq. (30)
may be rewritten into a form more appropriate for the contin-
uous setting,

F+
NST =

d−1∑
a=0

〈a|
( ∫

dμHaar (ω)p�(a|ω, ξ )|φω〉〈φω|
)

|a〉, (64)

where 〈0|�̂a
ω|0〉 = 〈a|φω〉〈φω|a〉 has been applied, and as a

generalization of Eq. (28), the optimal probabilities are

p�(a|ω, ξ ) =
{

1 if 〈φω|a〉〈a|φω〉 > 〈φω|a′〉〈a′|φω〉, a �= a′
0 otherwise ,

(65)
with a, a′ ∈ {0, 1, ..., d − 1}.

Now, let us come back to the general results about the
isotropic states in Sec. II. One may easily verify that the
result in Eq. (65) is similar to the one in Eq. (12). As a
direct application of the inequality in Eq. (13), the NST can
be derived as

F+
NST

({
dμHaar, �̂

a
ω

}) = Hd

d
(66)

from Eq. (64).
To drive the other NST, similarly, one can fix the optimal

eigenvector |φ−〉 ≡ |0〉 and rewrite Eq. (34) as

F−
NST =

d−1∑
a=0

〈a|(dμHaar (ω)p�(a|ω, ξ )|φω〉〈φω|)|a〉, (67)

with the optimal probabilities,

p�(a|ω, ξ ) =
{

1 if 〈φω|a〉〈a|φω〉 < 〈φω|a′〉〈a′|φω〉, a �= a′
0 otherwise ,

(68)
where a, a′ ∈ {0, 1, ..., d − 1}. With the inequality in Eq. (9),
the other NST can be obtained:

F−
NST

({
dμHaar, �̂

a
ω

}) = 1

d2
. (69)

Collecting the above results together, an LSI for the continu-
ous settings {dμHaar, �̂

a
ω} takes the form,

1

d2
� F̄

({
dμHaar, �̂

a
ω

})
� Hd

d
. (70)

For any state W , if the LSI is violated, the state is verified to be
steerable from Alice to Bob, and the measurement performed
by Alice is also incompatible. As a special case, the LSI in
Eq. (63) can be recovered from the general one above with
d = 2.

V. APPLICATIONS

A. T-state problem

An arbitrary two-qubit state can be expressed in the stan-
dard form,

W = 1

4
(I2 ⊗ I2 + a · σ ⊗ I2 + I2 ⊗ b · σ +

∑
jk

Tjkσi ⊗ σ j ),

(71)
where a and b are the Bloch vectors for Alice and Bob’s
reduced states, respectively, and T is the correlation matrix.
The T state is a special class of two-qubit states,

W = 1

4

(
I2 ⊗ I2 +

∑
j

t jσ j ⊗ σ j

)
, (72)

where a = b = 0 and T is a diagonal matrix with t j the diago-
nal elements. In 2015, Jevtic et al. gave a necessary condition
of EPR steerability for T states [60],

1

2π

∫∫
d2n̂

√
n̂TT 2n̂ = 1. (73)

The authors also conjectured that the derived condition
was precisely the border between steerable and nonsteerable
states, and this was later shown analytically [76]. Here, we
shall revisit this problem from the view of LSIs.

When Bob’s measurement is fixed as n̂ · σ, the ex-
pectation 〈â ⊗ n̂〉+ ≡ maxâ〈â ⊗ n̂〉 is the maximum one.
Further assume that Bob’s measurement is the continuous set
{ 1

4π
d2n̂, �̂a

n̂}, and from the definition of the geometric fidelity
in Eq. (46), one can have the maximum value of the geometric
fidelity f̄ + ≡ 1

4π

∫∫
d2n̂〈â ⊗ n̂〉+. With the geometric NST

g+
NST = 1/2, which can be directly calculated from Eq. (63), a

WJD-type criterion now is constructed,
1

2π

∫∫
d2n̂〈â ⊗ n̂〉+ > 1. (74)

This criterion is suitable for any two-qubit state. For
the T state, the correlation 〈â ⊗ n̂〉 = â · ñ is the inner
product between the two vectors â = (ax, ay, az ) and ñ =
(txnx, tyny, tznz ). Via the Cauchy-Schwarz inequality, the op-

timal choice of â could be ai = tini/

√∑
i t2

i n2
i with i =

x, y, z. Thus, 〈â ⊗ n̂〉+ =
√∑

i t2
i n2

i , and obviously, 〈â ⊗
n̂〉+ =

√
n̂TT 2n̂. Therefore, a sufficient condition for the T

state to be steerable from Alice to Bob becomes
1

2π

∫∫
d2n̂

√
n̂TT 2n̂ > 1, (75)

with the equality in Eq. (73) the border of it.
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The T state contains only three parameters t j ( j = 1, 2, 3).
Naturally, one may ask whether it is possible to obtain an
analytical function g(t j ) = 1

2π

∫∫
d2n̂

√
n̂TT 2n̂. This question

has already been discussed in Ref. [60], where Eq. (73) has an
equivalent form,

2πNT | det T | = 1,

with NT a surface integral [60]. For the special case t1 = t2,
an analytical expression for NT has been found. However,
for the general case, it is highly unlikely that one can obtain
the desired analytical expression for g(t j ). For the general
two-qubit state, it contains more parameters than the T states,
and therefore, when the criterion in Eq. (74) is applied, some
additional numerical techniques are required to calculate f̄ +.

B. Bounds of the general NSTs

When the state is the isotropic state and a set of measure-
ments {qμ, �̂a

μ} is used by Bob to detect steering, there is a
sufficient criterion that the isotropic state is steerable from
Alice to Bob,

F̄+
η ({qμ, �̂a

μ

})
> F+

NST({qμ, �̂a
μ

})
, (76)

where the subscript η indicates that the isotropic states are
considered. For the μth setting of measurements by Bob
{�̂a

μ}d−1
a=0 , the conditional states defined in Eq. (11) can be

expressed as

ρ̃a
μ = 1 − η

d

Id

d
+ η

d
�̂a

μ, a ∈ {0, 1, ..., d − 1}. (77)

The extreme values of fη ≡ ∑d−1
a=0 Tr[�̂a

μρ̃a
μ] will be derived

in the following. Obviously, the maximum value f max
η can be

attained if �̂a
μ = �̂a

μ, and f max
η = [1 + (d − 1)η]/d . The min-

imum value f min
η can be attained by setting Tr(�̂a

μ�̂a
μ) = 0,

and f min
η = (1 − η)/d . Moreover, these extremal values do

not depend on the actual form of the measurements �̂μ, and
therefore,

F̄+
η

({
qμ, �̂a

μ

}) = 1 + (d − 1)η

d
,

F̄−
η

({
qμ, �̂a

μ

}) = 1 − η

d
, (78)

F̄±
η

({
qμ, �̂a

μ

}) = F̄±
η

({
dμHaar, �̂

a
ω

})
.

However, for the continuous-settings case the criterion,

F̄+
η

({
dμHaar, �̂

a
ω

})
>

Hd

d
, (79)

is different from the one in Eq. (76). The WJD threshold Hd/d
has been proven to be a tight bound: If it is achieved, the
conditional states should admit a LHS model [3]. In other
words, the equivalent form of Eq. (79),

1 + (d − 1)η

d
>

Hd

d
, (80)

is a necessary and sufficient condition for the isotropic state
to be steerable, while [1 + (d − 1)η]/d > F+

NST({qμ, �̂a
μ}) is

just a sufficient one. Therefore, a state-independent relation

does exist:

F+
NST({qμ, �̂a

μ

})
� Hd

d
, (81)

where the WJD threshold is a lower bound of the general
F+

NST({qμ, �̂a
μ}). This is the reason why we call the criterion

in Eq. (23) the WJD-type one.
When the state is the Werner state and the same measure-

ments {qμ, �̂a
μ} are performed by Bob, there is a criterion

which is sufficient for the Werner state to be steerable from
Alice to Bob,

F̄−
w ({qμ, �̂a

μ

})
< F−

NST({qμ, �̂a
μ

})
, (82)

where the subscript w is used to indicate that only the Werner
state is considered. For the μth run of experiment, the condi-
tional states, as they are defined in Eq. (6), can be expressed
as

ρ̃a
μ = d − 1 + w

d (d − 1)

Id

d
− w

d (d − 1)
�̂a

μ. (83)

The extreme values of fw ≡ ∑d−1
a=0 Tr[�̂a

μρ̃a
μ] can be derived

as follows. The minimum value f min
w can be attained if �̂a

μ =
�̂a

μ, f min
w = (1 − w)/d . The maximum value f max

w is obtained
by setting Tr[�̂a

μ�̂a
μ] = 0, and f max

w = (d − 1 + w)/[d (d −
1)]. Furthermore, these extremal values do not depend on the
actual form of �̂a

μ, and thus, there should be

F̄+
w

({
qμ, �̂a

μ

}) = d − 1 + w

d (d − 1)
,

F̄−
w

({
qμ, �̂a

μ

}) = 1 − w

d
, (84)

F̄±
w

({
qμ, �̂a

μ

}) = F̄±
w

({
dμHaar, �̂

a
ω

})
.

The criterion for the continuous settings takes the form,

F̄−
w

({
dμHaar, �̂

a
ω

})
<

1

d2
. (85)

The Werner threshold 1/d2 has been proven to be a tight
bound: If it is achieved, the conditional states should admit
a LHS model [3]. In other words,

1 − w

d
<

1

d2
(86)

is a necessary and sufficient condition for the Werner state to
be steerable, while 1−w

d < F−
NST({qμ, �̂a

μ}) is just a sufficient
one. Therefore, one can have a state-independent relation,

F−
NST({qμ, �̂a

μ

})
� 1

d2
, (87)

where the Werner threshold 1/d2 is the upper bound of an
arbitrary F−

NST({qμ, �̂a
μ}). So, it is reasonable that the criterion

in Eq. (24) is referred to as the Werner-type one.

C. Detecting the steerability of Werner state

For the qubit case, one can easily verify that g−
NST = −g+

NST
and f̄ − = − f̄ + for arbitrary measurements {qμ, �̂a

μ}. The
WJD-type geometric criterion, f̄ + > g+

NST, and the Werner-
type one, f̄ − < g−

NST, are equivalent. Therefore, only one of
the above two criteria, usually the WJD-type one, is required
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to detect the steerability of the two-qubit states including the
Werner state for d = 2. This equivalence can also be easily
explained since F+

NST + F−
NST = 1 holds for d = 2. However,

for the high-dimensional system, this equality does not hold
any more. For the Werner state, the maximal value of the aver-
aged fidelity is shown in Eq. (84), F̄+

w ({qμ, �̂a
μ}) = (d − 1 +

w)/[d (d − 1)]. Certainly, F̄+
w ({qμ, �̂a

μ}) � 1/(d − 1). With
the WJD bound Hd/d = (1 + 1/2 + ... + 1/d )/d , one can
easily check that F̄+

w ({qμ, �̂a
μ}) < Hd/d when d > 2. Using

Eq. (81), one can have

F̄+
w

({
qμ, �̂a

μ

})
< F+

NST({qμ, �̂a
μ

})
, if d > 2. (88)

So, if d > 2, the steerability of the Werner state cannot be
detected by the WJD-type criterion F̄+ > F+

NST({qμ, �̂a
μ}).

This is the reason why both types of the criteria in Eqs. (23)
and (24) are required for high-dimensional systems.

D. A criterion with entanglement fidelity

In the discussions above, it has been shown that it is usually
difficult to calculate the extremal values F̄+ of the fidelity,
even for the two-qubit state. With a maximally entangled state
|ψ+〉 = 1√

d

∑d
k=1 |kk〉, a more convenient criterion may be

constructed for the kind of states,

Wε = Id ⊗ ε(|ψ+〉〈ψ+|), (89)

which have been used for the discussion about distillation
protocols [61]. The entanglement fidelity of ε is defined as
[77]

f (|ψ+〉, ε) = 〈ψ+|Wε|ψ+〉, (90)

which provides a measure of how well the entanglement is
preserved by ε. For the state Wε, the measurement �̂a

ω per-
formed by Alice can be fixed as (�̂a

ω )∗ = �̂a
ω, and with �̂a

ω =
U †

ω |a〉〈a|Uω, one can obtain �̂a
ω ⊗ �̂a

ω = (U ∗
ω ⊗ Uω )†(P̂a ⊗

P̂a)U ∗
ω ⊗ Uω, where P̂a = |a〉〈a|. Now, the averaged fidelity F̄

becomes

F̄ =
d−1∑
a=0

Tr[P̂a ⊗ P̂a

∫
dμHarr (ω)U ∗

ω ⊗ UωWε(U ∗
ω ⊗ Uω )†].

(91)
For a Hermitian operator Â in a d-dimensional Hilbert space,
one can define a depolarizing channel εη as

εη(Â) = ηÂ + (1 − η)Tr(Â)
Id

d
, (92)

and the isotropic states in Eq. (10) can be expressed as W η

d =
Id ⊗ εη(|ψ+〉〈ψ+|). As shown in Ref. [61], an isotropic state
can be obtained from Wε with the twirling procedure,

W η

d =
∫

dμHarrU
∗
ω ⊗ UωWε(U ∗

ω ⊗ Uω )†. (93)

Putting this result into Eq. (91), one can have F̄ = η + (1 −
η)/d . Moreover, with the entanglement fidelity of the depolar-
izing channel f (|ψ+〉, εη ) = η + (1 − η)/d2, one can come
to (d + 1)F̄ = df (|ψ+〉, εη ) + 1. With the fact that the entan-
glement fidelity is invariant under the twirling procedure, say,

f (|ψ+〉, ε) = f (|ψ+〉, εη ), finally,

F̄ = df (|ψ+〉, ε) + 1

d + 1
. (94)

Now, the criterion F̄ > Hd/d can be reexpressed as

f (|ψ+〉, ε) >
1

d

(
d + 1

d
Hd − 1

)
, (95)

which is a sufficient condition for Wε to be steerable from A
to B.

Here, we say that a channel ε is entanglement preserving
(EP) if it is not an EB channel. It is shown in Appendix B that
a sufficient condition for the EP channel is

f (|ψ+〉, ε) >
1

d
. (96)

Noting that [(d + 1)Hd/d − 1]/d > 1/d , one may also apply
the criterion in Eq. (95) as a sufficient condition for ε to be
an EP channel. However, not every EP channel can be applied
for constructing a steerable Wε. For example, when

1

d
< f (|ψ+〉, εη ) � 1

d

(
d + 1

d
Hd − 1

)
, (97)

the depolarizing channel is EP but the isotropic state is un-
steerable from A to B.

VI. CONCLUSIONS

According to the fundamental idea that a steering inequal-
ity can be constructed by just considering the measurements
performed by Bob, proposed in Refs. [5,21,50], and from the
definitions of steering from Alice to Bob [56], we have devel-
oped a general scheme for designing linear steering criteria for
high-dimensional systems. For a given set of measurements
(on Bob’s side), we have defined two quantities, the so-called
nonsteering thresholds. If the measured averaged fidelity ex-
ceeds these thresholds, the state shared by Alice and Bob is
steerable from Alice to Bob, and the measurements performed
by Alice are also verified to be incompatible. Within the
general scheme, we also constructed a LSI when the set of
measurements performed by Bob has a continuous setting.
In the derivation of this LSI, the results in Refs [3,59] have
been applied. Two kinds of criteria, the WJD type and Werner
type, can be applied as the sufficient conditions of steerability
for bipartite state. For the qubit case, it has been shown that
the two types of steering criteria are equivalent to each other.
However, when d > 2, these criteria have different properties.

The LSI in this work is limited for the case where the set of
measurements by Bob has a continuous and equal-weighted
form. From the view of experiment, the LSIs with a finite
number of experimental settings are required. We leave such
kinds of LSIs, especially adapted to the Werner state, as our
future works. We expect that the results in this work could
lead to further theoretical or experimental consequences.
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APPENDIX A: PROOF OF EQ. (1)

First, a convenient tool is required to be introduced, where
a bounded operator in a d-dimensional Hilbert space Hd is
related to a vector in an enlarged Hilbert space H⊗2

d . Let A
be a bounded operator on Hd , where Ai j = 〈i|A| j〉 are the
matrix elements and {|i〉}d

i=1 is a fixed basis. An isomorphism
between A and a vector |A〉〉 in H⊗2

d can be defined:

|A〉〉 =
√

dA ⊗ Id |ψ+〉 =
d∑

i, j=1

Ai j |i j〉, (A1)

where |i j〉 = |i〉 ⊗ | j〉, and |ψ+〉 = 1√
d

∑d
k=1 |kk〉 is a max-

imally entangled state in H⊗2
d . This isomorphism offers a

one-to-one mapping between a matrix and its vector form. For
three arbitrary bounded operators A, B, and ρ on Hd , it is easy
to verify

〈〈A|i j〉 = 〈 j|A†|i〉, 〈i j|A〉〉 = 〈i|A| j〉, (A2)

Tr[A†B] = 〈〈A|B〉〉, |AρB〉〉 = A ⊗ BT|ρ〉〉, (A3)

where 〈〈A| = ∑d
i, j=1 A∗

i j〈i j|, A† is the adjoint of A, and BT is
the transpose of B.

Now, a d2 × d2 density operator W can be expressed as

W =
d2∑

m=1

λm|�m〉〈�m|,

where |�m〉 are the normalized eigenvectors of the den-
sity operator W , and λm are the corresponding eigenvalues,∑d2

m λm = 1. According to the isomorphism in Eq. (A1), for
each vector |�m〉, there is a corresponding matrix �m satisfy-
ing |�m〉 = |�m〉〉, and therefore, the density matrix W can be
also expressed as

W =
∑

m

λm|�m〉〉〈〈�m|.

Furthermore, for Alice’s reduced density operator ρA =
TrBW , one can have

〈i|ρA| j〉 =
d∑

k=1

〈ik|
d2∑

m=1

λm|�m〉〉〈〈�m| jk〉

=
d2∑

m=1

d∑
k=1

λm〈i|�m|k〉〈k|�†
m| j〉

= 〈i|
∑

m

λm�m�†
m| j〉,

which means

ρT
A =

∑
m

λm�∗
m�T

m.

With denotations introduced above, it will be shown that
the density operator W can be rewritten as

W = Id ⊗ ε(|√ρA〉〉〈〈√ρA|) (A4)

in the following two cases.

(a) In the case that the reduced density operator ρA is full

rank, det ρA �= 0, and the operator (
√

ρT
A)

−1
is well defined. A

set of Kraus operators,

Bm =
√

λm�T
m

(√
ρT

A

)−1

, (A5)

can be constructed to represent a linear map ε(ρ) =∑
m BmρB†

m, where ρ is a density operator on Hd . One may
check that ε is trace preserving by verifying

∑
m B†

mBm = Id ,
which can be proved as follows:∑

m

B†
mBm =

∑
m

λm

(√
ρT

A

)−1

�∗
m�T

m

(√
ρT

A

)−1

=
(√

ρT
A

)−1

ρT
A

(√
ρT

A

)−1

= Id . (A6)

Finally, it is an easy task to show that

W =
∑

m

λm|�m〉〉〈〈�m|

=
∑

m

|√ρABT
m〉〉〈〈√ρABT

m|

= Id ⊗ ε(|√ρA〉〉〈〈√ρA|). (A7)

(b) In the case that detρA = 0, the operator (
√

ρT
A)

−1
is

not well defined in the Hilbert space Hd . Denote the rank of
ρA by d ′, and Hd can be decomposed as Hd = Hd ′ ⊕ Hd̄ ,
where Hd ′ is the support of ρA, and d ′ + d̄ = d . Now, the

operator (
√

ρT
A)

−1
can be well defined in the subspace Hd ′ ,

and Eq. (A5) can still be employed to obtain Bm in Hd ′ , and∑
m B†

mBm = Id ′ . Besides the {Bm} defined above, it is required
to introduce another set of operators {B̄n} in Hd̄ satisfying∑

n

B̄†
nB̄n = Id̄ , (A8)

where Id̄ is the identity operator on the subspace Hd̄ . Then, a
superoperator ε can still be defined as

ε(ρ) =
∑

m

BmρB†
m +

∑
n

B̄nρB̄†
n, (A9)

with
∑

m B†
mBm + ∑

n B̄†
nB̄n = Id . Similarly with the proof for

case (a), the density operator W can also be expressed as

W =
∑

m

λm|�m〉〉〈〈�m|

=
∑

m

∣∣√ρABT
m

〉〉〈〈√
ρABT

m

∣∣ +
∑

n

∣∣√ρAB̄T
n

〉〉〈〈√
ρAB̄T

n

∣∣
= Id ⊗ ε(|√ρA〉〉〈〈√ρA|), (A10)

where
√

ρAB̄T
n = 0 has been used.

From the discussions above, it can be seen that, in princi-
ple, every bipartite state can be decomposed as the form in
Eq. (1) by choosing |�〉 = |√ρA〉〉. Moreover, it should be
noted that the decomposition in Eq. (1) is not unique. For
example, with a given decomposition W = Id ⊗ ε(|�〉〈�|), a
new state |�̃〉 = Id ⊗ U |�〉 can be introduced with U a local
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unitary transformation, and meanwhile, a new superoperator
ε̃ = ε ◦ U† can be defined with U† a unitary channel U†(ρ) =
U †ρU . Therefore, ε̃(ρ) = ε(U †ρU ), and the density operator
W can be reexpressed as

W = Id ⊗ ε̃(|�̃〉〈�̃|), (A11)

which shows that the state |�〉 and the linear map ε in Eq. (1)
are two tightly related objects.

Furthermore, for the case (b) where ρA is not full rank
in Hd , construction of B̄n in Eq. (A8) is also not unique.
Actually, for det ρA = 0, there is a one-to-many relation be-
tween the density operator W , and the decompositions as in
Eq. (1) is not unique, even though |�〉 = |√ρA〉〉 is fixed.
In practice, one may just select out one of all the possible
channels satisfying Eq. (A8) to obtain a decomposition in
Eq. (1). �

APPENDIX B: ENTANGLEMENT FIDELITY OF A EB
CHANNEL

For a set of Kraus operators {Bm}d2

m=1 of a quantum channel
ε, one may introduced the so-called process matrix λ̂ε [78],

λ̂ε =
∑

m

Bm ⊗ B∗
m. (B1)

In the vector form, the input state ρ of the channel ε and the
output state ε(ρ) are simply related by

|ε(ρ)〉〉 = λ̂ε|ρ〉〉. (B2)

Meanwhile, the trace preserving condition
∑

m B†
mBm = Id

can be expressed as

〈〈Id | = 〈〈Id |λ̂ε. (B3)

The entanglement fidelity f (|ψ+〉, ε) becomes

f (|ψ+〉, ε) = 1

d2
Trλ̂ε. (B4)

According to Ref. [69], any EB channel can be described
by a positive-operator-valued measurement (POVM) {My}
with M†

y = My, where y denotes an outcome occurring with
a probability Tr(ρMy) and a reconstruction rule y → ρy deter-
mines that ρy is prepared when the measurement outcome is
y. Then, the channel acts as

εEB(ρ) =
∑

y

ρyTr[ρMy]. (B5)

Based on this, it can be verified that the assemblage {ρ̃a
μ}

in Eq. (3) resulted from the EB channel always admits a
LHS decomposition. The above equation can be rewritten as
|εEB(ρ)〉〉 = ∑

y |ρy〉〉〈〈My|ρ〉〉, and the process matrix for the
EB channel is

λ̂εEB =
∑

y

|ρy〉〉〈〈My|. (B6)

Certainly, the trace preserving condition in Eq. (B3) is
satisfied. The entanglement fidelity f (|ψ+〉, εEB) can be cal-
culated:

f (|ψ+〉, εEB) = 1

d2
Trλ̂εEB = 1

d2

∑
y

Tr(ρyMy). (B7)

With Tr(ρyMy) � TrMy and
∑

y TrMy = d , one can find

f (|ψ+〉, εEB) � 1

d
. (B8)

For a depolarizing channel εη, the condition f (|ψ+〉, εη ) >

1/d is necessary and sufficient for the isotropic states to be
entangled [61].
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