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Exact and Gerchberg-Saxton solutions of the one-dimensional
Pauli problem with Gaussian probability densities
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The exact phase of one-dimensional quantum states with given Gaussian probability densities in the position
and momentum representations is retrieved. The number of Pauli partners that are found depends on whether
the Heisenberg uncertainty relation for position and momentum is saturated or not. Without saturation, two Pauli
partners are found. They differ in the sign of the time derivative of their position uncertainties. The same problem
is solved by an exact implementation of the Gerchberg-Saxton algorithm. Its convergence depends on uncertainty
saturation as well.
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I. INTRODUCTION

In 1933, Pauli remarked on the lack of a mathematical
answer to whether knowledge of the probability densities in
position and momentum representations defines a quantum
state uniquely [1]. This is the same as to ask if all yields of
the wave-function retrieval are necessarily linearly dependent.
In general, the answer is negative. Linearly independent so-
lutions called Pauli partners or Pauli pairs [2–6] have been
reported for certain classes of probability densities [7]. The
ongoing research on the Pauli problem has delved into (i)
nonuniqueness [7–10], (ii) exact phase retrieval [11–13], (iii)
numerical phase retrieval [5], and (iv) extensions of the prob-
lem [3,14,15]. One such extension with profound impact
on modern physics and technology is quantum tomography
[16,17]. It consists of identifying a mixed state of a quantum
ensemble from a given set of measurements and plays a cru-
cial role in the emerging quantum information technologies
[18–20].

Phase-retrieval algorithms have been developed in several
research areas beyond quantum mechanics. In 1972, Gerch-
berg and Saxton proposed an iterative procedure to retrieve
the phase from image and diffraction pictures [21]. The al-
gorithm and its improved versions [22] have been applied
in classical optics [23–26], quantum optics [11,27,28], mi-
croscopy [29,30], control of coherent phonons [24], Raman
spectroscopy [31], astronomy [32], and image encryption
[33]. Optimization approaches to the phase-retrieval problem
have been investigated as well [32,34].

The present work deals with the one-dimensional (1D)
Pauli problem and has two main goals. The first one is to
find exact solutions to the Pauli problem for the particular
case where the probability densities in position and momen-
tum representations have Gaussian shapes. This choice has
motivations in semiclassical descriptions of a particle motion
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[35] as well as in its mathematical simplicity. For instance,
the quantum oscillator with initial Gaussian probability den-
sities evolves, keeping the shape while changing geometric
parameters such as center and spread [36,37]. The second
goal is to investigate the convergence of the Gerchberg-Saxton
algorithm (GSA), by performing exact calculations for each
iteration. This should serve in test cases of numerical imple-
mentations of the algorithm, and should add to the present
understanding of it.

The two goals are intertwined both mathematically and
historically. On one hand, the exact solution allows a di-
rect assessment of the accuracy of each GSA approximation.
Equations obtained in the way towards the first goal are sub-
sequently used to deal with the exact implementation of the
GSA. On the other hand, our research started by numerically
solving the Pauli problem through the GSA. Several numer-
ical tests for the Gaussian probability densities seemingly
produced parabolic profiles. This conjecture was proven by
the exact implementation of the GSA. Then we realized that
exact solutions can be obtained without iterative calculations.

The paper is organized as follows. Section II poses the
Pauli problem for the case of Gaussian probability densities in
position and momentum representations, and discusses candi-
dates as Pauli partners. Section III solves the Pauli problem
exactly, while Sec. IV describes the exact implementation
of the Gerchberg-Saxton algorithm. Our main findings are
summarized in Sec. V.

II. PAULI PROBLEM

We deal with the 1D quantum states of a particle of finite
mass m. The Pauli problem is posed for a fixed time, and
time dependence of the wave function is omitted. The phase
retrieval does not depend on the Hamiltonian. However, to
better analyze the Pauli partners, we consider a potential V (x)
and the Hamiltonian

Ĥ = − h̄2

2m

d2

dx2
+ V (x). (1)
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The position and momentum representations of each quan-
tum state, denoted by ψ (x) and φ(k), bear a one-to-one
relation given by the Fourier transforms

φ(k) = 1√
2π

∫ +∞

−∞
ψ (x) e−ikx dx (2)

and

ψ (x) = 1√
2π

∫ +∞

−∞
φ(k) eikx dk. (3)

We give the momentum in units of the reduced Planck con-
stant, i.e., k = p/h̄, where p is the linear momentum.

The Pauli problem [38] asks for the phases θ (x) and η(k)
of ψ (x) and φ(k), respectively, for given probability densities
|ψ (x)|2 and |φ(k)|2. We consider Gaussian densities in posi-
tion and momentum representations, namely

|ψ (x)|2 = 1√
2π σx

e−(x−x0 )2/(2σ 2
x ) (4)

and

|φ(k)|2 = 1√
2π σk

e−(k−k0 )2/(2σ 2
k ). (5)

Here x0 and k0 are the expected values of position and mo-
mentum, respectively, whereas σx and σk are the standard
deviations (uncertainties) of x and k, respectively.

Regarding nonuniqueness, we note that the probability
densities in Eqs. (4) and (5) are symmetric with respect to
x = x0 and k = k0, respectively, i.e.,

|ψ (2x0 − x)| = |ψ (x)| (6)

and

|φ(2k0 − k)| = |φ(k)|. (7)

According to Eq. (2), exp(−2ikx0)φ∗(k) is the Fourier trans-
form of ψ∗(2x0 − x). Under Eq. (6), ψ∗(2x0 − x) either
represents the same state as or is a Pauli partner of ψ (x)
[2–4,6,8]. Similarly, from Eq. (3), exp(2ik0x)ψ∗(x) is the
inverse Fourier transform of φ∗(2k0 − k). Subject to Eq. (7),
exp(2ik0x)ψ∗(x) either represents the same state as or is a
Pauli partner of ψ (x). Combining the two mirror symme-
tries, the wave functions exp[2ik0(x − x0)]ψ (2x0 − x) and
exp[−2ix0(k − k0)]φ(2k0 − k) solve the same Pauli problem.
This gives three candidates as Pauli partners when both prob-
ability densities are symmetric.

III. EXACT SOLUTIONS

We should find the phases θ (x) and η(k) such that ψ (x)
and φ(k) satisfy Eqs. (2) to (5), namely

ψ (x) = 1
4
√

2π
√

σx

eiθ (x)−(x−x0 )2/(4σ 2
x ) (8)

and

φ(k) = 1
4
√

(2π )3 √
σx

∫ +∞

−∞
ei[θ (x)−kx]−(x−x0 )2/(4σ 2

x ) dx

= 1
4
√

2π
√

σk

eiη(k)−(k−k0 )2/(4σ 2
k ). (9)

We make the parabolic ansatz

θ (x) = a(x − x0)2 + b(x − x0) + c, (10)

where coefficients a, b, and c are unknown real constants.
When a = 0 the curve degenerates into a straight line. Using
Formula 3.323.2 of Ref. [39], we get

I (α, β ) =
∫ +∞

−∞
e−αx2+iβx dx =

√
π

α
e−β2/(4α), (11)

where α and β are complex parameters with Re (α) > 0.
Moreover, the square root has positive real part. This leads
to

φ(k) = ei(c−kx0 )

4
√

(2π )3 √
σx

I (α, b − k)

= 1√
2α σx

√
2π

exp

(
i(c − kx0) − (k − b)2

4α

)
, (12)

with α = (2σx )−2 − ia.
By equating the absolute values of the second lines in

Eqs. (9) and (12) we get

b = k0 (13)

and

σk = 2σx|α| = 2σx

√
1

16σ 4
x

+ a2. (14)

Since a2 cannot be negative, the problem is solvable when the
Heisenberg uncertainty relation σxσk � 1/2 holds. Solving
Eq. (14) we get

a = ±
√

h − 1

4σ 2
x

, (15)

where

h = (2σxσk )2. (16)

The calligraphic symbol h, mnemonic for Heisenberg, is a
dimensionless parameter. The uncertainty relation reads h �
1. It is said to be saturated when h = 1.

Regarding η(k), we use Eqs. (9) and (12) to obtain

exp[iη(k)]

=
√

|α|
α

exp

(
i(c − kx0) + i Im (α)(k − k0)2

4|α|2
)

. (17)

Therefore, the momentum phase can be written as

η(k) = ā(k − k0)2 + b̄(k − k0) + c̄, (18)

with

ā = Im (α)

4|α|2 = −aσ 2
x

σ 2
k

= ∓
√

h − 1

4σ 2
k

, (19)

b̄ = −x0, (20)

and

c̄ = c − k0x0 ± 1
2 arctan

√
h − 1. (21)

Since c can be chosen arbitrarily without affecting the
quantum state, we take c = 0. Anyway, as shown in Eq. (15),
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the Pauli problem under investigation lacks uniqueness when
h > 1. The two choices for the sign of a lead to a couple of
Pauli partners [2–4,6]. They are linearly independent, since

ψ−(x) = exp

[
− i

√
h − 1

2

(x − x0

σx

)2
]

ψ+(x). (22)

The density of probability current associated with the Hamil-
tonian in Eq. (1) is given by

j(x) = h̄

m
Im [ψ∗(x)ψ ′(x)] = h̄|ψ (x)|2θ ′(x)

m

= h̄|ψ (x)|2
m

[2a(x − x0) + k0]. (23)

This is affected by the sign of a in Eq. (15).
Differences between the partners are more apparent in

terms of the velocity field that multiplies the probability den-
sity in Eq. (23), i.e.,

v(x) = h̄

m
[2a(x − x0) + k0]. (24)

This is a superposition of a uniform and a linearly varying
field. For the partner with positive a, the latter field represents
positive speed for x > x0 and negative speed for x < x0. Then
the position uncertainty increases with time, i.e., the wave
packet is expanding. Similarly, the partner with a < 0 shrinks
with time.

The time derivative of the position uncertainty σx can be
obtained through the generalized Ehrenfest theorem [40]. For
the wave function in Eq. (8) we get

dσ 2
x

dt
= d

dt
[〈ψ |x2|ψ〉 − 〈ψ |x|ψ〉2]

= 〈ψ |[x2, p̂2/2m]|ψ〉
ih̄

− 2h̄x0k0

m

= 2h̄aσ 2
x

m
= 2σx

dσx

dt
, (25)

thus

dσx

dt
= h̄aσx

m
. (26)

This gives the relation between the concavity of θ (x) and the
time derivative of the position uncertainty.

Changes in momentum uncertainty will depend on the spe-
cific interaction potential V (x), namely

dσ 2
k

dt
= 1

h̄2

d

dt
[〈ψ | p̂2|ψ〉 − 〈ψ | p̂|ψ〉2]

= 〈ψ |[ p̂2,V (x)]|ψ〉
ih̄3 + 2h̄k0

h̄
〈ψ |V ′(x)|ψ〉

= 2h̄āσ 2
k

h̄
〈ψ |V ′′(x)|ψ〉 = 2σk

dσk

dt
. (27)

i.e.,

dσk

dt
= āσk

h̄
〈ψ |V ′′(x)|ψ〉. (28)

For the harmonic oscillator of frequency ω, with V (x) =
mω2x2/2, we have V ′′(x) = mω2 and

dσk

dt
= mω2āσk

h̄
= h̄āσk

mλ4
, (29)

where λ = (mω/h̄)−1/2 is the characteristic length. Since a
and ā have opposite signs, the position and momentum un-
certainties have opposite time derivatives. Expansion in one
representation means contraction in the other one. In fact,
Eqs. (19), (26), and (29) lead to

σx dσx

λ2
+ λ2σk dσk = 0, (30)

which solves as

σ 2
x

λ2
+ λ2σ 2

k = W, (31)

where W is a positive constant.
Considering the last paragraph of Sec. II, we can analyze

the three candidates as Pauli partners of ψ+(x). Since the
solutions can be written as

ψ±(x) = |ψ (x)| ei[a±(x−x0 )2+k0(x−x0 )] (32)

and

φ±(k) = |φ(k)| ei[ā±(k−k0 )2−x0k+ 1
2 arctan(4σ 2

x a± )] (33)

we have

ψ∗
+(2x0 − x) = ψ−(x), (34a)

e−2ix0k φ∗
+(k) = φ−(k), (34b)

e2ik0x ψ∗
+(x) = e2ik0x0ψ−(x), (35a)

φ∗
+(2k0 − k) = e2ik0x0φ−(k), (35b)

and

e2ik0(x−x0 )ψ+(2x0 − x) = ψ−(x), (36a)

e−2ix0(k−k0 )φ+(2k0 − k) = φ−(k). (36b)

It is seen that such candidates reduce to ψ−(x), disregarding
nonphysical rigid phase shifts.

In the special case h = 1 we get a = ā = 0. Then,
Eqs. (10) and (18) degenerate into the straight lines θ (x) =
k0(x − x0) and η(k) = −x0k, respectively. Moreover, we have
ψ+(x) = ψ−(x). Finding a single solution for the Pauli prob-
lem with saturated Heisenberg relation should come as no
surprise. It is well known that uncertainty saturation with
given values of x0, k0, and σx leads to a single quantum state
represented by [40]

ψ (x) = 1
4
√

2π
√

σx

exp

(
− (x − x0)2

2σ 2
x

+ ik0x

)
. (37)

We illustrate the analytical results by solving the Pauli
problem given by Eqs. (4) and (5), with x0 = 2, σx = 1/2,
k0 = 3, and σk = √

5/2. The Heisenberg relation is fulfilled
but not saturated, since h = 5/4 > 1. The position is given
in units of an arbitrary length denoted by λ. Correspondingly,
the momentum k is given in units of λ−1. The Gaussian pro-
files of absolute values of |ψ (x)| and |φ(k)| are displayed in
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FIG. 1. Absolute values of (a) ψ (x) and (b) φ(k), for x0 = 2,
σx = 1/2, k0 = 3, and σk = √

5/2. The position is given in units of
an arbitrary length denoted by λ. Correspondingly, the momentum k
is given in units of λ−1. |ψ (x)| and |φ(k)| are given in units of λ−1/2

and λ1/2, respectively.

Fig. 1. These functions are given in units of λ−1/2 and λ1/2,
respectively.

From Eqs. (13), (15), (19), and (20) we obtain b = 3, a =
±1/2, ā = ∓1/10, and b̄ = −2. Choosing c = 0, Eq. (21)
leads to c̄ = −6 ± 0.5 arctan(1/2). The parabolic phases of
ψ (x) and φ(k) for the Pauli partners are displayed in Fig. 2. In
Fig. 2(a) the parabolas of different partners are tangent to each
other at (x, θ ) = (x0, 0). The upward (downward) parabola
is for a > 0 (a < 0), i.e., the expanding (shrinking) partner.
Their vertices are at x = 2 ∓ 3, i.e., x = −1 and x = 5. In
Fig. 2(b) the vertices are at k = 3 ∓ 10, i.e., k = −7 and
k = 13.

Figure 3 displays the real and imaginary parts of ψ (x)
for the Pauli partners that solve the problem of Fig. 1. It is
apparent that

Re [ψ−(x0 + �x)] = Re [ψ+(x0 − �x)], (38a)

Im [ψ−(x0 + �x)] = −Im [ψ+(x0 − �x)] (38b)

hold in this case. This is equivalent to Eq. (34a).
Differences between the probability-current densities of

the Pauli partners are seen in Fig. 4. Here j+(x) [ j−(x)] cor-
respond to the expanding (shrinking) Pauli partner, i.e., a > 0
(a < 0). According to Eq. (34a), those currents are related by
j−(x0 + �x) = j+(x0 − �x).

FIG. 2. The phases (a) θ (x) and (b) η(k) that solve the Pauli
problem with the Gaussian parameters of Fig. 1. The solid (dashed)
lines are for the expanding (shrinking) Pauli partner.

FIG. 3. (a) Real and (b) imaginary parts of ψ (x), in units of
λ−1/2, for the Pauli partners of Fig. 2. The solid (dashed) lines are
for the expanding (shrinking) partner.

IV. GERCHBERG-SAXTON ALGORITHM

Having exact solutions to the Pauli problem with Gaussian
probability densities allows us to analyze the application of
the GSA. This is an iterative procedure where an initial phase
profile leads to a sequence of approximations that expectedly
converges to one of the exact solutions. Our initial approxi-
mation for θ (x) will be an arbitrary straight line or parabolic
profile, denoted by θ0(x). According to Eq. (12), this guaran-
tees that subsequent approximations denoted by θn(x) will be
either a straight line or a parabola. In this way, convergence of
the GSA can be investigated analytically.

Let us consider that at the nth iteration, with n =
0, 1, 2, . . ., the approximation for θ (x) is given by

θn(x) = an(x − x0)2 + bn(x − x0) + cn. (39)

According to Eq. (12), Eq. (2) approximates φ(k) by

φn(k) =
√

π
1

4σ 2
x

− ian

e
i(cn−kx0 )− (k−bn )2

4

(
1

4σ2
x

−ian

)

4
√

2π
√

σx

. (40)

This implies

ηn(k) = ān(k − k0)2 + b̄n(k − k0) + c̄n, (41)

where

ān = − an

4
(

1
16σ 4

x
+ a2

n

) , (42)

b̄n = −[x0 + 2ān(bn − k0)], (43)

FIG. 4. Probability currents, in units of h̄m−1λ−2, for the Pauli
partners of Fig. 2. The solid (dashed) line is for the expanding
(shrinking) partner.
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and

c̄n = ān(bn − k0)2 + cn − k0x0 + 1
2 arctan

(
4anσ

2
x

)
. (44)

Now Eq. (3) gives the next approximation

ψn+1(x) =
√

π
1

4σ 2
k

− iān

e

i(c̄n+xk0 )− (x+b̄n )2

4

(
1

4σ2
k

−iān

)

4
√

2π
√

σk

. (45)

This yields a new approximation for θ (x) given by

θn+1(x) = an+1(x − x0)2 + bn+1(x − x0) + cn+1, (46)

with

an+1 = − ān

4
(

1
16σ 4

k
+ ā2

n

) , (47)

bn+1 = k0 + 2an+1(b̄n + x0), (48)

and

cn+1 = an+1(b̄n + x0)2 + c̄n + k0x0 + 1
2 arctan

(
4ānσ

2
k

)
. (49)

We simplify the GSA by choosing c0 = 0 and resetting cn to
zero at every iteration. This is consistent with our choice for
the exact solution in Sec. III.

Putting Eqs. (42) and (43) into Eqs. (47) and (48) we obtain
a direct relation between θn(x) and θn+1(x), i.e.,

an+1 = an

1
σ 4

k

(
1

16σ 4
x

+ a2
n

) + a2
n

1
16σ 4

x
+ a2

n

(50)

and

bn+1 = k0 + anan+1(bn − k0)
1

16σ 4
x

+ a2
n

. (51)

The recurrence relations in Eqs. (50) and (51) set our exact
implementation of the GSA. To analyze its convergence, we
concentrate on the position representation. By introducing the
sequence qn = an/σ

2
k , we get

qn+1 = qn

1
h2 + q2

n + q2
n

1
h2 + q2

n

(52)

and

bn+1 = k0 + qn qn+1(bn − k0)
1
h2 + q2

n

. (53)

Choosing q0 = 0 yields qn = 0 for all n. This solves the
Pauli problem in just one step, provided the Heisenberg re-
lation is saturated (h = 1). When q0 = 0 and h > 1, the
procedure gets stuck to the straight line given by the first
iteration. It is not able to choose either the upward or the
downward parabola. If the calculations were done numeri-
cally, then symmetry could be broken by round-off errors, and
evolution to one of the partners would occur.

Instead, q0 	= 0 guarantees qn will not ever vanish. The
algebra is simpler in terms of un = 1/qn, namely

un+1 = un

h2
+ 1

un
+ 1

un
h2 + 1

un

= 2 +
(√

un

h2
+ 1

un
−

√
1

un
h2 + 1

un

)2

� 2. (54)

Since u0 	= 0, un does not change sign. We shall limit our-
selves to the case u0 > 0. The case u0 < 0 can be analyzed by
considering the sequence (−un).

We will first prove that if h > 1, then

lim
n→∞ un = u = σ 2

k

a
= h√

h − 1
� 2. (55)

If the limit exists, Eq. (54), leads to

u = u

h2
+ 1

u
+ 1

u
h2 + 1

u

, (56)

whose positive solution is given by (55). To prove the ex-
istence, we note that the error un − u obeys the recurrence
relation

un+1 − u = un

h2
+ 1

un
+ 1

un
h2 + 1

un

− u

= rn(un − u), (57)

with

rn = 1

h2
− 1

unu
+ h(h − 1 − un/u)

u2
n + h2

. (58)

The sequence (un) converges exponentially or faster provided
the ratio rn is bounded by fixed numbers in the open interval
(−1, 1), for sufficiently large n. Since h > 1, we have

rn � 1

h2
+ h(h − 1)

u2
n + h2

� 1

h2
+ h − 1

h
= 1 − 1

u2
. (59)

On the other hand, for n � 1 we have un � 2 and

rn � − 1

uun
− hun/u

u2
n + h2

� −1

4
− 1

2u
� −1

2
. (60)

This proves that (un), (qn), (an) converge at least exponen-
tially. In turn, (bn) converges exponentially to b = k0 as given
by

bn+1 − k0 ≈ (bn − k0)
u2

h2 + 1
=

(
1 − 1

h

)
(bn − k0). (61)

It is important to analyze the behavior of rn as the GSA
runs. From Eqs. (55) and (58), its limit is given by

r = lim
un→u

rn =
(

1 − 2

h

)2

. (62)

Figure 5 shows the limit ratio r as a function of h. It is seen
that 0 � r < 1. The exponential decay is rather slow when r
is near 1, i.e., h ≈ 1 or h � 1. In contrast, convergence is very
fast when h ≈ 2. In the special case h = 2, corresponding to
u = 2, the limit ratio r vanishes. The error un − u will not
vanish after a finite number of iterations. A Taylor expansion
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FIG. 5. The asymptotic value r of the ratio between consecutive
errors un+1 − u and un − u in the Gerchberg-Saxton algorithm, as a
function of the dimensionless parameter h.

of rn in terms of un around u = 2 gives rn ≈ (un − 2)3/64 and
un+1 − 2 ≈ (un − 2)4/64, thus

un+m − 2 ≈ 4

(
un − 2

4

)4m

, (63)

This is a double-exponential convergence [41], which is much
faster than the exponential one.

The asymptotic behavior of (an) is given by

an − a ≈ da

du
(un − u) = −σ 2

k

u2
(un − u). (64)

Hence we have an+1 − a ≈ r (an − a), when h > 1 and h 	=
2, whereas an+1 − a ≈ (an − a)4/64, for h = 2. When h > 1,
(bn) converges faster than (an) if and only if 1 − 1/h < (1 −
2/h)2, i.e., h < 4/3.

Figure 6 shows the GSA results for the Pauli problem
of Fig. 1, where h = 5/4. The solid lines are for the exact
solution of Fig. 2(a). The dashed line in Fig. 6(a) displays the
initial profile θ0(x) for a0 = 1/6 and b0 = −3/2. The dashed
lines in the remaining panels of Fig. 6 correspond to θn(x) for
the first seven GSA iterations. Fast convergence of θn(x) to
the exact profile θ (x) is apparent. For sufficiently large n, an,
and bn converge exponentially with their errors shrinking by
factors near r = 0.36 and 1 − h−1 = 0.2, respectively.

A faster convergence of (an) is displayed in Fig. 7, where
the Gaussian parameters of the Pauli problem are x0 = 2, σx =
1/2, k0 = 3, and σk = √

2. These values lead to h = 2, and the
exact solution is given by a = σ 2

k /2 = 1 and b = k0 = 3. The
initial approximation in Fig. 7(a) is the same as of Fig. 6(a).
The remaining panels of Fig. 7 correspond to θn(x) for the first
five GSA iterations. The sequence (bn) converges exponen-
tially to 0 with its error shrinking by a factor near 1 − h−1 =
0.5. In contrast, an converges to 1 at doubly exponential pace
with its error decreasing as an+1 − 1 ≈ (an − 1)4/64.

Finally, we return to the sequence (un) for the saturated
case h = 1. We shall prove that un → +∞ as n → ∞, by
noting that Eq. (55) reduces to

un+1 = un

(
1 + 1

u2
n

+ 1

u2
n + 1

)
� 2. (65)

Since the factor in parentheses is larger that one, (un) is
a strictly increasing sequence. If it had an upper bound, it
would converge to a number U satisfying U � 2 and U =
U [1 + U −2 + (U 2 + 1)−1]. This contradiction implies (un)
diverges to infinity. When n increases sufficiently, 1 + u−2

n +
(1 + u2

n)−1 is slightly larger than 1, and (un) diverges very
slowly. In fact, for large n and un, Eq. (65) implies �un/�n ≈

FIG. 6. Evolution of phase approximations in the position rep-
resentation produced by the Gerchberg-Saxton algorithm. The
Gaussian parameters are those of Fig. 1, while the initial approxi-
mation is given by a0 = 1/6 and b0 = −3/2. Dashed (solid) lines
are for the approximations [exact solution of Fig. 2(a)].

2/un, with �n = 1. Approximating this by a separable dif-
ferential equation, and integrating we have un ≈ 2(n + C)1/2,
where C depends solely on u0.

As a result, (an) converges to zero as 0.5σ 2
k (n + C)−1/2,

while bn converges to k0 with its error diminishing at an
approximate ratio of 0.25/(n + C). This makes the parabola
to straighten, over a fixed finite window, approximating the
exact straight-line profile. Six snapshots of this process are
displayed in Fig. 8. The Gaussian parameters of the Pauli
problem are x0 = 2, σx = 1/2, k0 = 3, and σk = 1, thus
h = 1. The initial approximation is given by a0 = 1/6 and
b0 = −3/2. Slow convergence as given by an ≈ 0.5(n +
C)−1/2, with C ≈ 9.384, is observed. It takes roughly 500
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FIG. 7. As of Fig. 6, but for Gaussian parameters x0 = 2, σx =
1/2, k0 = 3, and σk = √

2.

iterations to visually fit the exact solution in the selected
window. Instead, when the initial approximation is a straight
line, the GSA reaches the exact solution in a single iteration.

Convergence of the sequences (an) and (bn) is inherited
by the wave function itself. To see this, one can choose the
integrated squared error

εn =
∫ +∞

−∞
|ψn(x) − ψ (x)|2 dx, (66)

where ψn(x) and ψ (x) stand for the nth approximate and the
exact wave functions, respectively. Considering the normal-
ization condition, this leads to

εn = 2

[
1 − Re

(∫ +∞

−∞
ψ∗(x)ψn(x) dx

)]
, (67)

where, according to Eq. (11), the inner product reads∫ +∞

−∞
ψ∗(x)ψn(x) dx

= 1√
2π σx

∫ +∞

−∞
exp

[
− (1 − iAn)x2

2σ 2
x

+ i(bn − k0)x

]
dx

=
exp

(
− B2

n
4(1−iAn )

)
√

1 − iAn
, (68)

with An = 2σ 2
x (an − a) and Bn = √

2σx(bn − k0).

FIG. 8. As of Fig. 6, but for Gaussian parameters x0 = 2, σx =
1/2, k0 = 3, and σk = 1.

When n is sufficiently large, both an − a and bn − k0 be-
come arbitrarily small, and the integrated quadratic error can
be approximated by its second-order Maclaurin expansion
εn ≈ 3σ 4

x (an − a)2 + σ 2
x (bn − k0)2. If h > 1 both terms decay

exponentially. The error is dominated by the first (second)
term when h < 4/3 (h > 4/3), so it decays exponentially as
well. Instead, for h = 1 the second term is negligible and the
error decays slowly, namely εn ≈ 3/[64(n + C)].

V. CONCLUSIONS

An exact retrieval of the position and momentum represen-
tations of the quantum state of a particle in one dimension
has been performed. The considered Pauli problem provides
Gaussian profiles for the probability densities in both repre-
sentations. We distinguish two cases according to the way
the Heisenberg relation between position and momentum un-
certainties holds. When it is saturated, a single solution was
found where the phases in position and momentum repre-
sentations vary linearly. This is reinforced by the fact that
saturation with given expected values and variances of posi-
tion and momentum determines the quantum state uniquely
[40,42]. For the harmonic oscillator of mass m, frequency ω,
and characteristic length λ = (mω/h̄)−1/2, these minimum-
uncertainty wave packets are classified as either coherent or
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squeezed states, depending on whether σx/λ and σk λ are
equal or not, respectively. Without saturation, two linearly
independent solutions (Pauli partners) were found, where the
phases display parabolic profiles with opposite concavities.
The partner with positive (negative) concavity is expanding
(shrinking) in the position representation. Changes in the mo-
mentum uncertainty depend on the interaction potential. For
the same oscillator, the Pauli partners evolve as Gaussian wave
packets [36] that change expected values and uncertainties in
different ways. In such a case, expansion in one representation
means contraction in the other one. In fact, the sum of the
squared dimensionless uncertainties in position and momen-
tum (σx/λ)2 + (σk λ)2 is a constant of motion for Gaussian
wave packets of the harmonic oscillator [37].

The exact solutions have been used to investigate the con-
vergence of the Gerchberg-Saxton algorithm. This was done
analytically, by taking a parabolic or a straight-line profile as
an initial approximation for the phase in the position repre-
sentation. When the Heisenberg relation is saturated, an initial
parabolic profile was seen to slowly converge to a straight line.
In contrast, an initial straight profile leads to an exact phase
retrieval in a single iteration. When the Heisenberg relation
is not saturated, the phase slope at the Gaussian center, the
second derivative, and the wave function itself were shown to
converge exponentially. There is a special value of the product
of position and momentum uncertainties where the second
derivative converges double exponentially.

More than 86 years after Pauli posed the phase-retrieval
problem, a general solution has not been reported. We have
given exact solutions for a particular case of broad interest.
This should help tackle the problem more thoroughly. First,
the role played by the uncertainty relation was discussed,
showing that Pauli partners can differ in how the uncertainties

evolve. Second, it should motivate the search for pairs of
probability densities that allow for exact solutions of the Pauli
problem. The cases with both densities being products of
a Gaussian function with either a squared polynomial or a
squared sinusoidal function of a second-degree polynomial
deserve attention. The possibility of associating the given
densities to superpositions of the same number of Gaussian
wave packets should be considered as well. Two- and three-
dimensional versions of the problem should lead to similar
solutions but with new qualitative differences between the
partners. Third, it will hopefully revive the quest of math-
ematicians on whether the general Pauli problem is exactly
solvable. The efforts should be relevant for quantum tomogra-
phy and quantum-information technologies.

Additionally, our analysis of the Gerchberg-Saxton algo-
rithm should aid test cases in the development of numerical
codes. The latter kind of approach is still needed for non-
Gaussian probability densities or when the algorithm is started
with a curved nonparabolic phase profile in the Gaussian
case. Numerical work should help answering the question
on whether the particular problem treated here allows for
additional Pauli partners. More broadly, while beautiful closed
form solutions are relentlessly sought for, numerical ap-
proaches will remain ubiquitous valuable tools in theoretical
physics.
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