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Decay rates and decoherence of an interstitial two-level spin impurity in a ferromagnetic lattice
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The decay rate of an interstitial two-level spin impurity, located in the center of a unit cell of an anisotropic
ferromagnetic lattice subjected to an external magnetic field, is derived. The impurity is coupled to nearest-
neighbor spins through a Heisenberg XY interaction. By mapping the lattice spin operators using the Holstein-
Primakoff transformation, we establish the similarity with the Fano-Anderson model at low temperatures, and we
calculate the retarded Green’s function in one and two dimensions analytically for arbitrary coupling strength.
It is shown that the reduced density matrix of the impurity satisfies an exact master equation in Lindblad form,
from which the decay rate and the Lamb shift are deduced. The evolution in time of the latter together with the
excited-state occupation probability is investigated and its dependence on the applied magnetic field is discussed.
It is found that there exists a critical resonance-like value of the magnetic field around which the behavior of the
decay rate and the density matrix changes drastically. The Markovian decay law, as given by the Fermi golden
rule, does not hold in the weak-coupling regime unless the magnetic field is weak, typically less than the critical
value. The weak-coupling regime is further treated perturbatively up to second order, and the obtained results are
compared with the exact solution. We also discuss the Zeno regime of the dynamics, where it is shown that, at
short times, the effective decay rate is twice as small as the exact decay rate, and that when the impurity energy
lies outside the lattice continuum, the measurement speeds up the decay of the survival probability.
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I. INTRODUCTION

The complete description of the dynamics of (small) quan-
tum systems should take into account the influence of the
surrounding environment on the different features of their
evolution. This represents the basic concept behind the theory
of open quantum systems [1]. As a matter of fact, many
interesting phenomena cannot be explained in a plausible way
without the inclusion of the effect of the outer environment.
The prominent examples that attracted much attention include
decoherence, dephasing, and dissipation phenomena, to name
a few [2–4]. Apart from their fundamental relevance in the
development of quantum mechanics, these processes are of
great importance in many applications, ranging from nuclear
physics to quantum optics.

Very often, the properties of the environment, which a
priori is characterized by a large number of degrees of free-
dom, make it very difficult, if not impossible, to solve in an
exact manner the evolution equations. Fortunately, there exist
systems of great practical relevance for which the dynamics
can be exactly solved. For instance, the Jaynes-Cummings
model [5] represents one of the most popular and important
paradigms that enabled the investigation of the dynamics of
open quantum systems. It has been widely used in many
contexts and it is of great usefulness, both theoretically and
experimentally. Depending on whether the environment is
of bosonic or of fermionic nature, many techniques have
been proposed in order to eliminate the irrelevant environ-
ment degrees of freedom [6–17]. Generally speaking, in the
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bosonic case, this task is achieved through the introduction
of a spectral density for the system-environment coupling
(usually of Lorentzian form), along with the so-called Born
and Markovian approximations. The latter is widely used
in, e.g., quantum optics, and is based on the assumptions
that the characteristic timescale of the environment is much
smaller that that associated with the central system. This
leads to a loss of memory of the system, which is generally
associated with Markov processes. As a consequence, the
reduced system density matrix is found to satisfy a master
equation which is in the Lindblad form. The latter is char-
acterized by decay rates which are essentially positive and
time-independent.

However, the validity of the Markovian approximation is
not justified in many systems that display features indicat-
ing strong non-Markovian behavior. This is, for example, the
case when the decay rates become negative, implying that
information flows back from the environment to the system;
consequently, the memory effects should be taken into ac-
count even for weak coupling. Actually, the non-Markovian
dynamics of quantum systems became over the last years one
of the most interesting subjects in the theory of open quantum
systems [18–20]. This is mainly due to the lack of an exact
general non-Markovian master equation, in contrast with the
known Lindblad form of the Markovian dynamics.

The Fano-Anderson model describes a single discrete state
or impurity that is coupled to a continuum of states. It was
first introduced by Fano [21] and Anderson [22] to study
magnetic impurities in metals. Notice that the impurity spin
models are often met in the field of solid-state physics,
where the continuum may refer, for example, to an electron
gas [23,24]. This model, among other paradigms, has been
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the main tool in approaching various physical problems such
as the spontaneous emission in dielectrics and photonic crys-
tals, charge transfer in one-dimensional semiconductors, the
Bose-Einstein condensate, and the decay in Josephson junc-
tions [25–43]. Recently, the general non-Markovian dynamics
of open systems has been investigated via the use of Green’s
function for systems linearly coupled to thermal environments
by Zhang et al. [34]. They used a model similar to the Fano-
Anderson one and showed how the exact master equation may
be derived. In most investigations, the spectral densities of
the environments studied are defined over an infinite domain
of mode frequencies where a frequency cutoff is introduced.
Generally speaking, the exponential Markovian decay occurs
for weak system-environment coupling [44]. In Ref. [25],
the authors report on an oscillatory variation of the decay
of the spontaneous emission of a two-level atom coupled to
a radiation field whose spectrum possesses band gaps. The
decay of the population on the excited state displays mostly
non-Markovian dynamics for small detuning from the atomic
resonant frequency. For large detuning, the decay becomes
nearly Markovian (exponential); the same behavior has been
reported in Ref. [27].

In this paper, we focus on the study of the non-Markovian
dynamics of a central spin impurity that is coupled to a
ferromagnetic spin lattice. The latter presents periodic prop-
erties [45,46] that fix in a unique manner the spectral density.
It should be stressed that the spin degrees of freedom are the
most suitable candidates towards the implementation of new
quantum technologies [47,48]. One can, for instance, profit
from their properties to implement the proposed quantum al-
gorithms [49–54]. In this work, we shall be mainly interested
in the decay rates, whose properties determine the way the
reduced density matrix behaves in time.

The paper is organized as follows. In Sec. II we introduce
the total Hamiltonian of the composite system. Then, through
the Holstein-Primakoff transformation, we use the spin-wave
theory to establish the connection with the Fano-Anderson
model. Section III deals with the study of the dynamics of
the impurity at zero temperature, where analytical results for
one and two dimensions are presented, and the evolution of
the decay rate and the occupation probability is discussed.
Section IV is devoted to the study of the weak-coupling
regime where we use the second-order perturbation theory to
derive the master equation for the reduced density matrix, and
we compare the results with the exact solutions. There, the
short-time evolution is discussed in more detail. In Sec. V we
investigate the quantum Zeno effect. We end the paper with a
brief conclusion.

II. MODEL

A. System Hamiltonian

Consider a two-level localized spin impurity that is
immersed in a ferromagnetic spin lattice in d dimensions.
The impurity is dealt with as a central open system, while
the lattice plays the role of the spin bath. The total model
Hamiltonian H is given by the sum of three terms: the free
Hamiltonian of the central system, which we designate by
HS , the Hamiltonian of the lattice HB, and the interaction
Hamiltonian HSB describing the coupling of the impurity to

the spins of the lattice. Therefore, we can write

H = HS + HB + HSB. (1)

The free Hamiltonian of the two-level system may be
expressed in terms of the usual Pauli matrices as

HS = ω0σ+σ−, (2)

where ω0 is the energy gap between the ground state and the
excited state of the impurity. Note that the formalism we use
applies as well to the case of a qubit where the free Hamil-
tonian is written as HS = (ω0/2)σz, ω0 being proportional to
the strength of the local magnetic field applied to the qubit.

The lattice is subject to the effect of a homogeneous mag-
netic field, applied along the z direction, the strength of which
is denoted by h. The Hamiltonian describing the lattice reads

HB = −
∑
〈i, j〉

(
Jx

i, jS
x
i Sx

j + Jy
i, jS

y
i Sy

j + Jz
i, jS

z
i Sz

j

) − h
∑

j

Sz
j, (3)

where Sx
i , Sy

i , and Sz
i represent the components of the spin

operator of the spin of magnitude S located at site i. In the
above equation, the summation is performed with respect to
all pairs of spins. The parameters Jx

i, j , Jy
i, j , and Jz

i, j denote the
coupling constants, which are all positive. We assume that the
lattice is of XXZ type and that each spin interacts only with
its nearest neighbors, whose number is denoted from here on
by η (the coordination number).

Under the above assumptions, the lattice Hamiltonian can
be written as

HB = −J
∑

jδ

(
Sx

j S
x
j+δ + Sy

j S
y
j+δ

+ γzS
z
jS

z
j+δ

) − h
∑

j

Sz
j, (4)

where δ designates the d-dimensional vectors joining each
spin at a given site to its nearest-neighbor spins, and J =
Jx

i,i+δ = Jy
i,i+δ

denotes the coupling constant restricted to these
neighbors, whereas γz = Jz

i,i+δ
/J is the anisotropy parameter

which satisfies γz � 1. This easy-axis condition ensures that
the lattice is in the ferromagnetic phase, where the ground
state is the one in which all the spins are directed along the
z direction. At this stage, it is useful to introduce the raising
and lowering operators S±

j = Sx
j ± iSy

j , which enables us to
rewrite the lattice Hamiltonian in the form:

HB = −J

2

∑
jδ

[
(S+

j S−
j+δ + S−

j S+
j+δ) + 2γzS

z
jS

z
j+δ

] − h
∑

j

Sz
j .

(5)
We further assume that the coupling between the spin

impurity and the lattice is of Heisenberg XY type, whose
Hamiltonian is given explicitly by the formula

HSB =
∑

j

(g jσ−S+
j + g∗

jσ+S−
j ), (6)

where g j denotes the coupling constant of the central system
to the spin located at site j; for the sake of generality, we
assume it to be complex-valued.
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B. Spin-wave formulation

The properties of ferromagnets at low temperatures can be
investigated by means of the spin-wave theory, where the con-
cept of the magnon naturally arises as the analog of the photon
in electromagnetic radiation and of the phonon for the lattice
vibrations. Generally speaking, magnons are ground-state ex-
citations that propagate through the spin lattice as a result of
thermal or quantum perturbations. The standard method in
spin-wave theory consists in using suitable transformations
that map the spin operators to bosonic operators. In this work
we use the Holstein-Primakoff transformation which proved
to be very convenient in solving such problems. Recall that
the prescription employed in the Holstein-Primakoff transfor-
mation resides in the following identities [55]:

S−
j =

√
2S

√
1 − b†

jb j

2S
b j, S+

j =
√

2Sb†
j

√
1 − b†

jb j

2S
, (7)

Sz
j = S − b†

jb j, (8)

where b j are bosonic operators that satisfy [b j, b†
j′ ] = δ j j′ .

At low temperatures, the mean number of magnons is very
small; therefore, by expanding the square root in Eq. (7) in a
Taylor series and keeping only bilinear terms in bj and b†

j in
the Hamiltonian of the lattice, it follows that

HB = −JS
∑

jδ

[(b†
jb j+δ + b jb

†
j+δ

) + 2γz(b†
jb j + b†

j+δ
b j+δ)]

+ h
∑

j

b†
jb j − hNS − JηγzNS2, (9)

where N is the number of sites or spins in the lattice. Next, we
Fourier transform the bosonic operators b j as follows:

b j = 1√
N

∑
�k

ei�k·�r j a�k, a�k = 1√
N

∑
j

e−i�k·�r j b j, (10)

where �r j designates the d-dimensional real-space vector that
determines the position of the spin at site j of the lattice. It can
easily be verified that the operators a�k satisfy [a�k, a†

�k′ ] = δ�k�k′ .
By virtue of Eq. (10), the lattice Hamiltonian is written as

HB =
∑

�k
(h + 2JγzηS − JηS2τ�k )a†

�ka�k − hNS

− JηS/2
∑

�k
τ�k − JηγzNS2, (11)

where

τ�k = 1

η

∑
�δ

ei�k·�δ (12)

is the lattice structure factor. Hence, we deduce that the dis-
persion relation is given by

��k = h − 2JηS(τ�k − γz ). (13)

This implies that the spectrum of the lattice corresponds
to the energy domain ��k ∈ [�min,�max], with �min = h +
2JηS(γz − 1) and �max = h + 2JηS(1 + γz ) (we set h̄ = 1).

In a similar way, it can be shown that the interaction
Hamiltonian HSB may be expressed in terms of the bosons

operators as

HSB =
∑

�k
(g�kσ−a+

�k + g∗
�kσ+a�k ), (14)

where the new coupling constant g�k is defined through the
expression:

g�k =
√

2S

N

∑
j

g je
i�k· �r j . (15)

Clearly, the latter form of the coupling constant depends on
the position of the impurity, as well as on the dimension and
type of lattice.

III. EXACT DYNAMICS AT ZERO TEMPERATURE (T = 0)

The evolution in time of the state of the spin impurity
at zero temperature can be exactly derived. We begin with
the one-dimensional lattice where we present the main cal-
culations and procedures, which are of general applicability
and hold at higher dimensions; afterwards, we deal with the
two-dimensional case where we show that the dynamics can
also be investigated analytically.

A. One-dimensional lattice

The dynamics in one dimension bears a particular impor-
tance as certain interesting features arise, which are absent
in two and three dimensions. The lattice in this case is a
one-dimensional array of spins, the length of which is given
by (N − 1)δ, where δ represents the distance separating two
adjacent sites. The wave vector has only one component
k, and the first Brillouin zone corresponds to the interval
−π/δ � k � π/δ. We assume that the impurity lies in the
middle between two lattice spins and that it interacts only with
these two neighbors, with coupling constant g. The nonlocal
coupling constant g�k is thus given by

g�k = 2g

√
2S

N
cos

(
δk

2

)
. (16)

Next, we introduce the retarded Green’s function of the impu-
rity which is given by

Gret (ε) = 1

ε − ω0 − �ret (ε + iν)
, (17)

where �ret (ε + iν) is the retarded self-energy, namely:

�ret (ε + iν) =
∑

k

|g�k|2
ε − �k + iν

, (18)

with ν being an infinitesimal positive quantity. It should be
stressed that, due to the XY coupling of the impurity to the
lattice, the only self-energy diagram after bosonization is the
one obtained in the second-order expansion of the S matrix
with respect to the coupling constants g�k , in analogy with
the Fano-Anderson model. Hence the Green’s function (17)
is actually an exact one that is obtained by summing all the
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diagrams, which amounts to writing [23]

G(ε) = G0(ε) + G0(ε)�(ε)
[
G0(ε) + G2

0(ε)�(ε) + · · · ]
= G0(ε)

1 − G0(ε)�(ε)
, (19)

where G0(ε) = (ε − ω0)−1 is the Green’s function of the free
impurity, and �(ε) is the self-energy.

In the limit N → ∞, the number of modes becomes very
large, and hence the spectrum of the lattice turns into a
continuum of states, whose energies are bounded between
h + 4JS(γz − 1) and h + 4JS(γz + 1). In this limit, in d di-
mensions, the sum with respect to the wave vector �k may be
replaced with an integral over the first Brillouin zone (FBZ)

according to the rule

1

N

∑
�k

→ vd

(2π )d

∫
FBZ

d�k, (20)

where vd is the volume of a unit cell. Consequently, by virtue
of Eq. (16), the retarded self-energy can be expressed as

�ret (ε + iν) = 4g2S

π

∫ π

−π

cos2(k/2)dk

ε − h − 4JSγz + 4JS cos(k) + iν
.

(21)
By the change of variable z = eik , the above integral is trans-
formed into a contour integral around the unit circle, so the
theorem of residues can be applied. It follows that the real
part of the self-energy reads

Re �ret (ε + iν) =
{

g2

J

(
1 −

√
ε−h−4JSγz−4JS
ε−h−4JSγz+4JS

)
for 4JS � |ε − h − 4JSγz|

g2

J for 4JS > |ε − h − 4JSγz|.
(22)

On the other hand, the imaginary part can be calculated when ν → 0+ as

Im �ret (ε + i0+) = −g2

J

(
h − ε + 4JS(1 + γz )√

(4JS)2 − (ε − h − 4JSγz )2

)
for 4JS > |ε − h − 4JSγz|, (23)

and Im �ret (ε + i0+) = 0 for 4JS < |ε − h − 4JSγz|. This
actually reflects the fact that the imaginary part of the re-
tarded self-energy vanishes outside the continuum, namely,
Im �ret (ε + iν) = 0 for ε > �max or ε < �min.

The fundamental property exhibited by the retarded
Green’s function is that the spectral density A(ε) is related
to the former through the identity

A(ε) = −2 Im Gret (ε). (24)

The spectral density represents essentially the probability that
the impurity has energy ε as a result of its coupling to the
lattice. Inside the continuum, it can be expressed as

A(ε) = − 2 Im�ret (ε+ i0+)

[ε− ω0 − Re�ret (ε+ i0+)]2+ [Im �ret (ε + i0+)]2
.

(25)

Outside the continuum, that is when Im �ret (ε + i0+) → 0,
the spectral density reduces to

A(ε) = 2πδ[ε − ω0 − Re �ret (ε + i0+)]

= 2π
∑

j

δ(ε − ε j )

1 − d
dε

Re �ret (ε + i0+)|ε j

, (26)

where ε j are the solutions of the equation ε − ω0 −
Re �ret (ε + i0+) = 0. They may be interpreted as the energies
corresponding to localized bound states outside the contin-
uum. Thus, these states are determined in the one-dimensional
case by solving the equation:

ε − ω0 = g2

J

(
1 −

√
ε − h − 4JSγz − 4JS

ε − h − 4JSγz + 4JS

)
(27)

outside the continuum, which can be carried out numerically;
however, to gain more insight into the existence of the bound

states, it is convenient to discuss the solutions of the latter
equation graphically, as displayed in Fig. 1. It can be shown
that there exists always at least one solution no matter what
the values of the model parameters are. This is due to the fact
that the real part of the self-energy diverges at the lower edge
of the spectrum, see Eq. (22). More precisely, the impurity
exhibits two bound states whenever ω0 > h + 4JS(1 + γz ) −
g2/J , otherwise there exists only one bound state. Indeed,
from Fig. 1, we see that the value of ω0 for which the line
y = ε − ω0 passes through the point (h + 4JS(1 + γz ), g2/J )
is given by h + 4JS(1 + γz ) − g2/J; all the values of ω0

FIG. 1. The real part of the self-energy in one dimension (black
solid line) for J = 0.5, g = 1, h = 8, S = 1, and γz = 1. The inter-
section points correspond to the solutions of the equation Re �ret (ε +
i0+) = ε − ω0 for ω0 = 2 (green dashed line) and ω0 = 12 (blue
dot-dashed line); these solutions are interpreted in the main text as
localized bound states outside the continuum.
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exceeding the latter lead to two intersection points outside the
continuum.

The retarded Green’s function in the time domain is given
by the Fourier transform of the spectral density, that is

Gret (t ) = −i
∫ ∞

−∞

dε

2π
A(ε)e−iεt = −iφ+(t ), (28)

where φ+(t ) is the wave function describing the excited state
of the impurity. The integration runs over the full real line
to ensure that all the poles of the Green’s function outside
the continuum are taken into account. In the present model,
the range of integration is determined by the energies of the
bound states, along with the continuum; at the bound states
the spectral density is given by a δ function. Hence,

φ+(t ) =
∑

j

e−iε j t

1 − d
dε

Re �ret (ε + i0+)|ε j

− 1

π

∫ �max

�min

Im �ret (ε + i0+)e−iεt dε

[ε − ω0 − Re �ret (ε + i0+)]2 + [Im �ret (ε + i0+)]2
. (29)

Suppose that the initial state of the system is given by
the pure state (α+|+〉 + α−|−〉)|G〉 where |G〉 = ⊗k|0〉k is the
ground state of the lattice at T = 0. Then, because of the form
of the interaction Hamiltonian HSB, the state of the impurity
evolves to the mixed one:

ρ(t ) =
(|α+|2|φ+(t )|2 α∗

−α+φ+(t )
α−α∗

+φ+(t )∗ 1 − |α+|2|φ+(t )|2
)

. (30)

Differentiating both sides of Eq. (30) with respect to time and
using the properties of the Pauli matrices, it can be shown that
the above density matrix satisfies the exact master equation

dρ(t )

dt
= −i[(ω0 + ξ (t )/2)σ+σ−, ρ(t )]

+ κ (t )

(
σ−ρ(t )σ+ − 1

2
{σ+σ−, ρ(t )}

)
, (31)

where

κ (t ) = −2Re

( d
dt φ+(t )

φ+(t )

)
, (32)

ξ (t ) = −2Im

( d
dt φ+(t )

φ+(t )

)
− 2ω0, (33)

and {A, B} denotes the anticommutator of A and B. Physically
speaking, the parameter κ (t ) represents the decay rate of the
two-level impurity, while the renormalization parameter ξ (t )
plays the role of the Lamb shift due to the coupling to the
lattice.

The coupling of the impurity to the neighboring spins
depends on the overlap between their wave functions, which
fixes the magnitude of the exchange integral g. The overlap
depends on the size of the impurity which could, for example,
be an atom with one electron in the partially filled shell. Since
the impurity is located halfway between two lattice atoms (in
the center of a unit cell in general), the exchange between the
latter and the impurity can be as strong as the mutual coupling
between the lattice constituents. In what follows, we shall
consider the strong-coupling as well as the weak-coupling
regimes of the dynamics.

An example of the time dependence of the decay rate κ (t )
and of the Lamb shift ξ (t ) is displayed in Figs. 2 and 3 for
some particular values of the model parameters. For conve-
nience, the time and the magnetic field h as well as ω0 are
given in units of J . It can be seen that, for strong coupling
between the impurity and the lattice, the decay rate takes on
larger values as the magnetic field increases until the latter

reaches some yet-to-be-determined critical value (which will
be denoted from here on by hcri), above which the decay rate
begins to decrease in magnitude. The Lamb shift decreases in
turn and after h crosses its critical point the former becomes
essentially negative. Another point worth observing is that
there appears a peak which is followed by a sharp fall of the
decay rate to negative values. This actually happens at times of
the order of 1/g, which clearly is inversely proportional to the

FIG. 2. (a) The decay rate κ , and (b) the Lamb shift ξ for strong
coupling as a function of time for different values of the strength
of the magnetic field: h = 0.1J (blue dashed lines), h = J (black
dotted lines), h = 1.5J (red thick solid lines), h = 3J (green thin
solid lines), and h = 4J (black dot-dashed lines); other parameters
are ω0 = 3J , S = 1, g = J , and γz = 1.
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FIG. 3. (a) The decay rate κ , and (b) the Lamb shift ξ for weak
coupling as a function of time for different values of the strength
of the magnetic field (in units of J): h = 0.1 (blue solid lines), h =
2 (green solid lines), h = 3 (red dot-dashed lines), h = 3.2 (black
dashed lines), and h = 5 (black solid lines); other parameters are g =
0.1J , ω0 = 3J , S = 1, and γz = 1.

coupling constant. The above results reveal the presence of a
critical behavior of the dynamics with respect to the variation
of the strength of the applied magnetic field.

It is worthwhile mentioning that the latter evolution fea-
tures depend in a nontrivial way on the impurity energy.
The numerical investigation shows that they take place in the
strong-coupling regime (g ≈ J) only when ω0 exceeds some
threshold value, otherwise the decay rate always decreases as
h is raised. Nevertheless, we only assign a critical value to the
magnetic field, since, generally speaking, the latter is more
accessible from an experimental point of view; this implies
that we shall deal with ω0 as an intrinsic property of the
impurity.

Note that, as per the analytical expression of the impurity
amplitude φ+(t ), one cannot a priori determine the critical
value hcri of the magnetic field. At first sight, it seems to be in
connection with the divergence of the self-energy at the lower
edge of the lattice spectrum. We carried out many numerical
calculations, and we always found that hcri < 4JS(1 − γz ) +
ω0. Actually, it may be put in the form hcri = 4JS(1 − γz ) +
ω0 − ζ (g), where ζ (g) is a positive monotonically increasing

FIG. 4. The numerical estimation of hcri as a function of ω0 for
some values of g and γz in the strong-coupling regime. The parame-
ters ω0 and hcri are given in units of J , and S = 1.

function of g. In Fig. 4, we display the numerical estimation
of ω0 − hcri as a function of ω0 for some values of g ≈ J .
The near-constant outcomes suggest the ansatz ζ (g) = cg2/J ,
where c is a constant that is approximately equal to 3/2. The
latter yields a good fit to the numerical values, and may be
used to locate the vicinity of the critical point for g ≈ J .
A more accurate fit gives c = 1.56. Hence, we deduce that,
as far as the variation with respect to h is concerned, the
critical point always exists when ω0 > ζ (g) − 4JS(1 − γz ).
Evidently, if ω0 is very close to ζ (g) − 4JS(1 − γz ), then hcri

will also be close to zero, and its effect on the dynamics will
not be so important, because the variation of the decay rate is
quickly reversed by the increase of h.

The above condition explains the reason for which the
critical features of the dynamics occur in the weak-coupling
regime when γz = 1 (i.e., a Heisenberg lattice) practically
for all values of ω0, in contrast with the strong-coupling
case. Indeed, even for small ω0, there exists a value of
h above which the decay rate always decreases, as was
the case in the strong-coupling regime for large ω0. Fur-
thermore, for weak coupling, we notice the disappearance
of the peak-shaped variation of the decay rate and the
Lamb shift. This regime is best investigated through a per-
turbative treatment; the next section is devoted to these
questions, which will be addressed in more detail when we
derive the master equation within second-order perturbation
theory.

Now we turn to the investigation of the evolution in time
of the reduced density matrix of the impurity [see Fig. 5].
In accordance with the features exhibited by the decay rate,
we find that, for small values of h, the matrix element ρ11,
which represents the occupation probability or population of
the excited state, decreases faster as the value of h is raised and
mostly tends asymptotically to values very close to zero. The
variation is reversed as we cross the critical point hcri, and the
occupation probability decay becomes slower; in particular
the asymptotic state assumes larger values at long times (see
below for a quantitative discussion). For sufficiently strong
magnetic field, the state of the impurity does not deviate much
from its initial one. The time variation of the off-diagonal
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FIG. 5. The excited-state occupation probability as a function
of time: (a) strong coupling with h = 0.1J (blue dashed line),
h = J (black dotted line), h = 1.5J (thick red solid line), h = 3J
(thin green solid line), and h = 4J (blue dot-dashed line); other
parameters are ω0 = 3J , S = 1, g = J , γz = 1. (b) Weak coupling
with h = 0.1J (blue dashed line), h = 2J (green dotted line), h =
3J (lower red solid line), h = 3.2J (black dot-dashed line), and
h = 5J (upper black solid line); other parameters are ω0 = 3J ,
g = 0.1J , S = 1, γz = 1. The impurity initially occupies the exited
state, i.e., ρ11(0) = 1.

element ρ12 exhibits essentially the same characteristics. This
implies that decoherence of the state of the impurity may be
minimized at moderate times by applying a not too strong
(weak) magnetic field, but the asymptotic state at long times
will be nearly diagonal; on the contrary, if one is interested in
the long-time behavior, it would be more convenient to apply
a strong magnetic field.

The increase of the magnetic field should stabilize the
ferromagnetic phase; this implies that, classically speaking,
the lattice spins are more likely to be oriented along the z
direction. The effective strength of the XY coupling should
thus become weaker, leading to a lower decay rate. Our pre-
vious results, however, show that this is not the case at short
to moderate intervals of time but holds only at longer times.
Specifically, the loss of coherence of the impurity and the
decay of the occupation probability become more significant
as we approach hcri from below.

The observed sharp decrease of the decay rate can be
accounted for as the result of the fast revival of ρ11 when h
is close to hcri; the revival is produced after the occupation
probability has completely vanished. This is explained by
the back-flow of information from the lattice to the impurity
due to memory effects; these features correspond to the non-
Markovian character of the dynamics, which holds even in
the weak-coupling regime. Specifically, we see from Fig. 5(b)
that, for weak coupling, the near-exponential decay of the
density-matrix element ρ11(t ) is applicable only for small
h; as we approach the critical point hcri, the decay becomes
mostly Gaussian, and the asymptotic probability does not
vanish. A measure of the non-Markovianity of the dynamics
may be realized by investigating the sign of the decay rate. In
either regime, whether weak or strong, the revival of ρ11(t )
corresponds to negative decay rates. Hence, we come to the
important conclusion that, even in the weak-coupling regime,
the dynamics displays strong non-Markovian behavior. It may
be approximated by the exponential (Markovian) law in the
weak-coupling regime only when the strength of the magnetic
field is small enough, typically less than hcri (see Sec. IV for
more details).

Analytically, the asymptotic value of φ+ can be determined
by observing that by the Riemann-Lebesgue lemma,

lim
t→∞

∫ �max

�min

Im �ret (ε + iν)e−iεt dε

[ε − ω0 − Re �ret (ε + iν)]2 + [Im �ret (ε + iν)]2

= 0. (34)

Therefore, we can distinguish between two cases: On the one
hand, when the impurity possesses only one bound state, that
is, when ω0 � h + 4JS(1 + γz )h − g2/J , whose energy is ε1,
then

lim
t→∞ |φ+(t )|2 = 1

B(ε1)2
, (35)

lim
t→∞ κ (t ) = 0, (36)

where

B(ε) = 1 + 4g2

[ε − h − 4JS(1 − γz )]
[

J
g2 (ω0 − ε) + 1

] . (37)

The lamb shift ξ (t ) in turn tends to 2(ε1 − ω0). On the other
hand, when the system exhibits two bound states, i.e., when
ω0 > h + 4JS(1 + γz )h − g2/J , whose energies are ε1 < ε2,
then as t → ∞:

|φ+(t )|2 ∼ 1

B(ε1)B(ε2)
{D(ε1, ε2) + 2 cos[(ε2 − ε1)t]},

(38)

κ (t ) ∼ 2(ε2 − ε1) sin[(ε2 − ε1)t]

D(ε1, ε2) + 2 cos[(ε2 − ε2)t]
, (39)

where

D(ε1, ε2) = B(ε1)

B(ε2)
+ B(ε2)

B(ε1)
. (40)

Hence, the asymptotic occupation probability oscillates in
this case about D(ε1, ε2)/[B(ε1)B(ε2)]. The decay rate also
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FIG. 6. Asymptotic behavior of (a) the decay rate κ , and (b) the
excited-state population ρ11(t ) in the case of two bound states: The
red solid lines represent the asymptotic expressions of Eqs. (38)
and (39), whereas the blue-dotted lines correspond to the exact solu-
tions obtained by numerical integration of Eq. (29). The parameters
are g = J , h = 0.5J , ω0 = 8J , S = 1, and γz = 1.

displays periodic oscillation with amplitude inversely pro-
portional to D(ε1, ε2). This is illustrated in Fig. 6. Notice
that the effect of the anisotropy parameter γz is merely to
renormalize the magnetic field h in the low-excitation sector
of the Hamiltonian. Indeed, all the discussion presented thus
far could be interpreted in terms of the effective field h̃ =
h + 2ηJSγz. This is equivalent to shifting the critical points
by the value 2ηJSγz. Hence, from here on, we focus mainly
on the variation of the magnetic field h and the impurity
energy ω0.

B. Two-dimensional lattice

We now consider the square lattice in two dimensions, for
which the lattice constants in both the x and the y directions
are the same and are equal to δ. Therefore, the first Brillouin
zone corresponds to −π/δ � ki � π/δ, i ≡ x, y. We further
assume that the impurity lies in the center of a unit cell in the
lattice so that the distance from it to any neighboring lattice
spin is equal to δ/

√
2. The coupling constant of the impurity

to the lattice spins is denoted here also by g. Thus the squared
modulus of the coupling constant g�k is given by

|g�k|2 = 2Sg2

N
|1 + eikxδ/2(1 + eikyδ/2 + eikxδ/2)|2

= 32g2S

N
cos2(kxδ/2) cos2(kyδ/2). (41)

Moreover, the lattice structure factor reads now as

τ�k = 1
2 [cos(kxδ) + cos(kyδ)], (42)

whereas the spectrum bounds are �min = h̃ − 8JS, and
�max = h̃ + 8JS (we use the notation h̃ = h + 8JSγz). For a
large number of sites, the lattice spectrum turns into a contin-
uum of states; in this limit, the retarded self-energy may be
expressed as

�ret (ε + iν) = 8g2S

π2

∫ π

−π

∫ π

−π

cos2(k1/2) cos2(k2/2)dk1dk2

ε − h − 8JSγz + 4JS[cos(k1) + cos(k2)] + iν
. (43)

Outside the continuum, i.e., ε < h̃ − 8JS or ε > h̃ + 8JS, the real part takes the form

Re �ret (ε + i0+) = g2

2πSJ2

[
4πSJ − (ε − h̃)E

(
64S2J2

(ε − h̃)2

)
+ (ε − h̃ − 8JS)K

(
64S2J2

(ε − h̃)2

)]
, (44)

where K and E are the complete elliptic integrals of the first and second kinds, respectively.
Inside the continuum, the integral in Eq. (43) cannot directly be performed. Thus we analytically continue the right-hand

side of Eq. (44) by performing the analytic continuation of the complete elliptic integrals to the domain |z| > 1, Im z < 0 of the
complex plane, namely [56]:

K (z) = 1√
z

[
K

(
1

z

)
− iK

(
1 − 1

z

)]
, (45)

E (z) = √
zE

(
1

z

)
−

(
z − 1√

z

)
K

(
1

z

)
+ i

[√
zE

(
1 − 1

z

)
− 1√

z
K

(
1 − 1

z

)]
. (46)
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FIG. 7. The real part of the self-energy (black solid line) in a two-
dimensional square lattice for J = 0.5, g = 1, h = 2, S = 1, and γz =
1. The intersection points correspond to the solutions of the equation
Re �ret (ε + i0+) = ε − ω0 for ω0 = 1 (green dashed line) and ω0 =
11 (blue dot-dashed line); these solutions are interpreted in the main
text as localized bound states outside the continuum.

This yields

Re �ret (ε + i0+)

= 2g2

J
− 4g2

Jπ
sgn(ε − h̃)E

(
(ε − h̃)2

64J2S2

)

+ g2

2SπJ2
[8JS sgn(ε − h̃) − |ε − h̃|]K

(
(ε − h̃)2

64J2S2

)
,

(47)

where sgn(x), denotes the sign of x.
Similarly, using the analytic continuation of �(ε), we find

that, outside the continuum, Im �ret (ε + iν) = 0, whereas in-
side the continuum, the imaginary part is calculated as

Im �ret (ε + i0+) = g2

2πJ

(
ε − h̃

JS

)
K

(
1 − (ε − h̃)2

64J2S2

)

− 4g2

πJ
E

(
1 − (ε − h̃)2

64J2S2

)
. (48)

In this case, as depicted in Fig. 7, it turns out that the
system exhibits two bound states when ω0 > h + 8JS(1 +
γz ) − Re �ret[h + 8JS(1 + γz ) + i0+]. In the opposite situa-
tion, there exists only one localized bound state. Moreover,
we see that, while in one dimension, the real part of the re-
tarded self-energy of the impurity remains constant inside the
continuum, in two dimensions, the same quantity diverges to
negative values above and below the lower bound of the lattice
spectrum; in particular, it increases as we approach the upper
bound where it takes on a finite value. The knowledge of the
explicit form of the real and imaginary parts of the retarded
self-energy makes it possible to calculate the amplitude φ+(t )
and the decay rate κ (t ). The obtained results are depicted in
Figs. 8–10 for both strong and weak coupling to the lattice.
Here, again, it is found that the impurity dynamics is charac-
terized by a critical dependence on the applied magnetic field;
all the results we have presented earlier in the case of the one-
dimensional lattice hold in the two-dimensional one. The main

FIG. 8. (a) The decay rate κ , and (b) the Lamb shift ξ for strong
coupling in two dimensions as a function of the time for different
values of the strength of the magnetic field: h = 0.1J (green solid
lines), h = 2J (blue dashed lines), h = 3J (black dot-dashed lines),
and h = 5J (red dotted line); other parameters are g = J ω0 = 5J ,
S = 1, γz = 1, S = 1.

difference rests in the order of magnitude of the quantities of
interest, which basically is due to the increase of the number
of nearest neighbors of the impurity. The asymptotic values
of the excited-state occupation probability and the decay rate
are given by expressions similar to Eqs. (35) and (36) for one
bound state, and to equations (38) and (39) for two bound
states but, in this case, we have

B(ε) = 1 + g2

2πJ2S

[
h̃ − ε

h̃ − ε − 8JS
E

(
(ε − h̃)2

64J2S2

)

− h̃ − ε + 8JS

h̃ − ε
K

(
(ε − h̃)2

64J2S2

)]
. (49)

It is interesting to notice that the features of the time
evolution of the occupation probability, as obtained here, are
quite similar to that of Refs. [25,27] in photonic crystals
displaying band gaps, where the critical behavior depends on
the detuning from the band edge. The effect of the latter is
thus equivalent to the effect of the magnetic field in our spin
system. While the oscillations in the photonic case for large
detuning are due to reflections from the dielectric host, the
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FIG. 9. (a) The decay rate, κ and (b) the Lamb shift ξ for weak
coupling in two dimensions as a function of the time for different
values of the strength of the magnetic field: h = 0.1J (green solid
lines), h = 3J (blue dashed lines), h = 5J (black dot-dashed lines),
and h = 5.2J (red dotted lines); other parameters are g = 0.1J , ω0 =
5J , S = 1, γz = 1, S = 1.

situation in the spin lattice has a different origin, namely, the
inhibition of spin deviations in the lattice.

IV. WEAK-COUPLING REGIME: PERTURBATIVE
TREATMENT

The present section is devoted to the investigation of the
dynamics of the impurity in the weak-coupling regime. This
means that the strength of the interaction is taken sufficiently
weak so as to allow for a perturbative expansion with respect
to the coupling constants gk . For the sake of generality, we
assume that the lattice is in thermal equilibrium at temperature
T , and that its state is initially uncorrelated from that of the
impurity. This makes it easier to derive the evolution equa-
tions, since the zero-temperature dynamics is simply obtained
by letting T → 0. A discussion of the nonzero-temperature
case is given in the Appendix. This being said, it can now be
shown that up to second order with respect to the coupling
constants g�k , the reduced density matrix verifies the master

FIG. 10. The excited-state occupation probability as a function
of the time in two dimensions. (a) Strong coupling with h = 0.1J
(green solid line), h = 2J (blue dashed line), h = 3J (black dot-
dashed line), and h = 5J (red dotted line); other parameters are
g = J , ω0 = 5J , S = 1, and γz = 1. (b) Weak coupling with h =
0.1J (green solid line), h = 3J (blue dashed line), h = 5J (black
dot-dashed line), and h = 5.2J (red doted line); other parameters
are g = 0.1J , ω0 = 5J , S = 1, and γz = 1. The impurity initially
occupies the excited state, i.e., ρ11(0) = 1.

equation:

dρ(t )

dt
= −[(ω0 + ξ (t ) − ξ 0(t )/2)σ+σ−, ρ(t )]

+ κ (t )

(
σ−ρ(t )σ+ − 1

2
{σ+σ−, ρ(t )}

)

+ [κ (t ) − κ0(t )]

(
σ+ρσ− − 1

2
{σ−σ+, ρ}

)
, (50)

where κ0(t ) = κ (t )|T =0, and ξ 0(t ) = ξ (t )|T =0. The decay rate
and the Lamb shift at temperature T are given by

κ (t ) = 2 Re �(t ), ξ (t ) = 2 Im �(t ), (51)

with �(t ) being the correlation function of the lattice, namely,

�(t ) =
∑

k

|g�k|2ei(ω0−�k )t [n(�k ) + 1]. (52)
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In the above equation, n(�k ) denotes the mean number of
magnons in mode k at temperature T , that is

n(�k ) = 1

e�k/kBT − 1
. (53)

At zero temperature, the master equation has the same form
as the exact one (31), and the solution at T = 0 is thus given
by (we drop the index)

ρ11(t ) = ρ11(0) exp

{
−

∫ t

0
κ (τ )dτ

}
, (54)

ρ12(t ) = ρ12(0) exp

{
− iω0t − i

2

∫ t

0
ξ (τ )dτ

}

× exp

{
−1

2

∫ t

0
κ (τ )dτ

}
. (55)

This form is quite general and is valid for both the exact
and the second-order master equations. As a simple check,
one can, for instance, insert κ (t ) as defined by Eq. (32) into
Eq. (54) to end up with the impurity amplitude.

A. One-dimensional lattice

The correlation function in the continuum limit at zero
temperature takes the form (after a change of variable):

�(t ) = 4Sg2ei(ω0−h−4JSγz )t
∫ 1

−1

1 + ζ

π
√

1 − ζ 2
ei4JStζ dζ . (56)

This integral can be evaluated exactly by using the Bessel
functions of the first kind, denoted here by Jn, yielding

�(t ) = 4Sg2ei(ω0−h−4JSγz )t [J0(4JSt ) + iJ1(4JSt )]. (57)

Consequently, the decay rate κ can be expressed as [see
Eq. (51)]

κ (t ) = 8g2S
∫ t

0
dt ′{cos[(ω0 − h̃)t ′]J0(4JSt ′)

− sin[(ω0 − h̃)t ′]J1(4JSt ′)}, (58)

whereas the Lamb-shift ξ takes the form

ξ (t ) = 8g2S
∫ t

0
dt ′{sin[(ω0 − h̃)t ′]J0(4JSt ′)

+ cos[(ω0 − h̃)t ′]J1(4JSt ′)}. (59)

In Fig. 11, we compare the decay rate and the matrix ele-
ment ρ11 obtained here with the exact ones of Sec. III. It can be
seen that the agreement is excellent for relatively long periods
of time. In general, however, the two solutions do not coincide
asymptotically, which is to be expected. In fact, the long-time
behavior in this second-order approximation overestimates the
actual exact values of the decay rate and the Lamb shift. Let us
investigate the asymptotic values of the latter quantities in the
present approximation, which turn out to be given by κmark =
limt→∞ κ (t ) = 0 for 4JS < |ω0 − h − 4JSγz|, whereas

κmark = 2g2

J

√
4JS − ω0 + h + 4JSγz

ω0 − h − 4JSγz + 4JS
(60)

FIG. 11. Comparison between the exact numerical solutions in
one dimension (green solid lines) and the outcomes of the second-
order master equation (blue dot-dashed lines) in the weak-coupling
regime for (a) the decay rate and (b) the excited-state occupation
probability; the parameters are g = 0.1J , h = J , ω0 = 3J , S = 1,
γz = 1, and ρ11(0) = 1. The horizontal red dashed line represents
the Markovian decay rate. Notice that the two solutions for the
occupation probability are almost identical for the chosen value
of h.

for 4JS > |ω0 − h − 4JSγz|. Similarly, we find that ξmark =
limt→∞ ξ (t ) = 2g2

J for 4JS > |ω0 − h − 4JSγz| and

ξmark = 2g2

J

(
1 − |ω0 − h − 4JS(1 + γz )|√

(ω0 − h − 4JSγz )2 − (4JS)2

)
(61)

for 4JS < |ω0 − h − 4JSγz|, which are exactly the values of
the decay rate and the Lamb shift obtained in the Markov
approximation. The latter results are actually a manifestation
of the breakdown of the Fermi golden rule, which states,
for instance, that, for weak coupling, the decay rate and the
Lamb shift are given by κmark = 2 Im �ret (ω0 + i0+), and
ξmark = 2 Re �ret (ω0 + i0+).

We have already noticed in Sec. III that, in the weak-
coupling regime, the Markovian decay law e−κmarkt is valid
only for weak magnetic field. The reason behind this resides in
the fact that the decay of the correlation function of the lattice
is fast enough only when h is small. The larger the values of
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h, the slower the decay of the correlation function is; the latter
exhibits in particular oscillatory variation at long times, and
hence the dynamics deviates from the exponential law to the
Gaussian one; in all cases, the long-time limit of the quantities
κ and ξ exists thanks to the properties of the Bessel functions
of the first kind. The decay of the correlation function is a
general property of the weak coupling to continua, which is
the case in this model. The breakdown of the Fermi golden
rule is best illustrated by the vanishing value of the decay rate
κmark = 0 for 4JS < |ω0 − h − 4JSγz|. Hence, if we apply
directly the latter rule, we find that there occurs no decay of
the state of the impurity; in other words, the impurity does
not feel at all the presence of the lattice despite its coupling
to the latter, which is not necessarily the case as is con-
firmed by the exact solution of the previous section. It is also
worthwhile noticing that, although the Markovian limit fails
to reproduce the actual dynamics at long times, it keeps track
of the overall critical behavior of the impurity, as is discussed
below.

Resonance-like behavior

A particular instance occurs when ω0 coincides with �k in
the center or at the edges of the first Brillouin zone, that is,
for k = 0,±π . In this resonance-like case, we can distinguish
two possible situations, namely ω0 − h − 4JSγz = ±4JS. We
begin with the condition ω0 = h + 4JS(γz − 1), which should
be compared with the one obtained in Sec. III for hcri, evalu-
ated in the weak-coupling regime g � J , i.e., hcri = 4JS(1 −
γz ) + ω0. The latter relation is a very peculiar condition that
links the energy of the two-level impurity to the lower limit of
the spectrum of the lattice. It occurs precisely in the center of
the first Brillouin zone. The particular feature of the decay
rate and the Lamb shift in this case rests in the fact that
they grow relatively fast as time increases; in particular, we
find that the Markovian limits diverge since limt→∞ κ (t ) =
limt→∞ |ξ (t )| = ∞. A comparison between the exact decay
rate and the perturbative one is carried out in Fig. 12, where
we can see that, initially, the two coincide at short times, but
eventually the exact decay rate tends asymptotically to zero.
We also notice that, while the approximate decay rate remains
positive, the exact one takes negative values, indicating re-
generation of both the excited-state occupation probability
and the quantum interferences (recoherence). On the other
hand, when ω0 = h + 4JS(1 + γz ) we obtain a rather reduced
decay rate and, in particular, it turns out that κ (t ) → 0 while
ξ (t ) → 2g2/J as t → ∞; this indicates that there occurs no
divergence of the decay rate and the Lamb shift in the Markov
approximation.

It should be noted that the condition 4JS � |ω0 − h −
4JSγz| is equivalent to the statement that ω0, the characteris-
tic intrinsic energy-level spacing of the impurity, lies within
the continuum associated with the lattice. The divergence
of the Markovian decay rate may typically be attributed to
a resonance in the center of the first Brillouin zone where
ω0 = h + 4JS(γz − 1). This can be explained by the coupling
of the impurity to the collective mode zero of the spin degrees
of freedom of the lattice. In this mode, the effects of the
quantum excitations or magnons add to each other coherently,
and hence it dominates over the other modes. Indeed, by

FIG. 12. The same as Fig. 11 but for h = ω0 = 3J (resonance).

inspecting Eq. (56), we see that the spectral function is given
by f (z) = (1 + z)/π (1 − z2)1/2, which clearly displays a Van
Hove singularity only in the center of the first Brillouin zone,
i.e., when z = 1 or equivalently k = 0, and vanishes at its
edges where z = −1, which corresponds to k = ±π . Once the
parameter ω0 exceeds the lower bound, the decay rate begins
to decrease as the former approaches the upper bound of the
spectrum. The above variation persists even when ω0 exits
the continuum. When ω0 < h, the resonance condition cannot
be satisfied, which explains the absence of the critical diver-
gence in the Markov limit.

B. Two- and three-dimensional lattices

The decay of the correlation function in two and three-
dimensional lattices is much faster than that of the one-
dimensional lattice even for small h; the suppression of the
oscillations is more noticeable at shorter times. The exact
decay rate and the excited-state occupation probability ρ11,
along with the approximate ones, are illustrated in Fig. 13 for
d = 2. The agreement is good for long times. Furthermore,
applying the Fermi golden rule, the Markovian decay rate in
the case of the square lattice vanishes for |ω0 − h̃| > 8JS;

012209-12



DECAY RATES AND DECOHERENCE OF AN … PHYSICAL REVIEW A 103, 012209 (2021)

FIG. 13. Time evolution of (a) the decay rate κ and (b) the
excited-state occupation probability ρ11 in two dimensions at reso-
nance with h = ω0 = 5J for weak coupling of the impurity: exact
solution (blue solid lines), and the solution of the second-order
master equation (red dot-dashed lines). The other parameters are
g = 0.1J , S = 1, and γz = 1. Notice the complete suppression of
oscillations at long times in two dimensions.

when |ω0 − h̃| < 8JS it is given by

κmark = − g2

πJ

(
ω0 − h̃

JS

)
K

(
1 − (ω0 − h̃)2

64J2S2

)

+ 8g2

πJ
E

(
1 − (ω0 − h̃)2

64J2S2

)
. (62)

At resonance, h − ω0 = 8JS(1 − γz ), the Markovian decay
rate remains finite; indeed, on account of the fact that K (0) =
E (0) = π

2 , it follows that

κmark = 4g2

J
. (63)

If the impurity possesses one bound state, the exact decay rate
vanishes at infinity, and hence it differs significantly from the
Markovian rate, see Fig. 14.

The coupling constant in a three-dimensional simple cubic
lattice, where the impurity occupies the center of a unit cell,

FIG. 14. The decay rate in two dimensions as a function of time:
exact solution (blue solid line), and the second-order approxima-
tion (red dot-dashed line). The parameters are h = 3J , ω0 = 5J ,
g = 0.1J , S = 1, and γ = 1.

is given by

g�k = g

√
2S

N

{
cos

[
δ

2
(kx + ky + kz )

]
+ cos

[
δ

2
(kx − ky + kz )

]

+ cos

[
δ

2
(kx + ky − kz )

]
+ cos

[
δ

2
(−kx + ky + kz )

]}
.

(64)

It follows that

|g�k|2 = 128g2S

N
cos(δkx/2)2 cos(δky/2)2 cos(δkz/2)2. (65)

The integration with respect to the wave vector �k in the con-
tinuum limit is more involved here, but we can nevertheless
draw the following conclusion: The density of states of the
lattice is finite; therefore, the decay rate and the Lamb shift
in the Markovian limit do not diverge, even at resonance, as
illustrated in Fig. 15. Here, also, the time evolution depends
on whether h exceeds the critical value, which turns out to be
hcri = ω0 + 12JS(1 − γz ).

FIG. 15. The approximate decay rate in three dimensions at res-
onance with h = ω0 = 3J for weak coupling of the impurity. The
other parameters are g = 0.1J , S = 1, and γz = 1.
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FIG. 16. Comparison between the exact numerical solution in
one dimension (black solid line) and the short-time approximation
(blue dot-dashed line) of Eq. (69). The parameters are g = J , h =
0.1J , ω0 = 3J , S = 1, γz = 1, and ρ11(0) = 1.

C. Short-time variation

From the above discussion, one can conclude that, in a d-
dimensional lattice, we have in general

|g�k|2 = 22d+1g2S

N

∏
i=x,y,z

cos(δki/2)2. (66)

By expanding the integrand of Eq. (58) in a Taylor series and
integrating term by term, it follows that, in the continuum
limit, the variation of the decay rate at short times is described
by

κ (t ) = 2d+2g2St + O(t3), (67)

which is linear in time and is independent of the magnetic
field. This, however, is not the case for the Lamb shift, which
is affected by both the magnetic field and the impurity energy.
For instance, in d = 1, it turns out that

ξ (t ) = 4g2S[ω0 − h + 2JS(1 − 2γz )]t2 + O(t4). (68)

Therefore, if h + 4JS(γz − 1/2) > ω0, the coefficient of t2

becomes negative, in complete accordance with the observed
decrease of the Lamb shift to negative values.

Taking into account Eqs. (54) and (55), we obtain that, at
short times,

ρ11(t ) � ρ11(0)e−2t2/τ 2
D , (69)

|ρ12(t )| � |ρ12(0)|e−t2/τ 2
D , (70)

where the decoherence time constant τD is defined by

τD = 1

2d/2g
√

S
. (71)

These expressions are best applied to the strong-coupling
regime; they turn out to be a very good approximation in
particular for small values of h, as illustrated in Fig. 16,
where we display the exact evolution in time of the density-
matrix element ρ11(t ) along with the approximate one given
by Eq. (69).

The linear dependence of the decay rate, together with the
quadratic behavior of the decay of the reduced density matrix

FIG. 17. The exact (black solid line) and the effective (blue dot-
dashed line) decay rates in one dimension as a function of time for
g = J , h = 3J , ω0 = 2J , S = 1, and γz = 1.

at short times are known to correspond to the so-called Zeno
regime [57–70]. The investigation of this regime in the context
of the present work makes the subject of the next section.

V. APPLICATION TO THE QUANTUM ZENO EFFECT

Let us begin by recalling the main ideas behind the concept
of the quantum Zeno effect (QZE) as applied to the impu-
rity [68]. Suppose that the latter is initially prepared in the
excited state, which is equivalent to setting ρ11(0) = 1. As
the time evolves, the so-called survival probability is given by
P(t ) = ρ11(t ). This is the probability of finding the impurity at
later times in the initial state. If a series of N measurements are
performed at regular time intervals τ , the survival probability
becomes

P(Nτ ) = P(τ )N = ρ11(τ )N . (72)

An effective decay rate is introduced via the identity

P(Nτ ) = e−κeff (τ )t , (73)

where t = Nτ . Notice that, by Eq. (30), we have ρ11(t ) =
|φ+(t )|2; it immediately follows that

κeff (τ ) = − 1

τ
ln[ρ11(τ )] = − 1

τ
ln |φ+(τ )|2, (74)

which should be compared with the exact decay rate of
Eq. (32) that can be written as

κ (t ) = −d ln |φ+(t )|2
dt

. (75)

The two decay rates are generally different, as illustrated in
Fig. 17. In fact, even at short times, the above expressions
yield distinct outcomes. For instance, consider the weak-
coupling regime, which is described by Eqs. (52) and (54) at
T = 0. These give∫ t

0
κ (t ′)dt ′ = 2

∑
k

|gk|2
∫ t

0

sin[(ω0 − �k )t ′]
ω0 − �k

dt ′

= 2t2
∑

k

|gk|2 sin2[(ω0 − �k )t/2]

[(ω0 − �k )t/2]2
. (76)
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Therefore, for a measurement time τ :∫ τ

0
κ (t ′)dt ′ = 2τκeff (τ ), (77)

where [68–70]

κeff (τ ) = τ
∑

k

|gk|2 sin2[(ω0 − �k )τ/2]

[(ω0 − �k )τ/2]2
. (78)

For small measurement time, we have:∫ τ

0
κ (t ′)dt ′ � [κ (τ ) − κ (0)]τ = τκ (τ ), (79)

which shows that the effective decay rate is twice smaller
than the exact decay rate. In fact if we keep only terms
linear in τ in the expansion of the sine function, we end up
with

κeff (τ ) = 2d+1g2Sτ = κ (τ )

2
, (80)

in complete agreement with Eq. (67) describing the short-
time variation at zero temperature. Notice, moreover, that
the effective decay rate remains always positive at all times,
which is obvious from its definition because |φ+(τ )|2 � 1.
This means that, for large τ , the effective decay rate is in-
sensitive to the regions of negative exact decay rate, which
correspond to recoherence effects, as we have mentioned ear-
lier. From the above results, we see that one obtains always
the QZE at short times, as the measurement slows the decay
of the impurity. At larger times, however, one may thus obtain
the quantum inverse Zeno effect (IZE) [70]. The recoherence
effects become more appreciable for large values of magnetic
field; for such values, the measurement may have a destruc-
tive effect on the coherences of the impurity, and may thus
also lead to the acceleration of the decay of the survival
probability.

More importantly, it becomes clear from Eq. (80) that,
if the measurement is performed at timescales for which
the latter equation is valid, the impurity evolution becomes
independent of both the magnetic field h and the intrinsic
level energy spacing ω0. In particular, when h > hcri the mea-
surement speeds up the decay of the survival probability,
preventing thus the magnetic field from protecting the im-
purity state from the effect of the lattice, which is a direct
consequence of the IZE.

Let us now assume that h is small enough so that we
ascertain that the Fermi golden rule holds for weak coupling.
Under these conditions, the Markovian decay rate defines the
natural lifetime 1/κmark of the impurity. In this case, according
to Ref. [68], the criterion for the QZE to happen is that τ

be smaller than τ ∗, the solution of the equation κeff (τ ∗) =
κmark. When τ > τ ∗, the IZE takes place. We have seen that,
for ω0 < h − 2JηS(1 − γz ) or ω0 > h + 2JηS(1 + γz ), the
Markovian decay rate vanishes, i.e., κmark = 0. In this case
there exists no solution for the latter equation, and we obtain
always the IZE.

VI. CONCLUSION

The present study gives a thorough discussion of the dy-
namics of a two-level impurity that is coupled through an

XY interaction to a ferromagnetic lattice at low temperatures.
Under the condition of small lattice excitations, our model is
equivalent to the Fano-Anderson one, with a particular form of
the coupling constant, which is due to the geometric configu-
ration of the system where the impurity occupies the center of
a unit cell in the lattice. This makes it possible to derive in an
exact manner the zero-temperature retarded Green’s function
in one and two dimensions. The latter is directly linked to
the excited-state amplitude, which is found to satisfy a master
equation in Lindblad form involving the decay rate and the
Lamb shift. By studying the evolution of those quantities, we
find that, under certain conditions, there exists a critical value
of the magnetic field above which the decay always slows
down. In the weak-coupling regime, the critical point occurs
when the impurity energy coincides with the lower bound of
the continuum. In particular, in the case of the Heisenberg
model, for which the anisotropy parameter γz is set to unity,
the critical magnetic field is identical to the impurity level
energy spacing, which we termed resonance. The investiga-
tion reveals that in this regime, the Fermi golden rule does

FIG. 18. The time dependence of (a) the excited-state population
ρ11, and (b) the decay rate κ at zero temperature (red dot-dashed
lines) and nonzero temperature (blue solid lines) in the weak-
coupling regime at resonance with g = 0.1J , h = ω0 = 3J , S = 1,
γz = 1, and ρ11(0) = 1 (we set kB = 1).
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not apply if the magnetic field exceeds the critical value. The
exponential decay law holds only for weak magnetic fields, for
which the lattice correlation function is damped fast enough
so that the conditions of the Markovian approximation are
fulfilled. We have derived the master equation for the reduced
density matrix of the purity in the weak-coupling regime. The
elimination of the lattice degrees of freedom is carried out by
taking into account the spectral properties of the lattice which
are uniquely fixed by its dispersion relation. The validity of
the master equation is discussed by comparing its outcome
with the exact solution. At resonance, the Markovian decay
rate and the Lamb shift diverge in one dimension but remain
finite at higher dimensions. The effective decay rate of the
Zeno effect is found to be insensitive to regions of negative
decay rate, and hence the measurement may lead to the inverse
Zeno effect, as the decay may be accelerated, in particular for
strong magnetic field.
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APPENDIX: EFFECT OF THE TEMPERATURE

The spin-wave formalism is applicable at low temper-
atures, where the number of magnons or excitations is
small. The main criterion for the use of the Holstein-
Primakoff transformation is n(�k ) � 2S for all modes.
Actually, it is sufficient that the lower bound of the lat-
tice spectrum �min = h + 2JSη(γz − 1) verifies the above
criterion to ensure that the mean numbers of magnons
in all modes are small enough, which can be formulated
as

(
e[h+2SJη(γz−1)]/kBT − 1

)−1 � 2S. (A1)

For temperatures satisfying the latter condition, the density
matrix in the weak-coupling regime is described by the master
equation (50). It is a matter of algebra to show that its solution

is given by

ρ11(t ) = exp

{
−

∫ t

0
[2κ (τ ) − κ0(τ )]dτ

}

×
[
ρ11(0) +

∫ t

0
[κ (τ ) − κ0(τ )] exp

{∫ τ

0
[2κ (τ ′)

− κ0(τ ′)]dτ ′
}

dτ

]
, (A2)

ρ12(t ) = ρ12(0) exp

{
− iω0t − i

2

∫ t

0
[2ξ (τ ) − ξ 0(τ )]dτ

}

× exp

{
− 1

2

∫ t

0
[2κ (τ ) − κ0(τ )]dτ

}
. (A3)

Figure 18 gives an example of the time variation of the
decay rate at nonzero temperature in one dimension. It can be
seen that, as expected, the decay rate becomes larger as the
temperature raises, which is due to the fact that the number of
magnons becomes more important, leading to greater devia-
tions of the spin vectors toward the x-y plane; as a result, the
effective XY coupling of the impurity to the lattice also grows.
At such low temperatures, the critical dependence of the decay
rate on the magnetic field still holds, which means that the
Markovian decay rate diverges when h = ω0 + 4JS(1 − γz ).

At sufficiently short times, we may approximate the re-
duced density matrix elements by

ρ11(t ) = e−2�t2

(
ρ11(0) − �

�

)
+ �

�
, (A4)

|ρ12(t )| = |ρ12(0)|e−�t2
, (A5)

where

� = 1

2

∑
k

|gk|2[2n(�k ) + 1], (A6)

� = 1

2

∑
k

|gk|2n(�k ). (A7)

It follows that the temperature-dependent decoherence time
constant is given by

τD =
√

2√∑
k |gk|2[2n(�k ) + 1]

. (A8)
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