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Non-Markovian dynamics of a two-level system in a bosonic bath and a Gaussian fluctuating
environment with finite correlation time
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The character of evolution of an open quantum system is often encoded in the correlation function of the
environment or, equivalently, in the spectral density function of the interaction. When the environment is
heterogeneous, e.g., consists of several independent subenvironments with different spectral functions, one of
the subenvironments can be considered auxiliary and used to control decoherence of the open quantum system
in the remaining part of the environment. The control can be realized, for example, by adjusting the character of
interaction with the subenvironment via suitable parameters of its spectral density. We investigate non-Markovian
evolution of a two-level system (qubit) under influence of three independent decoherence channels: two of them
have classical nature and originate from interaction with a stochastic field, and the third is a quantum channel
formed by interaction with a bosonic bath. By modifying spectral densities of the channels, we study their
impact on steady states of the two-level system, evolution of its density matrix, and the equilibrium emission
spectra. Additionally, we investigate the impact of the rotation-wave approximation applied to the bath channel
on accuracy of the results.
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I. INTRODUCTION

In most realistic scenarios, a quantum system can not be
fully isolated from its surroundings. The practically unavoid-
able interaction leads to emergence of decoherence processes,
which are irreversible for sufficiently big environments. If
the impact of these processes can not be neglected, we have
to consider the quantum system as an open quantum system
(OQS). When interaction with environment satisfies certain
conditions, e.g., weak coupling, uncorrelated initial states,
short environmental correlation times, evolution of an open
quantum system (OQS) can be considered Markovian and
described by a Lindblad master equation with a constant
Lindblad operator and positive decay rates [1,2]. In many
optical problems the Markovian approximation works ade-
quately, but the restriction it imposes on the system timescales
necessary for neglecting changes in the environment is too
strong for modern experimental capabilities. There are a
growing number of quantum systems where the memory ef-
fects associated with the environment constitute an essential
part of the reduced system dynamics and can not be ig-
nored [3]. Among them there are such well-known systems
as quantum dots [4,5], micromechanical resonators [6], super-
conducting qubits [7], and ultracold gases [8–10]. Many of
the emerging quantum technologies, e.g., the single-photon
sources for quantum communications [11], are founded on
effects induced by interaction with non-Markovian environ-
ments. Non-Markovian effects are essential for problems
involving the strong interplay of vibrational and electronic
states, such as electron transport in natural photosynthetic
systems [12,13], light emission in complex organic molecules
and solar cells [14], and semiconductor quantum dots [15–18].
Many nonequilibrium quantum processes are essentially

non-Markovian, like energy transport in molecular sys-
tems [19] or nonadiabatic processes in physical chem-
istry [20]. Non-Markovian evolution is also considered as a
resource for quantum information tasks [21–24].

Usually, the environment of an OQS has a large state
space, and solving the full system is not feasible either ana-
lytically or numerically [3,25]. In rare cases, exact solutions
are known [26], in others, effective weak coupling theories
or perturbative expansions based on the projection operator
techniques are possible [15,27]. There are various diagram-
matic and path-integral methods for which efficient Monte
Carlo schemes exist, for example, the Inchworm algorithm
for the real-time diagrammatic Monte Carlo [28,29]. Other
nonperturbative approaches include enlarging the state space
of the system [30–32], capturing evolution history by aug-
mented density tensors (ADTs) [33–35], mapping on effective
one-dimensional (1D) fermionic or bosonic chains [36],
space reduction by thermodynamic low-dimensional approx-
imations [37], etc. A common property of nonperturbative
methods is the strong dependence of their computational
complexity on the environment correlation time. Additional
restrictions on the environment type could lead to better
complexity in some cases [32,38]. One of the most widely
used nonperturbative approaches is the method of hierarchical
equations of motions (HEOM) [38–41]. HEOMs encode the
memory kernel of system-environment interaction in infinite
systems of recurrent differential equations for auxiliary re-
duced density matrices. This approach is capable of treating a
great variety of environmental spectral densities [42–45] and
works well in the high-temperature region, but at low temper-
atures its efficiency rapidly deteriorates due to the exponential
growth of the number of Matsubara modes.
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When an open system is coupled to several environments,
either classical or quantum, its measurable properties might
be affected by induced correlations between the environ-
ments [46,47]. If one of the environments is taken to be a
stochastic environment, it becomes possible to control the
system purely by noise [48]. The stochastic environment al-
ters the effective noise statistics of the joint environment
in the way resembling how dynamical decoupling schemes
impose effective filter functions on environmental spectral
densities [49,50] by means of ordered artificial pulses. Simul-
taneous action of noises of identical decoherence mechanisms
has been studied in [51,52], noises of different decoherence
mechanisms (dephasing and relaxation ones) in [53]. Interplay
of a bath relaxation channel and a classical noise dephasing
channel for two- and three-level quantum systems is discussed
in [54–56].

Memory effects arising outside of the Born-Markov
approximation lead to several distinctive features of the
evolution [57–60], which are often attributed to its non-
Markovianity. While it is common to refer to any evolution
exhibiting memory effects as non-Markovian, there are many
attempts made to construct a rigorous definition of non-
Markovianity that will provide a way to characterize the
degree of non-Markovianity quantitatively [3,61,62]. One of
the distinctive properties of a non-Markovian process is inap-
plicability of the quantum regression theorem (QRT) [63,64].
This property can be utilized, for example, to measure non-
Markovianity [65,66]. Another notable property is the impact
of non-Markovianity on equilibrium states of the reduced
system [31].

Initial correlations between the system and the envi-
ronment or between different subparts of a composite
environment can alter the reduced dynamics substantially and
even be the main cause of observable non-Markovianity [3,62,
67–70]. For example, it was experimentally demonstrated
that by adjusting initial system-environment correlations it
is possible to control the transition between Markovian and
non-Markovian dynamics [71]. Also, initial correlations be-
tween subenvironments can lead to emergence of nonlocal
memory effects [72–74]. Dealing with any type of initial cor-
relations can be a difficult task in high-dimensional systems,
where some sort of state space reduction is necessary. For
example, HEOMs for the state compression rely on ability to
perform Gaussian integrations over the environmental degrees
of freedom, which limits the number of suitable initial states.
Thermal equilibrium states can be obtained by propagation of
a factorized state [40].

In this paper we investigate non-Markovian evolution of a
two-level system (TLS) interacting with a composite environ-
ment that consists of an external stochastic field of arbitrary
nature and a bosonic bath. The bath and the stochastic field
act on the TLS independently and form one quantum decoher-
ence channel of relaxation type and two classical decoherence
channels, a pure dephasing channel and a relaxation channel.
We capture non-Markovian evolution of the system exactly by
utilizing the hierarchical equations of motion [39]. HEOMs
are numerically exact and do not rely on any assumption,
such as the strength of TLS-environment coupling. We study
the evolution numerically for a stochastic field described by
a set of Ornstein-Uhlenbeck random processes and a bath

characterized by the high-temperature Drude spectral density.
Adjusting frequency cutoffs and coupling strengths of suben-
vironments, we analyze steady states of the TLS, evolution of
the reduced density matrix, and equilibrium emission spectra.

The system Hamiltonian is often simplified with the
rotating-wave approximation (RWA). The RWA neglects pro-
cesses that do not conserve energy, i.e., the ones involving
simultaneous creation or annihilation of energy quanta in
both the TLS subspace and the environment. It is known
that the RWA is able to significantly alter the entire TLS
dynamics for strong TLS bath couplings [3,75]. For exam-
ple, wrongly used RWA may lead to incorrect values for the
environmentally induced shifts of the system frequencies [76]
and affects non-Markovianity properties of the evolution, as it
does for interaction with bosonic environments at low temper-
atures [77]. Here, rapidly oscillating terms neglected by RWA
mostly determine the non-Markovianity. The HEOM we de-
veloped is capable of handling both RWA and non-RWA TLS
bath coupling types equally accurate. We utilize this property
to estimate the impact of the RWA on the reduced system
dynamics.

The paper is organized as follows. In Sec. II we introduce
the model, in Sec. III we derive the hierarchical equations of
motion, and in Sec. IV we present the Markovian approxi-
mation. Next, we study the model numerically. In Sec. V we
study steady states of a TLS, in Sec. VI we investigate evolu-
tion of the reduced density matrix, and Sec. VII is devoted to
emission spectra. Finally, we draw conclusions in Sec. VIII.

II. MODEL

The full Hamiltonian for the system can be written as

Ĥ = ĤA + ĤB + ĤIB + ĤIF, (1)

where ĤA = h̄ω0σ̂+σ̂− is the Hamiltonian for the free TLS, the
operators σ̂+ and σ̂− are the rising and the lowering operators
of the TLS, ĤB = ∑∞

k=1 h̄ωkb̂+
k b̂k is the Hamiltonian for the

free bosonic reservoir described by an infinite set of harmonic
oscillators; ĤIF is the Hamiltonian for interaction with the
stochastic field

ĤIF = h̄�(t )σ̂+σ̂− + h̄[ξ (t )σ̂+ + ξ̄ (t )σ̂−], (2)

where �(t ), ξ (t ), and ξ̄ (t ) are random functions, �(t ) is
real, and ξ (t ) is complex. The first term defines a pure
dephasing channel and the second term forms a relaxation
channel. We assume that all the random functions �(t ), ξ (t ),
and ξ̄ (t ) are Markov processes of Ornstein-Uhlenbeck (OU)
type [39,78,79] and that the real and the imaginary compo-
nents of ξ (t ) are two real OU processes ξ1(t ) and ξ2(t ):

ξ (t ) = ξ1(t ) + iξ2(t ), (3)

ξ̄ (t ) = ξ1(t ) − iξ2(t ). (4)

The Hamiltonian ĤIB describes interaction between the
TLS and the bath. For the full electric-dipole interaction (non-
RWA) it can be written

Ĥ (full)
IB =

∞∑
k=1

gk (σ̂+ + σ̂−)(b̂+
k + b̂k ). (5)
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If the RWA is used, it takes the form

Ĥ (RWA)
IB =

∞∑
k=1

(gk σ̂−b̂+
k + ḡk σ̂+b̂k ), (6)

where gk are the TLS bath coupling constants. By introduction
of an auxiliary TLS operator â, the two forms of the interac-
tion Hamiltonian can be combined in one expression

ĤIB =
∞∑

k=1

(gkâb̂+
k + ḡk â+b̂k ). (7)

The non-RWA form of the Hamiltonian (5) is obtained
from (7) by taking â = σ̂+ + σ̂−, and the RWA form (6) is
obtained when â = σ̂−.

Usually, interaction with a bosonic bath is defined via the
bath spectral density or the bath correlation function, which
fully encodes the action of the environment on the OQS. A
general form of the environmental spectral density can be
written as

J (ω) =
∞∑

s=1

ḡsgsδ(ω − ωs). (8)

Let us assume the bath is characterized by a spectral density in
Drude form (an Ohmic distribution with a Lorentzian cutoff).

In the high-temperature limit it can be written as [38,39]

JD(ω) = cJD
β h̄ω

γ 2
B + ω2

, (9)

where cJD = h̄2γB	2
B/π , the parameter 	B defines the cou-

pling strength and represents the magnitude of damping.
The parameter γB stands for the width of the spectral dis-
tribution of collective bath modes and is often called a
cutoff frequency. For the noise induced by the bath, 	B re-
lates to the standard deviation and γB is the reciprocal of
correlation time.

III. HIERARCHICAL EQUATIONS OF MOTION

Let us introduce a basis of coherent states |φ〉 in the bath
subspace. The basis is a cross product of coherent state bases
in each of the bath mode subspaces |φ〉 = ∏

s |φs〉, where s is
the index of a bath mode. In the TLS subspace we introduce
the basis of generalized coherent states |z〉 (also known as
spin coherent states) [80]. If we denote a vector of the full
space as |z,φ〉, we can write the total density matrix in the
following way:

ρ̂tot(t ) =
∫

χ�

dμ(�)
∫

χ�

dμ(�′)
∫

χξ

dμ(ξ̄ , ξ )
∫

χξ

dμ(ξ̄ ′, ξ ′)
∫

χS

dμ(z̄, z)
∫

χS

dμ(z̄′, z′)
∫

χB

dμ(φ̄
(B)

,φ(B))

×
∫

χB

dμ(φ̄
(B)′,φ(B)′)ρtot(�, ξ, z,φ(B),�′, ξ ′, z′,φ(B)′, t )|�, ξ, z,φ(B)〉〈�′, ξ ′, z′,φ(B)′|, (10)

where χ� and χξ denote the sets of possible values of random processes �(t ) and ξ (t ) at time t , respectively, χS denotes the
TLS subspace with the infinitesimal measure

dμ(z̄, z) = 2

(1 + zz̄)2
d[z̄, z], (11)

the integration over χB is an abbreviation for integration by each of the bath mode subspaces∫
χB

dμ(φ̄
(B)

,φ(B)) =
∞∏

s=1

∫
χ s

B

dμ(φ̄(B)s, φ(B)s) (12)

with the infinitesimal measure

dμ(φ̄(B)s, φ(B)s) = exp (−φ̄(B)sφ(B)s)d[φ̄(B)s, φ(B)s], (13)

the stochastic field subspace measures are dμ(�) = P(�)d� and dμ(ξ̄ , ξ ) = P(ξ1)P(ξ2)dξ1dξ2. In (11) and (13) we use
d[z̄, z] = (1/π )d Re z d Im z.

Knowing the density matrix value at t = t0, we can find its expression at arbitrary time moment t > t0 using the evolution
operators Û (t, t0) for the total system

ρ̂tot(�, ξ, ξ̄ , t ) =
∫

χS

dμ(z̄, z)
∫

χB

dμ(φ̄
(B)

,φ(B))
∫

χS

dμ(z̄′, z′)
∫

χB

dμ(φ̄
(B)′,φ(B)′)

∫
χS

dμ(z̄0, z0)
∫

χB

dμ
(
φ̄

(B)
0 ,φ

(B)
0

)

×
∫

χS

dμ(z̄′
0, z′

0)
∫

χB

dμ
(
φ̄

(B)
0

′,φ(B)
0

′)U (
�, ξ, ξ̄ , z,φ(B), t ; z0,φ

(B)
0 , t0

)
× ρtot(�, ξ, ξ̄ , z0,φ0, z′

0,φ
′
0, t0)U +(

z′
0,φ

(B)
0

′, t0; �, ξ, ξ̄ , z′,φ(B)′, t
)|z,φ(B)〉〈z′,φ(B)′|. (14)

Let us suppose that the TLS was isolated from the en-
vironment before the initial moment of time and both the

stochastic field and the bath were at equilibrium. Then, the
total density matrix at t = t0, when the interaction begins, can
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be represented in the factorized form

ρ̂tot(�, ξ, ξ̄ , t0) = Peq(�, ξ1, ξ2)ρ̂ (A)(t0) ⊗ ρ̂ (B)
eq (t0). (15)

Here, the bath is taken in thermal equilibrium

ρ̂ (B)
eq (t0) = exp

(
−β

∞∑
k=1

h̄ωkb̂+
k b̂k

)
(16)

at the inverse temperature β = 1/(kBT ), kB is the Boltz-
mann constant. The stochastic field state is described by
the factorizable Gaussian distribution function Peq(�, ξ1, ξ2)
corresponding to the joint equilibrium state of the OU

processes

Peq(�, ξ1, ξ2) =
∏

ν∈{�,ξ1,ξ2}

1√
2π	2

ν

exp

(
− ν2

2	2
ν

)
, (17)

where 	ν denotes standard deviation of the random process
ν(t ).

Let us divide the time interval [t0, t] on N segments. At
each of the time segments, evolution of the total density ma-
trix is governed by a corresponding infinitesimal evolution
operator. The total evolution operator Û (t0, t ) is a product
of the infinitesimal operators for each of the time segments.
By inserting N − 1 identity operators at respective N − 1 mo-
ments of time and taking the limit N → ∞, we obtain matrix
elements of the total evolution operator in the next form

U
(
�, ξ, z,φ(B), t ; �0, ξ0, z0,φ

(B)
0 , t0

)
=

∫
C{�,t ;�0,t0}

D[�(τ )]
∫
C{ξ,t ;ξ0,t0}

D[ξ (τ )]
∫
C{z,t ;z0,t0}

D[z̄(τ ), z(τ )]
∫
C{φ(B),t ;φ(B)

0 ,t0}
D[φ̄

(B)
(τ ),φ(B)(τ )]P[�(τ )]P[ξ (τ )]

× exp

(
i

h̄
SA[z; t, t0]+ i

h̄
SB[φ(B); t, t0] − i

h̄

∫ t

t0

dτ HIF(z̄(τ ); z(τ ), ξ (τ ), ξ̄ (τ ),�(τ ))

− i

h̄

∫ t

t0

dτ HIB(z̄(τ ), φ̄
(B)

(τ ); z(τ ),φ(B)(τ ))
)

, (18)

where
∫
D[z̄(τ ), z(τ )] denotes functional integration over the

set of trajectories starting at z(t0) = z0 and ending at z(t ) =
zN = z,

∫
C{z,t ;z0,t0}

D[z̄(τ ), z(τ )] = lim
N→∞

N−1∏
j=1

∫
χS

d[z̄ j, z j], (19)

and
∫
D[φ̄

(B)
(τ ),φ(B)(τ )] denotes path integrals over the set

of trajectories of all the bath modes,

∫
C{φ(B),t ;φ(B)

0 ,t0}
D[φ̄

(B)
(τ ),φ(B)(τ )]

= lim
N→∞

∞∏
s=1

N−1∏
j=0

∫
χB

d
[
φ̄

(B)s
j , φ

(B)s
j

]
. (20)

∫
D[�(τ )] and

∫
D[ξ (τ )] = ∫

D[ξ1(τ )]
∫
D[ξ2(τ )] denote

Wiener-type path integrals over realizations of the stochastic
field, P[�(τ )] and P[ξ (τ )] = P[ξ1(τ )]P[ξ2(τ )] are probabil-
ity functionals defining probabilities of stochastic trajectories
of the respective OU processes.

The functional SA[z; t, t0] denotes the action for the free
TLS and has the next form

SA[z; t, t0] = −ih̄ lim
N→∞

N−1∑
j=0

{− ln[(1 + z j z̄ j )
2/2]

+ ln(〈z j+1|z j〉) − ε(i/h̄)HA(z j+1, z j )}. (21)

The functional SB[φ(B); t, t0] is the action for the bath
Hamiltonian

SB[φ(B); t, t0] = −ih̄ lim
N→∞

N−1∑
j=0

[
φ̄

(B)
j+1φ

(B)
j − φ̄

(B)
j φ

(B)
j

− i

h̄
ε HB

(
φ

(B)
j+1,φ

(B)
j

)]
, (22)

where ε = (t − t0)/N is the length of a time segment, HA, HB,
HIF, and HIB are symbols of ĤA, ĤB, ĤIF, and ĤIB operators,
respectively. All variables having a j index correspond to the
jth time slice or the jth identity operator. The semicolons in
arguments of the operator symbols separate variables taken
at different slices. Those to the left correspond to the one-
step-forward slice, with index j + 1, and to the right from a
semicolon to the jth slice.

Tracing out the bath and the stochastic field degrees of
freedom, we obtain the reduced density matrix for the TLS
subsystem with the following matrix elements:

ρ (A)(z, z′, t ) =
∫
C{z,t ;χS,t0}

D[z̄(τ ), z(τ )]

×
∫
C{z′,t ;χS,t0}

D[z̄′(τ ), z′(τ )]ρ (A)(z0, z′
0, t0)

× FF [z(τ ), z′(τ ); t, t0]FB[z(τ ), z′(τ ); t, t0]

× exp

(
i

h̄
SA[z; t, t0] − i

h̄
S̄A[z′; t, t0]

)
,

(23)
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where we have utilized the form of the evolution opera-
tor (18) and the factorized form of the initial conditions (15),
FF [z(τ ), z′(τ ); t, t0] is the stochastic field influence functional

that is a product of influence functionals for each of the ran-
dom processes

FF [z(τ ), z′(τ ); t, t0] = �νFν[z(τ ), z′(τ ); t, t0], (24)

where ν ∈ {�, ξ1, ξ2} and Fν[z(τ ), z′(τ ); t, t0] is represented by a functional integral of the next form

Fν[z(τ ), z′(τ ); t, t0] =
∫
C{χν,t ;χν,t0}

D[ν̄(τ ), ν(τ )]P[ν(τ )]Peq(ν0) exp

(
− i

h̄

∫ t

t0

dτ HI,ν (z̄(τ ); z(τ ), ν(τ ))

+ i

h̄

∫ t

t0

dτ H̄I,ν (z̄′(τ ); z′(τ ), ν(τ ))
)

(25)

and FB[z(τ ), z′(τ ); t, t0] denotes the bath influence functional

FB[z(τ ), z′(τ ); t, t0] =
∫
C{χB,t ;χB,t0}

D[φ̄
(B)

(τ ),φ(B)(τ )]
∫
C{χB,t ;χB,t0}

D[φ̄
(B)′(τ ),φ(B)′(τ )] exp

(
i

h̄
SB[φ(B); t, t0]

− i

h̄

∫ t

t0

dτ HIB(z̄(τ ), φ̄
(B)

(τ ); z(τ ),φ(B)(τ ))
)

eφ̄
(B) ′(t )φ(B)(t )ρ (B)

eq

(
φ

(B)
0 ,φ

(B)
0

′, t0
)

exp

(
− i

h̄
S̄B[φ(B)′; t, t0]

+ i

h̄

∫ t

t0

dτ H̄IB(z̄′(τ ), φ̄
(B)′(τ ); z′(τ ),φ(B)′(τ ))

)
. (26)

The product form of the field influence functional (24)
is a consequence of absence of initial correlations between
the TLS and the stochastic field and mutual independence of
the random processes ξ1(t ), ξ2(t ), and �(t ). In (25) we have
introduced symbols of interaction Hamiltonians with each of
the random processes

HI,ν (z j+1; z j, ν j ) = ν jVF,ν (z j+1; z j ), (27)

where Vν are symbols of the operators, defined on the TLS
subspace

V̂F,� = h̄Ĵ0, (28)

V̂F,ξ1 = h̄(σ̂+ + σ̂−), (29)

V̂F,ξ2 = ih̄(σ̂+ − σ̂−). (30)

The hierarchical equations of motion (HEOM) are ob-
tained from the reduced density matrix (23) by repetitive
differentiation of the memory kernel, related to the influence
functional [38,39]. At first we consider a simplified problem
with the stochastic field turned off. From the two interaction
Hamiltonians in Eq. (1) we keep only ĤIB, so the expres-
sion (23) for the averaged reduced density matrix has only
one influence functional FB[z(τ ), z′(τ ); t, t0]. Increasing t by
a small value ε, we get

ρ (A)(z, z′, t + ε) =
∫
C{z,t+ε;χS,t0}

D[z̄(τ ), z(τ )]

×
∫
C{z′,t+ε;χS,t0}

D[z̄′(τ ), z′(τ )]

× ρ (A)(z0, z′
0, t0)FB[z(τ ), z′(τ ); t + ε, t0]

× exp

(
i

h̄
SA[z; t+ε, t0]− i

h̄
S̄A[z′; t+ε, t0]

)
.

(31)

Taking values at t + ε involves one extra segment on the time
axis, lying on the right from t and of length ε. Thus, the
increment of the free TLS action can be written as

SA[z; t + ε, t0] = SA[z; t, t0] + ih̄ ln[(1 + zN z̄N )2/2]

− ih̄ ln(〈z|zN 〉) − εHA(z, zN ). (32)

The influence functional FB[z(τ ), z′(τ ); t, t0] can be found
from the discreet form of the path integral (26) by perform-
ing the bosonic Gaussian integration. For the relaxation-type
interaction Hamiltonian (7) the following expression can be
obtained:

F B[z(τ ), z′(τ ); t, t0]

= exp

[(
− i

h̄

)2 2∑
k=1

∫ t

t0

dt ′ �k[z(τ ), z′(τ ); t ′]V x
k (t ′)

]
,

(33)

where we have introduced the influence phase functionals

�k[z(τ ), z′(τ ); t] =
∫ t

t0

dt ′
∫ +∞

0
dω J (ω) fk (t, t ′, ω), (34)

with

f1(t, t ′, ω) = eiω(t−t ′ )[nB(ω)C+
2 (t ′)

− (nB(ω) + 1)C−
2 (t ′)], (35)

f2(t, t ′, ω) = e−iω(t−t ′ )[(nB(ω) + 1)

× C+
1 (t ′) − nB(ω)C−

1 (t ′)]. (36)

Here, nB(ω) = ρ(ω)/[1 − ρ(ω)] and ρ(ω) = exp (−β h̄ω),
C±

1 (t ), C±
2 (t ) are continuous representation of symbols of

the auxiliary operators â and â+, respectively, the plus
and the minus signs originate from the forward and the
backward branches of the path integral; V x

1 (τ ) = C+
1 (t ) −
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C−
1 (t ), V x

2 (τ ) = C+
2 (t ) − C−

2 (t ), and J (ω) is the bath spectral
density (8).

In case of the non-RWA interaction with the bath (5),
Eq. (33) can be transformed to the form of the well-known
influence functional of Feynman and Vernon [81]. If the RWA
approximation has been applied, some symmetry of the equa-
tion has been lost with the neglected terms, and the equation
cannot be represented in this form, in contrast with the non-
RWA case.

Incrementing the time argument of FB[z(τ ), z′(τ ); t, t0],
we get

FB[z(τ ), z′(τ ); t + ε, t0]

=
(

1 + ε

2∑
k=1

�
(0)
B,k (t + ε)�k[z(τ ), z′(τ ); t]

)

× FB[z(τ ), z′(τ ); t, t0], (37)

where the functions of the boundary time

�
(0)
B,k (t + ε) = (−i/h̄)2V x

k (t + ε) (38)

depend on the previous time slice variables zN and z′
N .

Substituting (32) and (37) into (31) and introducing aux-
iliary density matrices forming the hierarchy of the bath
memory kernel, we obtain the expression for the increment
of the reduced density matrix allowing the inverse transfor-
mation to the operator form

ρ (A)(z, z′, t + ε) − ρ (A)(z, z′, t )

= ε

∫
χS

dμ(z̄N , zN )〈z|zN 〉
∫

χS

dμ(z̄′
N , z′

N )〈z′
N |z′〉

×
(

− i

h̄
[HA(z, zN ) − HA(z′

N , z′)]ρ (A)(zN , z′
N , t )

+ �
(0)
B,k (t + ε)

2∑
k=1

ρ
(A)
k (zN , z′

N , t )

)
, (39)

where the auxiliary density matrices are

ρ
(A)
k (zN , z′

N , t ) =
∫
C{zN ,t ;χS ,t0}

D[z̄(τ ), z(τ )]

×
∫
C{z′

N ,t ;χS,t0}
D[z̄′(τ ), z′(τ )]�k[z(τ ), z′(τ ); t]

× FB[z(τ ), z′(τ ); t, t0]ρ (A)(z0, z′
0, t0)

× exp

(
i

h̄
SA[z; t, t0] − i

h̄
S̄A[z′; t, t0]

)
.

(40)

It can be seen from (40) that, because �1[z(τ ), z′(τ ); t] is
not equal to �2[z(τ ), z′(τ ); t], there are two branches in the
recursion relation for the bath. The time-incremented form
of (40) involves �1[z(τ ), z′(τ ); t + ε] and �2[z(τ ), z′(τ ), t +
ε], which can be obtained from (34) by incrementing the time

argument

�k[z(τ ), z′(τ ); t + ε] = �k[z(τ ), z′(τ ); t]

+ ε�
(1)
B,k (t + ε)

+ ε�
(1)
B,k[z(τ ), z′(τ ); t], (41)

where

�
(1)
B,k (t + ε) = 1

2

∫ +∞

−∞
dω J (ω) fk (t + ε, t + ε, ω) (42)

and

�
(1)
B,k[z(τ ), z′(τ ); t] = 1

2

∫ t

0
dt ′

∫ +∞

−∞
dω J (ω)

× ∂

∂t
fk (t, t ′, ω). (43)

In (42) and (43) the lower limits of integration by ω have been
extended to the negative infinity. The limits can be extended,
if â is a self-conjugated operator and the spectral density J (ω)
is an odd function of ω. It is completely fulfilled for the
non-RWA interaction, but in the RWA case, â is not a self-
conjugated operator, and the extension imposes rather strong
restrictions on both the coupling strength and the maximum
time of the dynamics.

In (41), �
(1)
B,k (t + ε) depends only on the boundary time

and yields an operator in the operator form of HEOM, while
�

(1)
B,k[z(τ ), z′(τ ); t] still depends on the whole path and con-

tains the memory of the interaction. For the environments
considered in this work, �

(1)
B,k[z(τ ), z′(τ ); t] satisfies the fol-

lowing relation:

�
(1)
B,k[z(τ ), z′(τ ); t] = α

(B)
k �k[z(τ ), z′(τ ); t], (44)

where αk is a constant.
The relation (44) yields a system of ordinary differential

equations (ODEs) for the auxiliary density matrices that can
be translated to the operator form. The system of operator
ODEs is of the HEOM type and can be written as

∂

∂t
ρ̂ (A)

m,n(t ) = [ − (i/h̄)Ĥx
A + mα

(B)
1 + nα

(B)
2

]
ρ̂ (A)

m,n(t )

+ �̂
(0)
B,1ρ̂

(A)
m+1,n(t ) + �̂

(0)
B,2ρ̂

(A)
m,n+1(t )

+ m �̂
(1)
B,1ρ̂

(A)
m−1,n(t ) + n �̂

(1)
B,2ρ̂

(A)
m,n−1(t ), (45)

where we split the index of (40) on two, by one for each of
the branches; by Ĥx

A we denote the commutator superoperator
Ĥx

A ρ̂ = Ĥx
A ρ̂ − ρ̂Ĥx

A .
In (45) only ρ̂

(A)
0,0 (t ) has a physical meaning, the others

constitute the bath memory kernel representation. By redefin-
ing the auxiliary memory functions (40), we can obtain an
equivalent HEOM with adjusted coefficients, e.g., by mak-
ing the substitutions ρ̂

(A)
m+1,n(t ) → aρ̂

(A)
m+1,n(t ) and ρ̂

(A)
m−1,n(t ) →

(1/a)ρ̂ (A)
m−1,n(t ).

Similarly, we perform the Gaussian integration in a Wiener
path integral [39] and obtain a HEOM resembling Eq. (45)
with three indices for interaction with the stochastic field.
For the joint environment consisting of the high-temperature
Drude (HT-Drude) bath and the stochastic field, a HEOM
with five indices may be obtained. Let us introduce the vector
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notation for indices of the auxiliary density matrices

m = (m1, m2, . . . ),

m|k+1 = (m1, m2, . . . , mk + 1, . . . ).

By means of it the HEOM can be written in the following
form:

∂

∂t
ρ̂ (A)

m (t ) = − i

h̄
Ĥx

A ρ̂ (A)
m (t )

+
∑

k∈{field}

[
mkα

(F )
k ρ̂ (A)

m (t ) + �̂
(0)
F,k ρ̂

(A)
m|k+1

(t )

+ mk�̂
(1)
F,k ρ̂

(A)
m|k−1

(t )
]

+
∑

k∈{bath}

[
mkα

(B)
k ρ̂ (A)

m (t ) + �̂
(0)
B,k ρ̂

(A)
m|k+1

(t )

+ mk�̂
(1)
B,k ρ̂

(A)
m|k−1

(t )
]
, (46)

where ρ̂ (A)(t ) = ρ̂0(t ) and we make the summations over the
field and the bath indices explicit.

The condition (44) is satisfied for Ornstein-Uhlenbeck
stochastic fields, for which the unknown constant α

(F )
k and the

unknown operators �̂
(0)
F,k and �̂

(1)
F,k are

α
(F )
k = − γνk , (47)

�̂
(0)
F,k = − 	νk (i/h̄)V̂ x

F,νk
, (48)

�̂
(1)
F,k = − 	νk (i/h̄)V̂ x

F,νk
, (49)

where νk corresponds to the kth element of {�, ξ1, ξ2},
V̂ x

F,νk
ρ̂ = V̂F,νk ρ̂ − ρ̂V̂F,νk , and V̂F,νk are defined in (28)–(30).

Parameters γνk and 	νk denote the reciprocal of correlation
time and the standard deviation of the random process νk (t ).

The relation (44) is also satisfied for the high-temperature
Drude bath (9). In the high-temperature limit, nB(ω) in
Eqs. (35) and (36) contains a small parameter β h̄ω. Because
ω is bounded by the effective cutoff frequency, which is de-
fined by γB, the validity of the approximation is restricted by
β h̄γB 	 1. In the region of validity, the HEOM coefficients
take the next form

α
(B)
k = −γB, (50)

�̂
(0)
B,k = aB(−i/h̄)2ĉx

k , (51)

�̂
(1)
B,1 = 1

aB

cJD

2

π

γB

(
ĉx

2 − iβ h̄γBĉ2
)
, (52)

�̂
(1)
B,2 = 1

aB

cJD

2

π

γB

(
ĉx

1 − iβ h̄γBĉR
1

)
, (53)

where ĉ1 = â, ĉ2 = â+, and ĉR
k is the superoperator act-

ing from the right, ĉR
k ρ̂ = ρ̂ĉR

k . It is also convenient to use
the renormalization constant aB = h̄2	B for better HEOM
coefficients.

For the non-RWA interaction with a high-temperature
Drude bath, it is possible to obtain a one-index HEOM [38].
This HEOM resembles the one for the stochastic field when
there is only one random process present, and the closeness
increases with temperature [39]. For the RWA interaction the
minimum number of HEOM indices is two because of the

ambiguity in the transition from the path-integral form to the
operator form, also known as the quantization problem.

IV. MARKOVIAN APPROXIMATION

In the Markovian approximation, evolution of the TLS
reduced density matrix is described by the Markovian master
equation of Lindblad type [25]

d

dt
ρ̂

(A)
int = − i

h̄

[
ĤLS, ρ̂

(A)
int

] + DB
(
ρ̂

(A)
int

) + DF
(
ρ̂

(A)
int

)
, (54)

where ρ̂
(A)
int stands for the density matrix in the interaction

picture, ĤLS is the so-called Lamb shift Hamiltonian

ĤLS = h̄SLS(ω0)σ̂+σ̂− + h̄SLS(−ω0)σ̂−σ̂+, (55)

with SLS(ω0) depending on the spectral density type. For the
high-temperature limit of the Drude spectral density it has
the form

SLS(ω) = cJD
2πω + h̄βγB[2ω ln(γB/|ω|) − πγB]

2γB
(
γ 2

B + ω2
) . (56)

The symbol DB(ρ̂ (A)
int ) denotes the bath-related dissipator

DB
(
ρ̂

(A)
int

) = 2π

h̄2 J (ω0)[nB(ω0) + 1]

×
(

σ̂−ρ̂
(A)
int σ̂+ − 1

2

{
σ̂+σ̂−, ρ̂

(A)
int

})

+ 2π

h̄2 J (ω0)nB(ω0)

×
(

σ̂+ρ̂
(A)
int σ̂− − 1

2

{
σ̂−σ̂+, ρ̂

(A)
int

})
, (57)

and DF (ρ̂ (A)
int ) is the stochastic field dissipator [82]

DF
(
ρ̂

(A)
int

) = 2K�(t )

(
Ĵ0ρ̂

(A)
int Ĵ0 − 1

2

{
Ĵ2

0 , ρ̂
(A)
int

})

+ 2Kξ (t )

(
σ̂−ρ̂

(A)
int σ̂+ − 1

2

{
σ̂+σ̂−, ρ̂

(A)
int

})

+ 2Kξ (t )

(
σ̂+ρ̂

(A)
int σ̂− − 1

2

{
σ̂−σ̂+, ρ̂

(A)
int

})
,

(58)

where the curly brackets mean anticommutators of the opera-
tors, K�(t ) and Kξ (t ) are integrals of correlation functions of
corresponding random processes Kν (t ) = ∫ t

t0
〈ν(t )ν̄(t1)〉dt1.

V. STEADY STATES

With imaginary-time HEOMs [40] one obtains equilibrium
states of the system by integrating over the imaginary time to
the specified temperature. The HEOM (46) is a real-time one,
so the initial state has to be propagated (15) forward in time
until the reduced density matrix cease changing. In Fig. 1 we
illustrate steady states of an initially excited TLS interacting
with different environments: an HT-Drude bath environment,
a stochastic field environment, and the joint environment.

The stochastic field environment brings the TLS to a steady
state where both the excited and the ground states are equally
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FIG. 1. (a), (b) The TLS excited-state population in equilibrium for simultaneous interaction with the stochastic field and the HT-Drude
bath as a function of (a) the field frequency cutoff γF and (b) the field coupling strength 	F . The dashed and the solid black curves denote the
RWA and the non-RWA couplings, respectively, and the gray curve stands for the Markovian approximation. In (a) γν = γF and 	ν/ω0 = 0.4,
in (b) γν/ω0 = 0.2 and 	ν = 	F , and the bath is the same, γB/ω0 = 0.2, 	B/ω0 = 0.4, β h̄ω0 = 0.32. (c) The TLS excited-state population
in equilibrium for interaction with the HT-Drude bath only as a function of the bath inverse temperature β h̄ω0. The dashed and the solid black
curves denote the RWA and the non-RWA couplings, respectively, γB/ω0 = 0.2 and 	B/ω0 = 0.4. The dashed gray curve denotes steady states
for decoherence in the stochastic field only, γν/ω0 = 0.2 and 	ν/ω0 = 0.4.

possible. In case of HT-Drude bath environment (the stochas-
tic field is off), the steady states show no dependence on
the bath frequency cutoff and the bath coupling strength. It
resembles the case of interaction with the stochastic field
environment, but with additional dependence on the bath
temperature [see Fig. 1(c)]. In our model the temperature
dependence is included perturbatively, so we can cover only
a small range of temperatures near β = 0. The excited-state
population tends to decrease with the inverse temperature β

and the slope of the line is greater for the RWA interaction
Hamiltonian (6). When β decreases, the distance between the
TLS steady states in the bath environment and the TLS steady
states in the stochastic field environment becomes smaller.
The Markovian approximation (54) gives similar results.

When the TLS interacts with the joint environment, we
observe the interplay between decoherence channels corre-
sponding to the subenvironments [Figs. 1(a) and 1(b)]. Let us
take frequency cutoffs of all the random processes constituting
the stochastic field equal and change them simultaneously
(γν = γF for all ν). In the beginning, when the stochastic
field frequency cutoff γF is zero, an increase of γF causes
an increase of the field contribution and an increase of the
excited-state probability of the steady state because the steady
state in the infinite-temperature HT-Drude bath lies higher.
Then we reach the maximum, and after it an increase of γF

leads to a decrease of the stochastic field contribution and
a decrease of the TLS excited-state population in the steady
state [Fig. 1(a)]. In case of the RWA coupling with the bath
the overall impact of the stochastic field is greater and makes
the stationary states lie above the ones of the non-RWA case.
By comparison, when the stochastic field is off, the RWA
steady states are located below [Fig. 1(c)]. The Markovian
approximation (54) tends to wrongly overestimate the field
contribution for small frequency cutoffs and gives more rapid
decrease for bigger cutoffs, with no maximum in-between,
because the line starts from the steady state in the stochastic
field environment. If we change the roles of the stochastic field
and the bath and start manipulating the frequency cutoff of
the bath γB, we obtain the inverted picture: no contribution of

the bath at γB = 0, followed by a minimum, and a region of
constant growth after it.

The observed dependence on the environment frequency
cutoff can be explained by the form of the environment spec-
tral density. Both the OU random process and the HT-Drude
bath have spectra with one peak. Because the spectra have cut-
offs in the algebraic form, the location of the peak depends on
the frequency cutoff, and the peak moves to the right when the
frequency cutoff increases, from ω = 0 to the TLS frequency
ω = ω0 and then further away. As a result, the impact of the
environment has the maximum when the peak is located at the
resonance ω = ω0 and decreases in both directions from it.

Now, we take frequency cutoffs of all the random pro-
cesses of the stochastic field constant and vary their coupling
strengths in a similar way: we take them all equal 	ν = 	F

and analyze the dependence on 	F . The dependence of the
TLS steady states on 	F is presented in Fig. 1(b). In contrast
to the case of dependence on the frequency cutoff γF , there
are no maximums because the spectra of the random processes
keep the same form for all coupling strengths, only their mag-
nitude changes. At 	F = 0 the stochastic field is completely
decoupled and we have the steady states of the TLS in the
HT-Drude bath. When the coupling between the TLS and the
stochastic field is strong, the stochastic field dominates the
bath and the steady state approaches the steady state of the
TLS in the stochastic field environment.

A more detailed investigation of interaction with the
stochastic field subenvironment involving analysis of impact
of adjustments of one random process at a time reveals the dif-
ferences originating from the different types of coupling of the
random processes with the TLS. The random processes ξ2(t )
and �(t ) acting together with the HT-Drude bath subenviron-
ment do not affect the TLS steady states in the Markovian
approximation and the steady TLS excited-state probability
is always higher for the non-RWA interaction with the bath in
comparison with the RWA interaction with the bath. In case of
changing the random process ξ1(t ), the excited-state probabil-
ity behaves the same way only for small frequency cutoffs γξ1

and coupling strengths 	ξ1 , otherwise the relation is reversed.
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FIG. 2. Evolution of the TLS excited-state population in the
stochastic field (no bath, i.e., 	B/ω0 = 0) in dependence on (a) the
field frequency cutoff γF and (b) the field coupling strength 	F .
Black denotes the non-Markovian curves, gray stands for the Marko-
vian ones. In (a) γν/ω0 = γF /ω0 = (0.2, 0.4, 0.8) and 	ν/ω0 =
	2

F /ω0 = 1.6, for {dotted, dashed, solid} curves, respectively, and
in (b) γν/ω0 = γF /ω0 = 0.4, 	ν/ω0 = 	F /ω0 = {0.4, 0.8, 1.6}.

If the stochastic field is represented by �(t ) only, it forms one
purely dephasing channel, but still impacts the steady states
via the relaxation channel of the bath, as a consequence of the
induced correlations between the subenvironments developed
during the evolution.

VI. DENSITY MATRIX EVOLUTION

Let us consider evolution of the initially excited TLS in the
environments discussed in the previous section. In Fig. 2 we
show evolution of the excited-state population in the stochas-
tic field environment and in Fig. 3 we show the evolution in the
HT-Drude bath environment for different frequency cutoffs
and coupling strengths. In Fig. 4 the impact of the stochastic
field on evolution of the TLS in the HT-Drude bath is shown.

One specific feature of the evolution is the presence of
rapidly vanishing oscillations. The oscillations are more no-
ticeable for interaction with the bath environment in the RWA
approximation (6) and for interaction with the stochastic field
environment. These oscillations can also be found for the
non-RWA coupling with the bath (5), but they are absent if
the Markovian approximation (54) is applied. The oscillations

FIG. 3. Evolution of the TLS excited-state population in the
HT-Drude bath (no stochastic field, i.e., 	ν/ω0 = 0) in dependence
on (a) the bath frequency cutoff γB and (b) the bath coupling
strength 	B. The thin and the thick black curves (any stroke
style) denote the RWA and the non-RWA couplings, respectively,
and the gray curves stand for the Markovian approximation. In
(a) γB/ω0 = {0.2, 0.4, 0.8}, 	B/ω0 = 1.6, β h̄ω0 = 0.1, for {dot-
ted, dashed, solid} curves, respectively, and in (b) γB/ω0 = 0.4ω0,
	B/ω0 = {0.4, 0.8, 1.6}, β h̄ω0 = 0.1.

are a distinctive feature of a non-Markovian evolution and
have a clear relation to the Rabi oscillations. The amplitude
of the oscillations depends on the distance between the peak
of the environment spectral density and the TLS resonance
frequency. If the distance is large, there are no significant
oscillations. It is the case of large frequency cutoffs and also
of the Markovian approximation because it implies interac-
tion with a continuum of modes, which corresponds to large
frequency cutoffs. Similar behavior was noted in [83] for a
harmonic oscillator coupled to a semi-infinite bosonic chain.

The character of the TLS excited-state population evolu-
tion can be explained in a way similar to the one that we
used in Sec. V for explanation of the TLS steady-state be-
havior. Here, the impact of the environment depends on the
location of the peak of the environment spectral function,
determined by the environment frequency cutoff. An increase
of the coupling strength speeds up the evolution, causing
the steady state to be reached faster [Figs. 2(b) and 3(b)].
For the frequency cutoff the situation is more complex: for
small cutoffs it takes more time to reach equilibrium same
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FIG. 4. Evolution of the TLS excited-state population for simul-
taneous interaction with the stochastic field and the HT-Drude bath
(solid curves) in comparison with the case of interaction with the
bath only (dashed curves). The thin and the thick black curves (any
stroke style) denote the RWA and the non-RWA couplings, respec-
tively, and the gray curves stand for the Markovian approximation,
γν/ω0 = γF /ω0 = 0.4, 	ν/ω0 = 	F /ω0 = 0.8, and γB/ω0 = 0.4,
	B/ω0 = 1.6, β h̄ω0 = 0.1.

as for large cutoffs, while for moderate cutoffs it takes less
time [Figs. 2(a) and 3(a)]. Apparently, it has close connec-
tions with the magnitude of the distance between the peak
of the environment spectral density and the TLS resonance
frequency.

For the TLS interacting with the HT-Drude bath en-
vironment, only one minimum and one maximum of the
excited-state population could be seen well for a wide range
of frequency cutoffs γB [Fig. 3(a)] and coupling strengths 	B

[Fig. 3(b)]. For small γB the difference between the minimum
and the maximum is the biggest, and with growth of γB it
gradually vanishes: the minimum slowly rises, the maximum
lowers, but much faster, until they disappear; after this, the
curve exhibits no oscillations. The main difference between
evolution for the RWA coupling and the non-RWA coupling
with the bath resides in the value of the first minimum. For
strong RWA couplings it is deeper and drops lower than the
stationary value, while for the non-RWA couplings it gradu-
ally vanishes when the coupling strength increases, remaining
strictly above the stationary value. Because the maximum
lowers too, the difference between the maximum and the min-
imum has a clear extremum. Overall, the non-RWA evolution
resembles a smoothed version of the RWA evolution. The bath
temperature influences the dynamics mainly by adjusting via
the stationary states [Fig. 1(c)].

Dynamics of the TLS in the stochastic field environment
(Fig. 2) is similar to the dynamics in the infinite-temperature
HT-Drude bath with the RWA coupling. We have the same
dependence on frequency cutoffs and coupling strengths of
random processes ξ1(t ) and ξ2(t ), but dependence on γ� and
	� is different. The Hamiltonian for interaction with �(t )
commutes with the reduced density matrix and impacts the
dynamics only in presence of another decoherence channel,
e.g., one of the random processes ξ1(t ) and ξ2(t ) or the bath.
The frequency cutoff γ� mainly affects the steady state, an

FIG. 5. Emission spectra of the TLS in the HT-Drude bath,
normalized by maximum values, in dependence on (a) the bath
frequency cutoff γB and (b) the bath coupling strength 	B. The thin
and the thick black curves (any stroke style) denote the RWA and the
non-RWA couplings, respectively, and the gray curves stand for the
Markovian approximation. In (a) γB/ω0 = {0.1, 0.2, 0.4}, 	B/ω0 =
0.6, β h̄ω0 = 0.1, for {dotted, dashed, solid} curves, respectively, and
in (b) γB/ω0 = 0.2, 	B/ω0 = {0.4, 0.6, 0.8}, β h̄ω0 = 0.1.

increase in the coupling strength slightly raises the minimum
and practically does not affect the maximum.

In case of interaction with both the bath and the stochas-
tic field (Fig. 4), the presence of two subenvironments
speeds up the evolution, i.e., equilibrium is reached ear-
lier in comparison with interaction with only one of the
subenvironments. The appearance of additional decoherence
channels formed by the stochastic field increases the over-
all decoherence rate. The evolution resembles the one for
interaction with the bath environment, but with a larger
coupling strength. It can be explained by the similarities
between the two environments, i.e., the stochastic field en-
vironment is similar to the infinite-temperature HT-Drude
bath environment in terms of the impact on the TLS evolu-
tion. Another consequence of interaction with an additional
stochastic field is the rise of the TLS excited-state popula-
tion in the steady state. The individual components of the
stochastic field influence the evolution differently: an in-
crease of 	� increases the minimum, an increase of 	ξ2

lowers the minimum, and an increase of 	ξ1 lowers the
maximum.
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FIG. 6. Emission spectra of the TLS in the stochastic field,
normalized by maximum values, in dependence on (a) the field
frequency cutoff γF and (b) the field coupling strength 	F .
Black denotes the non-Markovian curves, gray stands for the
Markovian ones. In (a) γF /ω0 = {0.1, 0.2, 0.4}, 	F /ω0 = 0.6, for
{dotted, dashed, solid} curves, respectively, and in (b) γF /ω0 = 0.2,
	F /ω0 = {0.4, 0.6, 0.8}.

VII. EMISSION SPECTRUM

Equilibrium emission spectra of the TLS can be obtained
by applying the Fourier transform to the two-time correlation
function 〈σ̂+(t2)σ̂−(t1)〉, where t2 > t1. The time t1 is selected
sufficiently big for the reduced density matrix evolution to
reach its steady value. First, the initial state is propagated
to the steady state, then the operator σ̂− is applied to all the
density matrices ρ̂ (A)

m (t1), next the result is propagated to t2,
where σ̂+ is applied.

The emission spectra for interaction with the HT-Drude
bath environment (Fig. 5) are similar to the ones for interac-
tion with the stochastic field environment (Fig. 6). For large
frequency cutoffs the peak is almost centered at ω0, when the
frequency cutoff falls, the peak shifts to the right and becomes
less symmetrical, its left side rises faster than the right side,
the peak widens while its intensity falls. At some frequency
cutoff the peak at ω = 0 appears, becomes more distinct, rises,
and, eventually becomes the dominant peak, while the first
one disappears. For some values of the coupling strength and
the frequency cutoff, the side peak at ω = 0 is shifted to the
right. It is more evident when the side peak appears for the first
time and its intensity is close to the intensity of the main peak.

FIG. 7. Emission spectra of the TLS for simultaneous interaction
with the stochastic field and the HT-Drude bath (solid curves) in
comparison with the case of interaction with the bath only (dashed
curves), normalized by maximum values. The thin and the thick
black curves (any stroke style) denote the RWA and the non-RWA
couplings, respectively, and the gray curves stand for the Markovian
approximation, γν/ω0 = γF /ω0 = 0.2, 	ν/ω0 = 	F /ω0 = 0.4, and
γB/ω0 = 0.2, 	B/ω0 = 0.6, β h̄ω0 = 0.1.

This behavior is more typical for the non-RWA coupling, but
it is also can be found for the RWA coupling with the bath.
When the side peak appears with the intensity equal to the
main peak intensity, the shift is the biggest. An increase of
the coupling strength widens the main peak and slightly shifts
it to the right. Because of the widening, the side peak cannot
be seen clearly, but for large couplings it separates from the
main one and then starts to dominate the spectrum, moving
to the left and gradually approaching ω = 0. An increase of
temperature makes the spectrum more asymmetrical, its left
slope becomes less steep, and the right slope becomes more
steep. In the Markovian approximation the side peak never
appears and the left slope of the main peak is much steeper
than the right. Every non-RWA emission spectrum has a zero
point located at ω = −ω0 for the set of parameter values
studied. For some values of parameters, both the Markovian
approximation and the RWA lead to an erroneous absorption
area between the main peak and the axes origin (Fig. 5), which
is absent if the full interaction Hamiltonian is used.

The impact of the stochastic field on the emission spectra
of the TLS in the bath environment is shown in Fig. 7. For
the parameter values selected, the Markovian approximation
is inaccurate both in absence and in presence of the stochas-
tic field. In absence of the stochastic field it gives a much
narrower contour and without the side peak on the left; in
presence of the stochastic field the contour is excessively
wide. The stochastic field smooths the negative frequency part
of the spectrum and removes the zero point for the non-RWA
coupling with the bath. The stochastic field effectively makes
the interaction between the TLS and the bath stronger, which
results in a higher side peak near ω = 0 and which widens the
main peak and shifts it to the right.

VIII. CONCLUSIONS

We have studied non-Markovian dynamics of a two-level
system interacting with two types of environments: a bosonic
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bath with the high-temperature Drude spectral density and a
stochastic field of the Ornstein-Uhlenbeck type. By means
of the influence functional approach we derived the hierar-
chical equations of motion [39] valid for arbitrary coupling
strengths and environmental correlation times. The electric-
dipole interaction between the two-level system and the bath
was considered in the exact form and in the rotating-wave
approximation. By means of the hierarchical equations of mo-
tion, we performed numerical analysis of the reduced density
matrix evolution, steady states, and emission spectra of the
two-level system for a wide range of the bath and the field
frequency cutoffs and coupling strengths. Also, we studied
the interplay between different decoherence channels of the
joint environment combining the two subenvironments, the
stochastic field and the bath, and analyzed the impact of the
stochastic field on the evolution, steady states, and emission
spectra of the two-level system in the bath environment.

APPENDIX: DERIVATION OF THE BATH INFLUENCE
FUNCTIONAL

In this Appendix we outline derivation of the bath influence
functional (33). The starting point is the discretized form of
the interaction Hamiltonian (7),

HIB
(
z j+1,φ

(B)
j+1; z j,φ

(B)
j

)
=

∞∑
k=1

(
gkc2(z j+1, z j )φ

(B)k
j + ḡkc1(z j+1, z j )φ̄

(B)k
j+1

)
. (A1)

When the system coupling operator is Hermitian, like in case
of the non-RWA interaction (5), we have the symbols of

operators equal

c1(z j+1, z j ) = c2(z j+1, z j ) = σ+(z j+1, z j ) + σ−(z j+1, z j ).
(A2)

If the RWA is applied, the system-environment coupling has a
more complex form leading to

c1(z j+1, z j ) = σ−(z j+1, z j ), c2(z j+1, z j ) = σ+(z j+1, z j ).

(A3)

As a result, it is necessary to differentiate between the two
during the derivation.

After performing the Gaussian integrations in the influence
functional (26) and switching to the continuous notation, we
obtain

FB[z(τ ), z′(τ ); t, t0]

=
∞∏

k=1

exp

[(
− 1

h̄2

)
gkḡk

∫ t

0
dτ

∫ t

0
dτ ′(C+

2 (τ ) − C−
2 (τ ))

×
(

iGT
k (τ, τ ′) iG<

k (τ, τ ′)

G>
k (τ, τ ′) GT̃

k (τ, τ ′)

)(
C+

1 (τ ′)
−C−

1 (τ ′)

)]
, (A4)

where the ordinary expressions for the Green functions ap-
pear:

iG<
k (τ, τ ′) = nB(ωk )e−iωk (τ−τ ′ ),

iG>
k (τ, τ ′) = [nB(ωk ) + 1]e−iωk (τ−τ ′ ),

iGT
k (τ, τ ′) = θ (τ − τ ′)iG>

k (τ, τ ′) + θ (τ ′ − τ )iG<
k (τ, τ ′),

iGT̃
k (τ, τ ′) = θ (τ ′ − τ )iG>

k (τ, τ ′) + θ (τ − τ ′)iG<
k (τ, τ ′).

Now, we have to get rid of the Heaviside theta functions by
introducing dependence between the integrals by τ and τ ′.
Then, after some algebra we obtain Eq. (33).
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