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We explore both pure and mixed state Floquet dynamical quantum phase transitions (FDQFTs) in the
one-dimensional p-wave superconductor with a time-driven pairing phase. In the Fourier space the model is
recast to the noninteracting quasispins subjected to a time-dependent effective magnetic field. We show that
FDQFTs occur within a range of driving frequency without resorting to any quenches. Moreover, FDQFTs
appear in the region where quasispins are in the resonance regime. In the resonance regime, the population
completely cycles the population between the spin down and up states. Additionally, we study the conditions
for the appearance of FDQFTs using the entanglement spectrum and purity entanglement measure. Our results
imply that the entanglement spectrum can truly capture the resonance regime where FDQFTs occur. Particularly,
the dynamical topological region results in the degeneracy of the entanglement spectrum. It is shown that the
boundary of the driven frequency range, over which the system reveals FDQFTs, is signaled by the purity
entanglement measure.
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I. INTRODUCTION

Quantum phase transition (QPT), in a similar fashion as
a classical phase transition, is one of the most intriguing
research topics in condensed-matter physics [1]. It is charac-
terized by signaling nonanalytic behaviors in some physical
properties of the system [2] and is often accompanied by a
divergence in some correlation functions. But, the quantum
systems possess additional “quantum correlations” which do
not exist in classical counterparts [3]. Consequently, quantum
correlations could be useful to investigate the quantum phase
transition [4–9].

Entanglement is a type of quantum correlation first signi-
fied by Schrödinger in 1935 [10] as a particular feature of
quantum mechanics. As a direct measure of quantum corre-
lations, it displays nonanalytic behavior such as discontinuity
at the quantum critical points [11–13]. In the past decade, the
subject of several pieces of research was to explore the behav-
ior of entanglement near and at the quantum critical point for
different spin models [11,14–16] as well as itinerant systems
[17–19]. Furthermore, purity entanglement measure [20–22]
and entanglement spectrum (ES) [23–27] are introduced for
quantifying the characteristics of quantum entanglement in
many-body systems.

Recently, the concept of dynamical quantum phase tran-
sitions (DPQTs) have been introduced as nonequilibrium
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counterparts of thermal phase transitions [28,29]. The notion
of DQPT emanates from the similarity between the equilib-
rium partition function of a system and Loschmidt amplitude,
which measures the overlap between an initial state and its
time-evolved one [28–42]. While the equilibrium phase tran-
sition is characterized by nonanalyticities in the thermal free
energy, the DQPT is signaled by the nonanalytical behavior
of dynamical free energy, in which real time plays the role
of the control parameter [43–46]. Furthermore, analogous to
order parameters at equilibrium quantum phase transition, a
dynamical topological order parameter is proposed to cap-
ture DQPTs [47,48]. The DTOP is quantized and its unit
magnitude jumps at the time of DQPT reveal the topologi-
cal characteristic feature of DQPT [47–50]. This dynamical
topological order parameter is extracted from the “gauge-
invariant” Pancharatnam geometric phase associated with the
Loschmidt amplitude [47,48,51].

More recently, significant theoretical [52–70] and experi-
mental [71–77] endeavors have focused on DQPTs. On the
theoretical front, most research is devoted to study the DQPTs
of both slow and sudden quantum quenches of the Hamil-
tonian. Furthermore, few works attempt to provide a link
between sudden quench DQPTs and entanglement [78,79],
entanglement entropy [72,80,81], and entanglement spectrum
[81–84]. Lately, time-periodic driving and the correspond-
ing Floquet theory has attracted great attention [85–88].
The study of time-periodically driven closed quantum sys-
tems in the context of the Floquet theory is one of the
most attractive areas of developing nonequilibrium research.
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Despite considerable investigation of many aspects of DQPTs
[52,54–66,70], comparatively, little attention has been di-
rected toward dynamical quantum phase transition in Floquet
systems which are called Floquet DQPTs [85–88]. To make
progress, more studies are needed, specifically, the exactly
solvable models play an important role.

The main aim of this study is to find the connection be-
tween Floquet DQPTs and purity entanglement measure and
entanglement spectrum. Such contributions can bring several
new realizations to the subject. Here we study analytically
both pure and mixed state Floquet dynamical quantum phase
transitions (FDQFTs) in the one-dimensional p-wave super-
conductor with a time-driven pairing phase. We show that
FDQPTs occur without requiring any quenches at the region
where the population between spin down and up states is
completely cycled. We also investigate the conditions for the
appearance of DQPTs using entanglement spectrum and pu-
rity entanglement measures. The range of driving frequency
over that system is dynamically topological and the dynamical
topological QPT (DTQPT) arises, as well as, the region where
DTQPT happens, signaled by the degeneracy of the entan-
glement spectrum, can truly be detected by the entanglement
spectrum and the purity entanglement measures.

II. THEORETICAL MODEL

The Hamiltonian of a one-dimensional p-wave supercon-
ductor with time-dependent pairing phase (magnetic flux) is
given as [89]

H =
N∑

j=1

[(W
2

c†
j c j+1 − �

2
e−iθ (t )c†

j c
†
j+1 + H.c.

)

− μ

(
c†

j c j − 1

2

)]
, (1)

where c j (c†
j ) is the fermion creation (annihilation) operator, N

is the number of lattice sites, and μ is the chemical potential.
The hopping and pairing amplitudes are w and �, respec-
tively. The phase factor θ (t ) in the pairing terms is the vector
potential, interpreting as an Aharonov-Bohm flux �(t ) =
Nθ (t ) piercing the ring [90]. This model can be mapped to
the periodically time-dependent extended XY spin model via
a Jordan-Wigner transformation. To diagonalize the fermionic
Hamiltonian in Eq. (1) we perform a Fourier transform c j =

1√
N

∑
k ckeik j and c†

j = 1√
N

∑
k c†

j e
−ik j . Considering antiperi-

odic boundary conditions (c j+N = −c j), results in the wave
number k = (2p − 1)π/N , where p runs from 1 to N/2.
Introducing fermionic two-component �

†
k = (c†

k , c−k ), the
Hamiltonian of Eq. (1) can be written as the sum of N non-
interacting terms

H =
∑

k

�
†
k Hk (t )�k, (2)

where the Bloch Hamiltonian Hk (t ) is defined as

Hk (t ) = 1
2 {hxy(k)[sin(ωt )σx −cos(ωt )σy] + hz(k)σz},

with hz(k) = W cos(k) − μ and hxy(k) = � sin(k), where
σα=0,x,y,z are Pauli matrices. We should mention that Eq. (2)
expresses the Hamiltonian of interacting fermions system
[Eq. (1)] mapped to the sum of noninteracting quasispins
imposed by the time-dependent effective magnetic field. The
single particle quasispin Hamiltonian Hk (t ) is exactly the
Schwinger-Rabi model of a spin in a rotating magnetic field
[91]. The exact solution to the time-dependent Schrödinger
equation i d

dt |ψ (k, t )〉 = Hk (t )|ψ (k, t )〉 is achieved by go-
ing to the rotating frame given by the periodic unitary
transformation [92]

UR(t ) = eiω(σ0−σz )t/2 =
(

1 0
0 eiωt

)
(3)

to obtain the time-independent Floquet Hamiltonian HF as

HF
k = U †

R (t )Hk (t )UR(t ) − iU †
R (t )

dUR(t )

dt

= − 1

2
{hxy(k)σy − [hz(k) − ω]σz − ωσ0}. (4)

The eigenvalues and eigenvectors of the Floquet Hamiltonian
HF

k are given by

ε±
k = 1

2

[
ω ±

√
h2

xy(k) + [hz(k) − ω]2
]

(5)

and

|χ±
k 〉 = 1

Nk
[hxy(k)|∓〉 + iηz(k)|±〉], (6)

respectively. Here we define

Nk =
√

η2
z (k) + h2

xy(k), ηz(k) = [hz(k) − 2ε−
k ],

and |±〉 are the eigenstates of σz. In the original frame, the
Floquet states of the Hamiltonian Hk (t ) is given by

|ψ±
k (t )〉 = UR(t )e−iHF

k t |χ±
k 〉 = e−iε±

k tUR(t )|χ±
k 〉. (7)

Consequently, the initial and time-evolved ground states of the
original Hamiltonian are obtained as follows:

|ψ−(t )〉 = �k|ψ−
k (t )〉 = �ke−iε−

k tUR(t )|χ−
k 〉,

|ψ−(0)〉 = �k|χ−
k 〉. (8)

Moreover, in fermion language the ground state of the pro-
posed time-dependent Hamiltonian Eq. (1) is given as

|ψ−(t )〉 =
∏
k>0

[uk (t, ω) + vk (t, ω)c†
kc†

−k]|0〉, (9)

where uk (t, ω) = hxy(k)e−iε−
k t/Nk and vk (t, ω) = iηz(k)e−iε−

k t

eiωt/Nk . If we assume the system initially prepared in |−〉 state
at t = 0, the probability of the transition from state |−〉 to state
|+〉 (spin-flip probability) is given as

Pf = h2
xy

�R
sin2

(
�Rt

2

)
, �R =

√
h2

xy(k) + [hz(k) − ω]2.

(10)

012204-2



FLOQUET DYNAMICAL PHASE TRANSITION AND … PHYSICAL REVIEW A 103, 012204 (2021)

Note that whenever hz = ω, the spin-flip (Rabi transition)
probability becomes a maximum possible value �R = 1. In
such a resonance situation, the period of oscillation TR =
2π/�R is different from the driving period [91]. In other
words, the population at resonance completely cycles the pop-
ulation between the two spin down and up states, while for
hz �= ω, the down state |−〉 is never completely depopulated.

III. DYNAMICAL QUANTUM PHASE TRANSITION

As mentioned, the concept of a DQPT is extracted from
the analogy between the partition function of an equilibrium
system Z (β ) = Tr[e−βH] and the boundary quantum partition
function Z (z) = 〈ψ0|e−zH|ψ0〉 with |ψ0〉 a boundary state and
z ∈ C. When z = it , the boundary quantum partition function
becomes equivalent to a Loschmidt amplitude (LA) L(t ) =
〈ψ0|e−iHt |ψ0〉, denoting the overlap between the initial state
|ψ0〉 and the time-evolved one |ψ0(t )〉 [28]. Heyl et al. [28]
showed that, similar to the thermal free energy, a dynamical
free energy can be defined as

g(t ) = − 1

2π

∫ π

−π

dk ln |Lk (t )|2,

where real time t plays the role of the control parameter.
DQPTs are simply signaled by nonanalytical behavior of g(t )
as a function of time, evincing in characteristic cusps in g(t )
or one of its time derivatives. These cusps are followed by
zeros of L(t ), known in statistical physics as Fisher zeros of
the partition function [93]. In this section we search both pure
and mixed state Floquet DQPTs in a proposed time-dependent
Hamiltonian Eq. (1) to study features of DQPTs in the quan-
tum Floquet systems.

A. Pure state dynamical topological quantum phase transition

A straightforward calculation yields the exact expression
of the Loschmidt amplitude corresponding to the ground state
of the proposed model as follows:

L(t ) = 〈ψ−(0)|ψ−(t )〉 = �kLk (t ), (11)

with

Lk (t ) = 〈χ−
k |ψ−

k (t )〉 = e−iε−
k t 〈χ−

k |UR(t )|χ−
k 〉

=
[

h2
xy(k) + η2

z (k)eiωt

h2
xy(k) + η2

z (k)

]
e−iε−

k t .

Analyzing Eq. (11) reveals that the zeros of L(t ) at which
DQPTs occur take place at critical times:

t∗
n = (2n + 1)

π

ω
=

(
n + 1

2

)
t∗, t∗ = 2π/ω, n∈Z,

(12)

only whenever there is a mode k∗ that satisfies hz(k∗)=ω.
Also, a critical mode kc exists when cos(k∗) = (ω + μ)/W ,
and results ω1 � ω � ω2, with ω1 = −W − μ and ω2 =
W − μ. The condition hz(k) = ω is equivalent to the res-
onance characteristic in the Schwinger-Rabi model of a
quasispin in a rotating effective magnetic field [91]. Thus, two
regimes emerge in the proposed time-dependent Hamiltonian
Eq. (1). First, the resonance regime where the probability of
the quasispins flip becomes the maximum possible value. Sec-
ond, the nonresonance regime where the quasispin population
does not completely cycle the population between the spin
down and up states. We should stress that DQPTs region coin-
cides with the adiabatic regime where the quasispins trace the
time-dependent effective magnetic field. While in the region
where quasispins in a rotating magnetic field feel a constant
effective Zeeman field no DQPTs occur [88].

The density plot of Loschmidt echo (squared modulus
of LA) Rk (t ), and dynamical free energy g(t ), are shown
in Figs. 1(a)–1(c). It is clear that, in the resonance regime
[Figs. 1(a) and 1(b)] there exist critical points k∗ and t∗, where
Lk∗ (t∗) becomes zero. In contrast, there is no such critical
point in a nonresonance regime. As shown in Fig. 1(c), the
nonanalyticities in the dynamical free energy and DQPT arise
for the driving frequency at which the quasispins are in the
resonance situation.

As stated in the Introduction, a dynamical topological or-
der parameter (DTOP) has been proposed to indicate that
the topological features emerge in DQPTs. The DTOP rep-
resents integer values as a function of time and shows unit
magnitude jumps at the critical times at which the DQPTs
appear. The DTOP is a momentum-space winding number of
the Pancharatnam geometric phase which serves as a dynam-
ical analog of a topological order parameter in two-banded
Bogoliubov–de Gennes models that experiences a DQPT after
a a sudden change in the band structure parameters. The
integer values of DTOP changes only at DQPTs which reveals
how the topology of the underlying Hamiltonian has changed
during the quench (evolution) [47,48,51].

FIG. 1. The density plot of Loschmidt echo versus t and k for (a) ω = π/6 and (b) π/4. (c) The dynamical free energy g(t ) versus t for
ω = π/6 (solid line) and ω = π (dotted line).
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FIG. 2. The density plot of geometric phase versus k and t for (a) ω = π/6 and (b) π/4. The dynamical topological order parameter versus
time for (c) ω = π/6 and (d) ω = π/4 [dashed lines show the dynamical free energy g(t ) versus t].

The dynamical topological order parameter is given [47]

νD(t ) = 1

2π

∫ π

0

∂φG(k, t )

∂k
dk, (13)

where the geometric phase φG(k, t ) is gained from the total
phase φ(k, t ) by subtracting the dynamical phase φD(k, t ):
φG(k, t ) = φ(k, t ) − φD(k, t ). The total phase φ(k, t ) is the
phase factor of LA in its polar coordinates representation, i.e.,

Lk (t ) = |Lk (t )|eiφ(k,t )

and

φD(k, t ) = −
∫ t

0
〈ψ−

k (t ′)|HF
k |ψ−

k (t ′)〉dt ′,

in which φ(k, t ) and φD(k, t ) can be calculated as follows:

φ(k, t ) = −ε−
k t + tan−1

(
η2

z (k) sin(ωt )

h2
xy(k) + η2

z (k) cos(ωt )

)
,

φD(k, t ) =
[

h2
xy(k) + hz(k)[hz(k) − ω]

2�R

]
t . (14)

The geometric phase φG(k, t ) and νD(t ) have been illustrated
in Figs. 2(a)–2(c) for different values of the driving frequen-
cies in the resonance regime, showing excellent agreement
with the analytical result. The plots display singular changes
in successive critical times t∗

n at critical momentum k∗, which
characterizes the topological aspects of DQPTs.

B. Mixed state dynamical topological phase transition

In experiments [71,72], the initial state of far-from-
equilibrium, in which the system is prepared, is usually not
a pure state but rather a mixed state. Consequently, on the
theoretical front, a generalized Loschmidt amplitude (GLA)
for mixed thermal states has been established, which perfectly
yields the nonanalyticities appearing in the pure state DQPTs
[51,94,95]. Now we study the mixed state Floquet DQPTs
in the time-dependent Hamiltonian, Eq. (1). The GLA for
thermal mixed state is described by

GL(t ) =
∏

k

GLk (t ) =
∏

k

Tr[ρk (0)U (t )], (15)

where ρk (0) is the mixed state density matrix at time t = 0,
and U (t ) is the time-evolution operator. The time-evolution
operator and the mixed state density matrix of Hamiltonian in

Eq. (1) are given by

U (t ) = UR(t )e−iHF
k t = eiω(σ0−σ z )t/2e−iHF

k t (16)

and

ρk (0) = e−βHF
k

Tr
(
e−βHF

k

) = 1

2

[
σ0 − tanh

(
β�k

2

)
n̂k · 
σ

]
, (17)

respectively. Here Hk
k = 1

2 (ωσ0 + �kn̂k · 
σ ) with �k = |ε+
k −

ε−
k |, n̂k = [0,−hxy(k), hz(k) − ω]/�k and β = 1/T is the in-

verse temperature with Boltzmann constant KB = 1. A rather
lengthy calculation results in an exact expression for GLA,
which is represented by

GLk (t ) = 1

�k
tanh

(
β�k

2

)
[ϒ1(k, t ) + iϒ2(k, t )], (18)

where ϒ1(k, t ) and ϒ2(k, t ) are identified as

ϒ1(k, t ) = �k cos

(
ωt

2

)
cos

(
�kt

2

)

− [hz(k) − ω] sin

(
ωt

2

)
sin

(
�kt

2

)
,

ϒ2(k, t ) = �k cos

(
ωt

2

)
sin

(
�kt

2

)

+ [hz(k) − ω] sin

(
ωt

2

)
cos

(
�kt

2

)
.

The density plot of modulus of GLA has been displayed
versus time t and k in Figs. 3(a)–3(f) for different values
of β and driving frequencies in resonance regime ω = π/6
and ω = π/4. As seen, the critical points k∗ and t∗, where
GLA becomes zero, are exactly the same as the corresponding
one in LA. Therefore, we expect that the mixed state DQPTs
appear in the resonance regime even at finite temperatures.
The comparison of Figs. 1(a) and 1(b) with Figs. 3(a)–3(f)
reveals that GLA is deformed versus time. Our numerical
results show that the deformation is enhanced by increasing
the temperature and time. The dynamical free energy of GLA
has been depicted versus time in Fig. 4(a) for different values
of β and driving frequency ω = π/4. It can be clearly seen
that GLA correctly captures the critical mode k∗ and critical
time t∗ observed during the pure state DQPT, but the height
of cusps increases by increasing temperature. It should be
stressed that as the temperature gets smaller than the effective
temperature associated with the minimum energy gap, the
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FIG. 3. The Loschmidt echo of mixed state versus k and t for (a) ω = π/6 and β = 1, (b) ω = π/6 and β = 2, (c) ω = π/6 and β = 3,
(d) ω = π/4 and β = 1, (e) ω = π/4 and β = 2, and (e) ω = π/4 and β = 3.

critical modes and times of the mixed state DQPT remain
unaffected. For higher temperatures the hallmark of DQPT is
wiped out, which express a traverse to a the regime without
DQPT.

Moreover, for mixed state DQPT a topological invariant
has been proposed to lay out its topological characteristics
[51]. In the mixed state DQPT the total phase and dynamical
phase are given as

φ(k, β, t ) = Arg{Tr[ρ(k, β, 0)U (t )]}
and

φD(k, β, t ) = −
∫ t

0
Tr[ρ(k, β, t ′)H (k, t ′)]dt ′,

FIG. 4. (a) The dynamical free energy of mixed state g(t ) ver-
sus time for different values of β. (b) The mixed state dynamical
topological order parameter versus time for different values of β and
ω = π/4.

respectively. The topological invariant νD(t ) can be calculated
using Eq. (12) for the mixed state in which

φG(k, β, t ) = φ(k, β, t ) − φD(k, β, t ).

After a lengthy calculation, one can obtain the total phase
φ(k, β, t ) and the dynamical phase φD(k, β, t ) as follows:

φ(k, β, t ) = Arg{Tr[ρ(k, β, 0)U (t )]}

= tan−1

[(
ϒ2(k, t )

ϒ1(k, t )

)
tanh

(
β�k

2

)]
,

φD(k, β, t ) = −
∫ t

0
dt ′Tr[ρ(k, β, t ′)H (k, t ′)]

= tanh

(
β�k

2

)[
hz(k)[hz(k) − ω] + h2

xy(k)

2�k

]
t .

(19)

In Fig. 4(b) the mixed state topological invariant has been
plotted for driving frequencies ω = π/4 and different values
of β. It can be seen clearly that νD(t ) exhibits a nearly perfect
quantization (unit jump) as a function of time between the two
DQPT times. When temperature is smaller than the effective
temperature, associated with the minimum energy gap, the
quantized structure of νD(t ) can be observed. Although sud-
den jumps of νD(t ) is present at higher temperatures, it does
not show a quantized value to display a topological character.
Consequently, mixed state DQPT exist and are signaled by
nearly a quantized mixed state dynamical topological order
parameter, when the temperature is below a crossover temper-
ature.

IV. ENTANGLEMENT

As stated, characterization of quantum phase transitions
(QPTs) and quantum phases via purity entanglement mea-
sures [20–22] and ES [23–27] is one of the most intriguing re-
search topics in condensed-matter physics [96]. In this section
we study the purity entanglement measure and entanglement
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spectrum as a generalization of entanglement in the time-
dependent Hamiltonian Eq. (1). We show that both purity
entanglement measure and entanglement spectrum can de-
tect the boundary of the driven frequency range over which
DQPTs take place.

A. Entanglement spectrum

In the following we focus on the entanglement spectrum of
the proposed time-dependent Hamiltonian Eq. (1). To calcu-
late it, we should obtain two l×l correlation matrices C and F
with the matrix elements Cmn = 〈ψ (t )|c†

mcn|ψ (t )〉 and Fmn =
〈ψ (t )|c†

mc†
n|ψ (t )〉, respectively. Here 1 � m, n � l , and entan-

glement spectrum can be obtained from a 2l×2l correlation
matrix defined as

Cl (t ) =
(

I − C F
F † C

)
, (20)

where I is the l×l identity matrix. The single-particle en-
tanglement spectrum is obtained by the eigenvalues of the
correlation matrix Cl (t ) [97], and they come in pairs of ξm(t )
and 1 − ξm(t ) [84]. Moreover, the entanglement entropy of the
subblock of size l is given by

Sl (t ) = −Tr[Cl (t ) log2 Cl (t )] = −
2l∑
m

ξm(t ) log2 [ξm(t )].

Having obtained the time evolved state in Eq. (9), the corre-
lation matrix elements can be calculated as follows:

Cmn = 1

L

∑
k

|vk (t, ω)|2e−ik(m−n),

Fmn = 1

L

∑
k

v∗
k (t, ω)uk (t, ω)e−ik(m−n).

The knowledge of the correlation matrix Cl (t ) enables us to
calculate the entanglement spectrum. We have calculated the
eigenvalues of the correlation matrix for l = 40. Our numer-
ical calculation shows that the eigenvalues of the correlation
matrix are time independent. In addition, the derivative of all
the eigenvalues with respect to the driven frequency show
divergence at the boundary of the resonance regime where
DQPTs happen.

The four middle eigenvalues of the correlation matrix are
shown in Fig. 5(a), and the derivative of two middle eigen-
values of correlation matrix have been plotted in Fig. 5(b)
for W = π and μ = π/2. As seen, the boundary resonance
region, i.e., ω1 = −3π/2 and ω2 = π/2, have been signaled
by the derivative of the eigenvalues with respect to the driven
frequency. As evidence, two middle eigenvalues of the cor-
relation matrix are degenerate at the resonance region. This
phenomenon is similar to what happened in the entanglement
spectrum crossing [23,81]. In the entanglement spectrum
crossing phenomena, the topological phase results in degen-
eracies of low-lying entanglement spectrum [98]. In other
words, the low-lying entanglement spectrum will be 1/2 in the
topological phase. Thus, the entanglement spectrum is able to
detect the topological phase, i.e., the resonance region where
dynamically is topological. Furthermore, it is noteworthy to
mention that the entanglement entropy is zero in the non-
resonance regime and is one in the resonance regime. This

FIG. 5. (a) The four middle eigenvalues of entanglement spec-
trum versus ω. (b) The derivative of two middle eigenvalues of
entanglement spectrum with respect to driven frequency versus ω.
We set W = π and μ = π/2.

means the system at the resonance regime, where dynamically
topological, is entangled while it is disentangled in the nonres-
onance region.

B. Purity entanglement measure

As it is introduced in Ref. [21], the purity entanglement
measure u(N ) purity is a good measure of generalized en-
tanglement to capture the phase transition in the XY model
in a transverse field. When the ground state of the system is
unentangled, the purity is one, while zero purity means the
ground state of the system is fully entangled. Moreover, the
properties of the u(N ) purity has been investigated in Ref.
[22] for the XY model in the presence of a time-dependent
magnetic field, and show that this measure still captures the
relevant correlations of the system and gives information
about the physics underlying the evolution. Now, following
the route provided in Ref. [22], the u(N ) purity of the time
evolved state in Eq. (9) is given as

Pu(N ) = 2

π

∫ π

0

(
vk (t, ω)v∗

k (t, ω) − 1

2

)2

dk. (21)

Our calculation shows that the purity measure of a state
[Eq. (9)] is time independent which is plotted in Fig. 6(a)
versus driven frequency for Hamiltonian parameters W = π

and μ = π/2. As reflected, the purity measure, in the reso-
nance regime, has a nonzero constant value but is less than
one which means the time evolved ground state of the system
is entangled. In the nonresonance region, the purity measure
goes to one as the absolute value of driven frequency in-
creases. In such a case, the ground state of the time-dependent
Hamiltonian Eq. (1) is unentangled. The corresponding
derivative of purity measure with respect to the driven fre-
quency is also plotted in Fig. 6(b) versus driven frequency.
As is clear, the derivative of the purity measure shows a dis-
continuity at the boundary of the resonance region. Therefore,
the derivative of the purity measure can truly capture the
boundary of the resonance region where DQPTs occur.
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FIG. 6. (a) The purity entanglement measure and (b) its deriva-
tive with respect to driven frequency versus ω, for W = π and
μ = π/2.

V. CONCLUSION

We have investigated both pure and mixed states Floquet
dynamical quantum phase transition in the one-dimensional
p-wave superconductor with a time-driven pairing phase. The
proposed time-dependent fermions system is equivalent to
noninteracting quasispins imposed by a time-dependent effec-
tive magnetic field in Fourier space. We have shown that there
exists a range of driven frequency over which the quasispins

are resonance. In the resonance region, the population of
spin down and up states completely is a cycle and both states
can be completely populated. While in the nonresonance
regime spin-flip (Rabi transition) probability is less than the
maximum possible value 1 and the state in which the system
is initially prepared is never completely depopulated. We have
also shown that there is a range of driving frequency where
dynamical topological quantum phase transitions appear,
without requiring any quantum quenches and that range
corresponds to the resonance regime. Moreover, we study
the entanglement spectrum and purity measure entanglement.
The results state that the region where the Floquet dynamical
topological quantum phase transitions arise is signaled by
the degeneracy of the entanglement spectrum. In addition,
derivative of the entanglement spectrum/purity entanglement
measure with respect to the driven frequency shows
divergence/discontinuity at the boundary of resonance regime.
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