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Positivity of entropy production for the three-level maser
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Entropy production is a key concept of thermodynamics and allows one to analyze the operation of engines.
For the Scovil-Schulz-DuBois heat engine, the archetypal three-level thermal maser coupled to thermal baths,
it was argued that the common definition of heat flow may provide negative entropy production for certain
parameters [Boukobza and Tannor, Phys. Rev. Lett. 98, 240601 (2007)]. Here, we show that this can be cured
if corrections for detuning are properly applied to the energies used for the bath transitions. This method can be
used more generally for the thermodynamical analysis of optical transitions where the modes of the light field
are detuned from the transition energy.
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I. INTRODUCTION

With the realization of masers and lasers quantum op-
tics has proved fertile ground for thermodynamic research in
open quantum systems. An archetypal example is the Scovil-
Schulz-DuBois heat engine based on a three-level maser
driven by two heat baths of different temperatures [1]. This
system served as a model to develop a variety of approaches
for the microscopic description of quantum systems in con-
tact with thermal baths in interaction with classical [2–6] or
quantized [7–9] light fields.

Of key relevance is the formulation of work and heat in
the quantum realm. References [10,11] defined work flow
(power) and heat flow by partitioning the time derivative of the
expectation value of the full Hamiltonian, i.e., including the
time-dependent interaction with classical degrees of freedom,
such as a microwave field. Later, Boukobza and Tannor [5]
proposed an alternative definition of power and heat flow by
restricton to the bare Hamiltonian, which describes the system
itself and lacks explicit time dependence. This is sometimes
conceptually simpler and was, e.g., also used in Refs. [12,13].
The authors argued [14] that the bare heat flows always pro-
vide a positive entropy production [15] for the three-level
maser, while this was not the case for full heat flows in their
treatment, which thus may violate the second law of thermo-
dynamics. (We use full and bare in the sense that they relate
to the Hamiltonian from which the flows are derived.) The
correct definition of heat and work is actually still an open
issue; see, e.g., the discussion on page 339 of [16], where
further references are given.
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In this work we study the definitions of work and heat
for the three-level maser coupled to a classical microwave
field, where the bath couplings are treated by a Lindblad
dissipator as outlined in Sec. II. Section III focuses on the
different definitions of heat and work, where we essentially
follow Ref. [14], showing a violation of entropy production
for the full approach. In Sec. IV we present a reformulation of
their expressions, which allows for the correct identification
of energies supplied by the baths. Using these we recover a
strictly positive entropy production for the full heat flows.

II. THE SYSTEM

We consider the three-level system of Scovil and Schulz-
DuBois [1], consisting of an upper (u) and lower (l) maser
level and the ground level (g) (see Fig 1). Throughout this ar-
ticle we set h̄ = kB = 1 in order to simplify the notation. The
full system Hamiltonian, H = H0 + V (t ), consists of the bare
Hamiltonian H0 = ωuσuu + ωlσll and a modulating external
field V (t ) = ε(eiωd tσlu + e−iωd tσul ), where ε is the strength of
the driving field, ωd its modulating frequency, and we use the
operators σi j = |i〉〈 j|. Without loss of generality the energy
of the ground state |g〉 is set to 0. The three-level system is
connected to two bosonic reservoirs (baths), which are labeled
by α, where α ∈ {u, l}. The bath α couples to the transition
|g〉 ↔ |α〉 with strength γα , where an average number of exci-
tations nα is available in the bath. The model and the analysis
of its steady-state behavior summarized below follow recent
work [5,13,14].

The time evolution of the system density operator ρ is as-
sumed to be Markovian and governed by the Lindblad master
equation [17]

ρ̇ = −i[H (t ), ρ] + Lu[ρ] + Ll [ρ], (1)

where the coupling to the baths is described by Lα[ρ] =
γαnαDσαg[ρ] + γα (nα + 1)Dσgα [ρ] with the dissipator
Dσ [ρ] = σρσ † − 1

2 {σ †σρ + ρσ †σ }.
To simplify the master equation we remove the time de-

pendence of the Hamiltonian by transforming the system to
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FIG. 1. Energy diagram of the three-level maser subjected to a
modulating field (dotted arrow), where the transitions g ↔ u and
g ↔ l (solid arrows) are coupled to different reservoirs. A finite value
of � = ωd − (ωu − ωl ) reflects the detuning between the modulating
field and the energy level difference.

a rotating frame [13,14]. For X = ωlσll + (ωl + ωd )σuu, we
define Arot = U (t )AU †(t ) according to the unitary operator
U (t ) = eiXt . While the dissipative terms are unaffected by the
choice of the rotating frame, the unitary part of the quantum
evolution is determined by the Hamiltonian

H̃ = H rot − X = −�σuu + ε(σul + σlu) (2)

with the detuning parameter � = ωd − (ωu − ωl ). Solving
Eq. (1) for the steady state in the rotating frame (details are
given in Appendix A) yields the net transition rate Ru→l from
the upper to the lower level,

Ru→l = A(γu, γl , nu, nl , ε)

F (γu, γl , nu, nl , ε,�)
(nu − nl ), (3)

where A and F are both positive [14] [see Eq. (A7)]. Thus
Ru→l has the same sign as the difference nu − nl between bath
occupations which is driving the transitions.

III. WORK, HEAT, AND ENTROPY

Let the average energy in the system be 〈E〉 = Tr{ρH}.
The typical definitions of full power and full heat flows in the
density matrix formalism are [10,11]

P = Ẇ = Tr{ρḢ}, Q̇ = Tr{ρ̇H}, (4)

where we use the convention that positive values of P and Q̇
correspond to an increase in energy in the system.

Alternatively, some authors apply an alternative definition
of the work and heat for systems coupled to a time-dependent
external field which is based on the bare Hamiltonian, 〈E0〉 =
Tr{ρH0} [5,12]. Based on the first law of thermodynamics the
bare flows are identified from

Ė0 = −iTr{ρ[H0,V (t )]} +
∑

α∈{u,l}
Tr{Lα[ρ]H0}, (5)

where the first (unitary) term is interpreted as the bare power
P0 and the second (dissipative) term as the sum of bare heat
flows Q̇0α from the respective baths to the system. These terms
can be evaluated in either the original or the rotating frame
due to the invariance of the trace under cyclic permutations of
operators. [This is simpler compared to the first definition with

full power and heat flow Eq. (4), where the transformations
[Ȧ]rot �= dArot/dt for A = H, ρ are more involved.]

From these definitions the steady-state bare power and heat
flow become (see Appendix B)

P0 = −Ru→l (ωu − ωl ),

Q̇0u = +Ru→lωu,

Q̇0l = −Ru→lωl . (6)

We note that the bare power and heat flow correspond to
the net transition rate Ru→l multiplied by the respective bare
transition energies from H0.

The second law of thermodynamics requires a positive def-
inite entropy production. Spohn’s entropy production function
for the engine reads [15]

σ = ∂S

∂t
− Q̇u

Tu
− Q̇l

Tl
, (7)

where S = Tr{ρ ln ρ} = Tr{ρrot
steady state ln ρrot

steady state} is the von
Neumann entropy [18] of the three-level system, which is
constant at steady state. The temperatures of the baths are
commonly related to the mean occupations as

Tα = ωα

ln
(
1 + 1

nα

) (8)

by using the appropriate Bose distribution function.
Using the bare heat flows from Eq. (6) Boukobza and

Tannor found [14]

σ0 = Ru→l

[
ln

(
1 + 1

nl

)
− ln

(
1 + 1

nu

)]
> 0, (9)

which is positive definite, as both factors have the same sign
of (nu − nl ) [see Eq. (3)]. In contrast, using the full heat
flows from Eq. (4) with temperatures from Eq. (8), Boukobza
and Tannor [14] detected negative entropy production for
some operation points. This suggested that the definition of
work and heat based on the bare Hamiltonian, (5), should be
preferred.

IV. RESOLUTION BY EFFECTIVE ENERGIES

Here, we rewrite the results for the full power and heat
flows evaluated from Eq. (4) in the form

P = −Ru→lωd ,

Q̇u = +Ru→l ω̃u,

Q̇l = −Ru→l ω̃l ,

(10)

with effective energies (see Appendix C)

ω̃u = ωu + �γu(nu + 1)

γu(nu + 1) + γl (nl + 1)
,

ω̃l = ωl − �γl (nl + 1)

γu(nu + 1) + γl (nl + 1)
. (11)

Comparing Eq. (6) with Eq. (10) we note that all flows are
proportional to the transition rate Ru→l , describing the round-
trip rate of the engine. However, there are different energy
factors in each term.
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For vanishing detuning, � = 0, the respective energy fac-
tors in Eq. (6) and Eq. (10) agree. Here, the heat fluxes from
the baths are determined by the level energies ωα and the
power transferred from the light field is given by the photon
energy ωd , as expected.

However, for finite detuning, i.e., � = ωd − ωu + ωl �= 0,
energy conservation does not allow for this structure, where
the full and the bare approach provide different remedies:
In the bare approach based on Eq. (5), the power supplied
from the ac field changes its energy factor ωd → ωu − ωl

[see Eq. (6)]. This appears not to be physical, as a quantized
ac field should have energies in portions of h̄ωd , and thus
may result in an error of the order �Ru→l in the power. In
contrast, for the full approach, the bare level energies are
replaced by effective ones, ωα → ω̃α [see Eq. (10)], which
satisfy ωd = ω̃u − ω̃l , so that energy conservation holds with
the ac frequency of the field.

Here we argue that the effective energies, Eq. (11), should
be taken seriously in the full approach and thus be used in the
definitions of the bath temperatures

T̃α = ω̃α

ln
(
1 + 1

nα

) . (12)

Then Eq. (7) provides

σ = − Q̇u

T̃u
− Q̇l

T̃l
= Ru→l

[
ω̃l

T̃l
− ω̃u

T̃u

]

= Ru→l

[
ln

(
1 + 1

nl

)
− ln

(
1 + 1

nu

)]
, (13)

which is identical to the entropy production function, Eq. (9),
from the bare approach and, most importantly, positive
definite.

Now, we want to highlight the particular meaning of the
energies ω̃u, ω̃l from Eq. (11). Due to lifetime broadening
the energies of levels u and l are smeared out by Lorentzian
spectral functions (here normalized to 1),

Aα (ω) = 1

2π

γα (1 + nα )

(ω − ωα )2 + γ 2
α (1 + nα )2/4

, (14)

with a full width at half-maximum (FWHM) γα (1 + nα ) re-
sulting from the decay of the states by relaxation to the ground
level. This allows for energy-conserving transitions between
level u and level l at the energy ωd imposed by the ac field
even if ωd �= ωu − ωl (see Fig. 2). Fermi’s golden rule pro-
vides the transition rate from the initial level u with the energy
ω (similar but not necessarily equal to ωu):

Wu→l = 2πε2Al (ω − ωd ).

Weighting with the density Au(ω) of the initial state and multi-
plying by the difference in occupation fu(ω) − fl (ω − ωd ) of
the levels (technically, fα is the ratio between the imaginary
part of the lesser Green’s function and the spectral function
[19]), we obtain the net transition rate

Ru→l = 2πε2
∫

dω Au(ω)Al (ω − ωd )[ fu(ω) − fl (ω − ωd )].

(15)
Neglecting the energy dependence of fα over the width of the
spectral functions (which would be relevant to study disper-
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FIG. 2. Sketch of the spectral functions, (14), for the upper and
lower levels, u and l . The black arrow shows the optical transition at
frequency ωd not matching the energy difference of the bare states.
The energies ω̃u and ω̃l are given by (11).

sive or Bloch gain [20]), we set fu(ω) − fl (ω − ωd ) ≈ ρuu −
ρll . Then some algebra [see Eq. (D1)] results in expression
(A6). This shows the equivalence of this treatment based on
the Green’s function with the density matrix calculations used
above.

Equation (15) shows that there is not a single definite en-
ergy involved for the upper and lower levels, if broadening is
taken into account. However, as the transitions occur with the
weight Au(ω)Al (ω − ωd ), we can identify the average energy
for the upper level involved in transitions

〈ω〉u =
∫

dω ωAu(ω)Al (ω − ωd )∫
dωAu(ω)Al (ω − ωd )

(16)

and obtain, after some algebra [see Eqs. (D1) and (D2)],
〈ω〉u = ω̃u with ω̃u from Eq. (11). The average energy for
the lower level involved is then 〈ω〉l = 〈ω〉u − ωd = ω̃l . Thus
we find that the effective levels from Eq. (11) are the average
energies involved in the optical transition, if level broadening
is taken into account. These are the average energies which
need to be added to or removed from the respective bath after
a transition has taken place in order to restore the previous
state. Therefore the bath properties at these energies are of
most relevance, which justifies the definition of temperature
via Eq. (12).

Energy exchange with the bath α at energies different from
ωα requires that the energies available in the baths cover
a range of several γα’s around ωα . In the Green’s function
picture, this is the basis for assuming an energy-independent
self-energy (i.e., a constant width in the spectral function).
For the Lindblad kinetics, the Markovian limit used requires
a short bath correlation time τB 	 1/γα [21] and, conse-
quently, a spectral width of the bath well surpassing γα .
This demonstrates again the consistency between the Green’s
function–based treatment and the density matrix calculations.

Let us finally consider the Carnot efficiency of the engine.
Reference [22] reported the occurrence of efficiencies above
1 − Tl/Tu for � > 0 in the semiclassical treatment of the ac
field. This is based on Eq. (15) in Ref. [22], which (in our
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notation) expresses the efficiency as

η = −P

Q̇u
= ωd

ω̃u
= 1 − ω̃l

ω̃u
. (17)

A positive power output (−P) from the engine is based on
Ru→l > 0 and thus requires nu > nl by Eq. (3). Then our new
definition of temperatures, (12), provides

nu > nl ⇒ T̃u

ω̃u
>

T̃l

ω̃l
⇔ ω̃l

ω̃u
>

T̃l

T̃u

so that Eq. (17) satisfies the Carnot efficiency η < 1 − T̃l/T̃u.

V. CONCLUSION

Both definitions of heat and work, applying either the
full or the bare system Hamiltonian, provide identical (and
positive definite) expressions for the entropy production for
the common three-level maser driven by thermal baths.
For the case of the full heat flow, it is crucial to carefully ana-
lyze the energies exchanged with the baths. These differ from
the bare level energies if the ac field does not match the transi-
tion frequency. Disregarding this can provide violations of the
second law as reported earlier [14]. While both the full and the
bare approach are thermodynamically consistent and provide
identical expressions for entropy production, the full approach
requires an elaborate description of the energies transferred to
the bath, which rely on the steady state in our treatment. Fur-
thermore, it is an open issue whether this description can be
extended to transient behavior, nonmonochromatic fields, or
noncyclic operation [22]. On the other hand, the bare approach
provides the transition frequency rather than the ac frequency
in the work output, which provides a (typically small) error.
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APPENDIX A: DETAILED DERIVATIONS
OF THE STEADY-STATE SOLUTION

After transforming to the rotating frame, Eq. (1) provides
the equations of motion for ρi j = 〈i|ρrot| j〉,

d

dt
ρgg = γu(nu + 1)ρuu + γl (nl + 1)ρll − (nuγu + nlγl )ρgg,

(A1)

d

dt
ρuu = γunuρgg − γu(nu + 1)ρuu + iε(ρul − ρ∗

ul ), (A2)

d

dt
ρll = γl nlρgg − γl (nl + 1)ρll − iε(ρul − ρ∗

ul ), (A3)

d

dt
ρul = i�ρul + iε(ρuu − ρll )

− [γu(nu + 1) + γl (nl + 1)]ρul/2. (A4)

At steady state (superscript “ss”), Eq. (A4) provides

ρss
ul = −ε

(
ρss

uu − ρss
ll

)
� + i[γu(nu + 1) + γl (nl + 1)]/2

. (A5)

Furthermore, we identify the net rate of transitions between u
and l due to the ac field:

Ru→l = −iε
(
ρss

ul − ρss∗
ul

) = C
(
ρss

uu − ρss
ll

)
with

C = ε2[γu(nu + 1) + γl (nl + 1)]

[γu(nu + 1) + γl (nl + 1)]2/4 + �2
. (A6)

Using ρgg = 1 − ρuu − ρll , Eqs. (A2), (A3), and (A6) provide
the system of equations

γunu = [γu(2nu + 1) + C]ρss
uu + (γunu − C)ρss

ll ,

γl nl = (γl nl − C)ρss
uu + [γl (2nl + 1) + C]ρss

ll ,

with the solution

ρss
uu = γuγl nu(nl + 1) + C(γunu + γl nl )

[γl (2nl + 1) + C][γu(2nu + 1) + C] − (γl nl − C)(γunu − C)
,

ρss
ll = γuγl nl (nu + 1) + C(γunu + γl nl )

[γl (2nl + 1) + C][γu(2nu + 1) + C] − (γl nl − C)(γunu − C)
,

so that

ρss
uu − ρss

ll = γlγu(nu − nl )

γuγl (3nunl + 2nu + 2nl + 1) + C[γu(3nu + 1) + γl (3nl + 1)]

is proportional to the occupation differences of the baths. Inserting this into Eq. (A6), we obtain Eq. (3) in the text, where

A = γlγu

4
[γu(nu + 1) + γl (nl + 1)]ε2,

F = γu(nu + 1) + γl (nl + 1)

2

γu(3nu + 1) + γl (3nl + 1)

2
ε2

+ γlγu

4
(3nunl + 2nu + 2nl + 1)

{
[γu(nu + 1) + γl (nl + 1)]2

4
+ �2

}
(A7)

are quadratic polynomials in ε. Thus the rate Ru→l ∝ ε2 for
a small coupling ε to the ac field, while it saturates for ε2 �

γ 2
u (nu + 1)2 + γ 2

l (nl + 1)2 + 4�2. A and F are identical to
the expressions in Eq. (13) in [14], where γ0α = γα/2 is used.
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APPENDIX B: HEAT AND WORK WITH
THE BARE HAMILTONIAN

The definition of heat flow from the bare Hamiltonian, (5),
provides the bare heat entering from bath u (note that the
energy of the ground level is 0),

Q̇0u = ωu〈u|Lu(ρ)|u〉 = ωu[γunuρgg − γu(nu + 1)ρuu].
(B1)

Note that the diagonal elements of ρ(t ) are identical in the
original and rotating frames. Thus, at steady state, Eq. (A2)
provides Q̇ss

0u = −iωuε(ρss
ul − ρss

lu) = ωuRu→l , and similarly
we get Q̇ss

0l = −ωlRu→l . Finally, the bare work, (5), done by
the field on our systems is

P0 = iTr{ρ[V (t ), H0]} = iTr
{
ρrot

[
V rot, H rot

0

]}
= iε(ωu − ωl )(ρul − ρ∗

ul ),

which at steady state provides Pss
0 = −(ωu − ωl )Ru→l so that

Q̇ss
0u + Q̇ss

0l + Pss
0 = 0, as required by energy conservation.

These are the terms provided in Eq. (6) without the superscript
“ss.”

APPENDIX C: HEAT AND WORK WITH
THE FULL HAMILTONIAN

With definition (4), we obtain the power transferred to the
system,

P(t ) = iεωdTr{ρ(|l〉〈u|eiωd t − |u〉〈l|e−iωd t )}
= iεωd (ρul − ρlu)

in ss= −ωd Ru→l ,

which corresponds to the net rate of absorbed photons
(−Ru→l ) times the photon energy ωd . [Note that we have
defined ρul in the rotating frame (see Appendix A), so that
ρul = 〈u|ρrot|l〉 = 〈u|ρ|l〉eiωd t .]

For the heat flow, the unitary evolution of ρ(t ) due
to the Hamiltonian does not contribute, as Tr{[ρ, H]H} =
Tr{ρ[H, H]} = 0, where we have used the invariance of the
trace under cyclic permutations. Thus we can restrict our-
selves to the nonunitarian part here. Then the part with H0

provides the heat current Q̇0u from Eq. (B1). We have to add
the part with V (t ) and find

Q̇u = Q̇0u + ε〈u|Lu[ρ]|l〉eiωd t + 〈l|Lu[ρ]|u〉e−iωd t

= Q̇0u − ε
γu(nu + 1)

2
(ρul + ρlu).

Using Eqs. (A5) and (A6) we get at steady state

Q̇ss
u = Q̇ss

0u − γu(nu + 1)

2

Re
{
ρss

ul

}
Im

{
ρss

ul

}Ru→l = Ru→l ω̃u, (C1)

Q̇ss
l = Q̇ss

0l − γl (nl + 1)

2

Re
{
ρss

ul

}
Im

{
ρss

ul

}Ru→l = −Ru→l ω̃l , (C2)

with

ω̃u = ωu + �γu(nu + 1)

γu(nu + 1) + γl (nl + 1)
,

(C3)

ω̃l = ωl − �γl (nl + 1)

γu(nu + 1) + γl (nl + 1)
,

where Re{z} and Im{z} denote, respectively, the real and imag-
inary parts of a complex value z. The full power and heat flow
satisfy energy conservation, Pss + Q̇ss

u + Q̇ss
l = 0, and provide

Eqs. (10) and (11), where we have omitted the superscript
“ss.”

APPENDIX D: CONVOLUTION OF LORENTZIANS

We consider the function

P(ω,�) = 1

2π

2γu

ω2 + γ 2
u

2γl

(ω − �)2 + γ 2
l

,

which is the product of two spectral functions with FWHM 2γα . Then with the residue theorem we find∫
dω P(ω,�) = i

[
2γu

2iγu

2γl

(iγu − �)2 + γ 2
l

+ 2γu

(� + iγl )2 + γ 2
u

2γl

2iγl

]

= 2γl
[
(� + iγl )2 + γ 2

u

] + 2γu
[
(� − iγu)2 + γ 2

l

][
(� − iγu)2 + γ 2

l

][
(� + iγl )2 + γ 2

u

]
= 2(γu + γl )[�2 − 2i�(γu − γl ) − (γu − γl )2]

[�2 + (γu + γl )2][�2 − 2i�(γu − γl ) − (γu − γl )2]
= 2(γu + γl )

�2 + (γu + γl )2
, (D1)

where the third identity is verified by comparing the results of the products in the numerator and denominator, respectively. The
main result is that we obtain a Lorentzian with the sum of the individual widths. Similarly we find∫

dω ωP(ω,�) = i

[
2γu

2iγu

iγu2γl

(iγu − �)2 + γ 2
l

+ 2γu(� + iγl )

(� + iγl )2 + γ 2
u

2γl

2iγl

]

= 2iγuγl
[
(� + iγl )2 + γ 2

u

] + 2γu(� + iγl )
[
(� − iγu)2 + γ 2

l

][
(� − iγu)2 + γ 2

l

][
(� + iγl )2 + γ 2

u

]
= 2γu�[�2 − 2i�(γu − γl ) − (γu − γl )2]

[�2 + (γu + γl )2][�2 − 2i�(γu − γl ) − (γu − γl )2]
= 2γu�

�2 + (γu + γl )2
. (D2)
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