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Quantum memories, devices that can store and retrieve photonic quantum states on demand, are essential
components for scalable quantum technologies. It is desirable to push the memory towards the broadband
regime in order to increase the data rate. Here, we present a theoretical and experimental study of broadband
optical memory based on the electromagnetically induced transparency (EIT) protocol. We first provide a
theoretical analysis of the issues and requirements needed to achieve broadband EIT memory. We then present
our experimental efforts for the movement of EIT memory in cold atoms towards the broadband or short-pulse
regime. A storage efficiency of ∼80% with a pulse duration of 30 ns (corresponding to a bandwidth of 14.7 MHz)
is realized. Due to limitations of the available intensity of the control beam, we could not achieve an optimal
storage for the even shorter pulses but were still able to obtain an efficiency of greater than 50% with a pulse
duration of 14 ns (31.4 MHz). The time-bandwidth product achieved at an efficiency of 50% is 1267(89).
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I. INTRODUCTION

Quantum memories are crucial components in linear-
optics-based quantum computation and long-distance quan-
tum communication based on the quantum repeater protocol
[1,2]. Significant efforts and progress have been made for
the development of quantum memories over the past two
decades. The parameters used to evaluate the performance of a
quantum memory include the fidelity, efficiency, storage time,
bandwidth or capacity, and noise level. The development of
a quantum memory with a high performance in all aspects
remains a great challenge. In this work, we focus our dis-
cussion on achieving a broad bandwidth while maintaining
a high efficiency for coherent optical memories based on the
electromagnetically induced transparency (EIT) protocol.

Optical memory based on the off-resonant Raman transi-
tion is generally considered to be advantageous to achieving
a high bandwidth. The Raman memory protocol has been
utilized in many works to push the bandwidth towards
∼100 MHz – 1 GHz range with an efficiency ranging from
∼10–30% [3–8]. In a recent work the same protocol has been
applied to achieve an efficiency of 82% at a bandwidth of
∼100 MHz [9].

The on-resonant two-photon transition in a �-type atomic
system also allows for the implementation of broadband opti-
cal memory, as long as the optical depth of the media is high
and the intensity of the control beam is strong enough [10–13].
The character of the memory is quite different depending on
the ratio of the spectral bandwidth of the probe pulse (denoted
as B) to the EIT transparent bandwidth (�ωEIT). If B is equal
to or larger than �ωEIT, the memory operation involves coher-
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ent absorption of the probe pulse by the two Autler-Townes
absorption peaks, which is called the Autler-Townes-splitting
(ATS) protocol [12–14]. The light-matter interaction under
such a condition is nonadiabatic and involves an oscillation
between the optical coherence and the collective ground-state
coherence (also called spin wave). In the opposite case (B <

�ωEIT), the memory operation is an EIT protocol which relies
on adiabatic elimination of the absorption and coherent trans-
fer between the optical field and the collective atomic spin
wave. The features of and differences between the EIT and
ATS protocols have been well studied [10,12,13]. One earlier
study has proposed a scheme for broadband storage using
EIT protocol with matched Fourier components for the probe
and control laser beams [15]. Experimentally, a bandwidth of
14.7 MHz with an efficiency of 8.4% has been demonstrated
using the ATS protocol [12]. An efficiency of up to 92% has
been obtained using the EIT protocol, but the bandwidth is
only up to 2.2 MHz [16–18].

In this paper, we explore the issues and requirements that
need to be resolved in order to extend the bandwidth of adia-
batic EIT memories. Aside from efficiency, we invoke another
important figure of merit for a memory: the waveform likeness
(WL) [16,18,19], which quantifies the degree of distortion
of a probe pulse. In the single-photon regime, the waveform
likeness is related to the overlap of the temporal mode of the
photons with and without storage, which is crucial in some
applications of quantum memory. We show that waveform
likeness can be considered as an experimental parameter to
evaluate the degree of adiabaticity of a memory. For a steady-
state EIT spectrum, we identify that it can be categorized
into two regimes in which the EIT transparent bandwidth is
proportional to the intensity or field amplitude of the con-
trol field, for low and strong control fields, respectively. We
term these two regimes the intensity-linear or field-linear EIT
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FIG. 1. (a) Transition scheme of the �-type EIT system. |g〉 and
|s〉 are the two ground states and |e〉 is the excited state. �p,c stand for
the Rabi frequency of the probe and the control field, respectively.
(b) Photonic storage through the EIT protocol. In both graphs, the
yellow shaded area denotes the spin coherence in the two ground
states.

bandwidth regime. For a pulsed probe case, we show that EIT
memory can be categorized into the narrowband or broadband
regime, with B < � or B � �, respectively, where � is the
spontaneous decay rate of the probe transition. We show that
EIT memory is limited by the efficiency in the narrowband
regime and by the waveform likeness in the broadband regime.
We clarify that a high efficiency and a high waveform likeness
can be maintained for EIT memory even in the broadband
regime. The quantitative requirements to achieve such high-
performance storage are given. Our theoretical study provides
essential physical insight for the implementation of a broad-
band EIT memory.

We also present experimental efforts aimed toward produc-
ing a broadband EIT memory. We achieve a storage efficiency
of ∼80% for probe pulses with a full width at half maximum
(FWHM) temporal duration (Tp) of 30 ns, which corresponds
to a bandwidth of 14.7 MHz. Limited by the available control
intensity, we cannot achieve the optimized efficiency for Tp <

30 ns but are still able to obtain an efficiency above 50% for
Tp = 14 ns (31.4 MHz). The time-bandwidth product (TBP),
defined as the ratio of the storage time at 50% storage effi-
ciency to the FWHM duration (Tp) of the input probe pulse,
is an important figure of merit for memory applications. We
achieve a TBP of 1267(89).

II. THEORETICAL STUDY OF BROADBAND
EIT STORAGE

The transition scheme of the �-type system for EIT stor-
age is shown in Fig. 1(a). The population is assumed to be
prepared in the ground state, |g〉. The weak probe field, to be
stored and retrieved on demand, drives the |g〉 ↔ |e〉 transition
with a Rabi frequency of �p. The control field, with a Rabi
frequency of �c, drives the |s〉 ↔ |e〉 transition.

Under the rotating-wave approximation, the system Hamil-
tonian can be described by

Ĥ = −δpσ̂ee − δ2σ̂ss + 1
2 (�pσ̂eg + �cσ̂es + H.c.), (1)

where σ̂i j ≡ |i〉 〈 j| denotes the atomic operator, δp,c denotes
the one-photon detunings of the probe and control field, re-
spectively, and δ2 = δp − δc denotes the two-photon detuning.

Theoretical analysis based on the Maxwell-Schrödinger
equation (MSE) and the optical Bloch equations (OBEs) is
carried out. Under the weak-probe perturbation, the relevant
equations are

∂tσeg = (iδp − γge)σge + i

2
�cσsg + i

2
�p,

∂tσsg = (iδ2 − γsg)σsg + i

2
�∗

cσeg, (2)(
1

c
∂t + ∂z

)
�p = i

D�

2L
σeg, (3)

where D and L denote the optical depth and the length of the
atomic media, respectively [17]. γge is the decay rate of the
optical coherence σeg, and it is �/2 if spontaneous decay is
the only relaxation mechanism. γsg is the ground-state deco-
herence rate.

A. Spectral response

Equations (2) and (3) can be easily solved in the frequency
domain (ω space) by Fourier transformation [17]. We consider
the continuous-wave control field with a constant amplitude.
Due to the weak-probe approximation, its depletion inside the
medium is negligible. Therefore, the Rabi frequency of the
control field is treated as a constant. Without loss of generality,
we also consider �c to be a real number. The ω-space probe
field can be obtained as follows:

Wp(ω, z) = Wp(ω, 0) exp[ik(ω)z], (4)

where

k(ω) = ω

c
+ D�

4L

ω

iω
[
i(ω + δp) − �

2

] + �2
c

4

≡ k0(ω) + k1(ω),

(5)
where k0(ω) = ω/c is the free-space wave number, k1(ω)
is the spectral response function of the EIT medium, and
Wp(ω, 0) is the spectral amplitude of the input probe pulse.
For simplicity, we assume δc = 0 and the ideal case with γsg =
0. For steady-state probe transmission, we can set ω = 0 and
obtain T (δp) = exp{−2 Re[k(δp)]L}. The FWHM bandwidth
of the EIT transparent window (�ωEIT) is an important pa-
rameter and can be obtained by

�ωEIT =
√

D − ln(2) + 2 ln(2)
(
�2

c/�
2
) −√

g(D,�c)

2 ln(2)
�,

(6)
where

g(D,�c) = [D − ln(2)]
[
D − ln(2) + 4 ln(2)

(
�2

c/�
2
)]

. (7)

The relationship between �ωEIT and �c is depicted in
Fig. 2(a). In the weak-control regime (�c 	 √

D�), the EIT
transparent bandwidth is [17]

�ωEIT ≈
√

ln(2)
�2

c√
D�

. (8)

The EIT transparent bandwidth is linearly proportional to �2
c

or the control intensity, so we term it the intensity-linear band-
width regime. In the strong-control regime (�c � √

D�),
�ωEIT ≈ �c, which scales linearly with the control field am-
plitude, so we term it the field-linear bandwidth regime. By
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FIG. 2. (a) The black thin-solid, green thick-solid, and black
dotted curves denote the FWHM EIT transparent bandwidth (�ωEIT)
versus �c for optical depths D of 10, 100, and 1000, respectively.
The red dashed and blue dash-dotted lines indicate the approximate
values of �ωEIT in the intensity-linear bandwidth regime for D =
1000 and the field-linear bandwidth regime, respectively. (b) The
ηstore for the required TE to achieve F of a given value is plotted.
F = 99.5%, 98.5%, 97.5%, 95.5% for the curves from top to bot-
tom. (c) and (d) depict TE and WL versus the different bandwidths
of the input probe pulse (B) for various optical depths. Here, the �c

for different D are determined by η = 2.43.

setting �ωEIT equal to each other for both regimes, the tran-
sition �c between these two regimes can be estimated to be
�c ≈ 1.7

√
D�. This justifies our definition of weak or strong

control regime and explains the trend in Fig. 2(a) where the
intensity-linear regime is wider for a larger optical depth.
It should be pointed out that intensity-linear or field-linear
regime does not necessarily correspond to the EIT or ATS pro-
tocol for the memory [20]. As mentioned in the Introduction,
the relative ratio of the bandwidth of the probe pulse (B) to
the EIT transparent bandwidth (�ωEIT) determines the EIT
or ATS regime. The intensity-linear or field-linear bandwidth
regime does not necessarily determine the broadband or nar-
rowband EIT storage regime. The broadband or narrowband
EIT storage depends on the relative ratio between B and �, as
will be explained later.

B. Pulsed probe fields

In real applications, one needs to store optical probe pulses
of a finite bandwidth, instead of a continuous wave. We con-
sider probe pulses with a temporal Gaussian profile with an
intensity FWHM duration of Tp. In the frequency domain, the
Rabi frequency of the probe pulse reads

Wp(ω, 0) = Tp�p0√
4 ln(2)

exp

(
− ω2T 2

p

8 ln(2)

)
, (9)

where �p0 is the peak Rabi frequency of the input probe pulse
in the time domain. The FWHM bandwidth B of the probe
pulse in ω space is B = 4 ln(2)

Tp
. We consider the on-resonance

case for the probe and control fields (δp = δc = 0) and the
ideal case with γsg = 0 and γge = �

2 . For the general case,
readers can refer to Ref. [17].

The solution of the slow light pulse in the time domain
can be obtained using Eqs. (4), (5), and (9) and Fourier
transforming the probe pulse back to the time domain as

follows [17]:

�p(t, z = L) = 1√
2π

∫ ∞

−∞
dω e−iωtWp(ω, 0)eik(ω)L. (10)

Applying a Taylor expansion of k1(ω) with respect to ω, one
obtains the dispersion terms of an EIT medium,

k1(ω) =
∑

n

anω
n a1 = D�

�2
cL

, a2 = i
2D�2

�4
cL

,

a3 = 4D�
(
�2

c − �2
)

�6
cL

, a4 = i
8D�2

(
2�2

c − �2
)

�8
cL

, (11)

where the explicit forms of the dispersion terms up to O(ω4)
are written down. The dispersion term O(ω) is related to group
delay [17], which reads

Td = L

vg
= L

c
+ D�

�2
c

, (12)

where vg is the group velocity of the probe pulse in the EIT
medium [17]. For the later use, we define a parameter η by

η ≡ D�

�2
cTp

. (13)

When vg 	 c, η ≈ Td/Tp. It should be noted that the term
L/c in Td may not be negligible in the short pulse regime.
O(ω2) and O(ω3) are related to pulse broadening and pulse
asymmetry, respectively [17,21]. The ratio of the absolute
value of O(ω3) to O(ω2) for a pulse of bandwidth B is∣∣∣∣O(ω3)

O(ω2)

∣∣∣∣ =
∣∣�2

c − �2
∣∣

�2
c

B

�
. (14)

If this ratio is negligible one can keep up to the O(ω2) term
only, and an analytic form of the probe pulse solution can be
obtained. The details can be found in [17]. In the general case,
the slow light transmission efficiency (TE) can be exactly
calculated by

TE =
∫

dω|Wp(ω, 0)|2 exp{−2z Im[k(ω)]}∫
dω|Wp(ω, 0)|2 . (15)

The ratio |O(ω3)/O(ω2)| in Eq. (14) is smaller than (1 +
�2

�2
c
) B
�

= [ B
�

+ 4 ln(2) η

D ], where Eq. (13) is used. We focus our
discussion on EIT memory in the high optical depth regime
(e.g., D > 100) and η is chosen around 2–3, as will be dis-
cussed later. Therefore, η

D 	 1 is valid. In the narrowband
regime, B 	 � and thus |O(ω3)/O(ω2)| 	 1. The formula-
tion for keeping the dispersion up to the O(ω2) term is already
a good approximation. On the other hand, in the broadband
EIT storage regime (B � �), the O(ω3) term could be larger
than the O(ω2) term and should be considered, which may
lead to pulse distortion. We next consider the contribution
of even higher order dispersion terms in the broadband EIT
regime. Note that the ratio of the higher order even and odd
dispersion terms, O(ω2n+2)/O(ω2n) and O(ω2n+3)/O(ω2n+1)
with n = 1, 2, 3, . . . , is ≈ ( B

�c
)2. Since we consider the stor-

age in the EIT protocol, the condition B < �ωEIT is valid.
From Fig. 2(a), we know that �ωEIT < �c is always valid.
Thus, ( B

�c
)
2

< ( B
�ωEIT

)
2 	 1 is valid. A reasonable approxi-
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mation can be obtained by neglecting the dispersion terms of
O(ω4) and higher.

In the EIT memory protocol, the control field is turned off
adiabatically to convert the optical probe field into a collective
atomic spin wave and then retrieves the optical field by turning
on the control field when desired. In the dark-state polariton
picture, the storage and retrieval process can be considered
as a coherent conversion between the optical field and atomic
spin wave [22]. However, even if the control field is nonadia-
batically (instantly) turned on and off, the additional energy
loss is in the order of vg/c, which is very small for most
situations [23,24]. In the storing process, one needs to select
a suitable �c such that the group velocity is slow enough
and almost the whole probe pulse can be compressed into the
media [17]. Also, the timing when the control field is turned
off needs to be suitable, such that leakage at the front and rear
tails of the probe pulse is minimized [17].

To quantify this leakage loss, we define an operational
efficiency, termed F . Then, the overall storage efficiency (SE)
of a memory can be estimated through the product of the
transmission efficiency (TE) of the slow light and F , SE =
TE × F . We emphasize that there may exist additional losses
during storage and retrieval processes and the storage period
due to the finite γsg, which we set to zero for simplicity [24].
In order to compress almost the whole probe pulse into the
atomic medium, it is necessary to choose a suitable �c smaller
than a certain value [and thus η is larger than a certain value
denoted by ηstore obtained through Eq. (13)] to enable F to
approach unity. Fig. 2(b) depicts the relationship between the
TE and ηstore for some given F ’s (F = 95.5%–99.5%). For a
smaller optical depth and thus a smaller TE, the broadening
effect is more severe [17] such that ηstore needs to be larger to
minimize the tail leakage. More quantitative details about how
to calculate these curves are described in the Appendix. We
are only concerned with the high TE cases, e.g., TE � 80%.
In those cases, ηstore has a weak dependence on TE in order
to maintain a fixed F of near unity. In other words, one may
keep ηstore roughly constant (around 2–3) to maintain a given
small leakage loss. Although TE is actually dependent on D,
we plot the curves of constant F versus TE but not D because
it allows one to directly estimate the SE by the product of TE
with F .

The results for calculation of the slow light transmission
using Eq. (15) versus the probe bandwidth (B) under the
constraint of η = 2.43, which corresponds to F ≈ 98.5%, are
shown in Fig. 2(c). The storage efficiency is thus mainly
determined by TE with an uncertainty of less than 1.5%.
From Fig. 2(c), we can see that, for smaller B’s, TE is nearly
constant with its value depending on the optical depth (D).
With a larger D, the bandwidth of the constant TE extends
to a wider value, roughly proportional to

√
D�. This trend of

nearly constant TE below a certain bandwidth is understand-
able and is explained below. If the probe bandwidth is in the
intensity-linear regime, following Eqs. (8) and (13), η can be
rewritten as η ∝ √

D B
�ωEIT

. For a fixed η and a fixed D, the
ratio of the pulse bandwidth to the EIT bandwidth is fixed
such that the slow light transmission stays constant. From
Fig. 2(c), one can also observe that the bandwidth range of
the TE plateau is larger for a larger D. With a constant η, a

FIG. 3. (a) and (b) The input (blue solid) and output probe (red
dashed) pulses with Tp of 4/� and 0.04/�, respectively, for D =
1000 and η = 2.43. The transmission and waveform likenesses for
the slow light pulse are 96.82% and 99.84% in (a) and 84.85% and
39.30% in (b), respectively. The EIT transmission spectrum, phase
shift, and probe pulse spectrum, corresponding to the parameters
used in (a) and (b), are plotted in (c) and (d), respectively. The
maximum phase shift is normalized to unity for clarity.

larger D means that the ratio B
�ωEIT

is smaller. Therefore, more
frequency components of the probe pulse lie in the central
region of the EIT transparent window, which leads to a larger
transmission.

As can be seen in Fig. 2(c), when the bandwidth of the
probe pulse B increases further, the transmission drops and a
dip structure appears and then increases toward unity. This dip
structure appears when the pulse bandwidth is on the order of
the spectral separation of the two Aulter-Townes absorption
peaks, which is ∼�c, such that the probe absorption is at
a maximum. For an even higher B, a significant portion of
the pulse spectral component lies beyond the Aulter-Townes
absorption peaks in the far-detuned and nearly transparent
regime. Therefore, the transmission rises again. Although TE
is high in this circumstance, the probe pulse experiences a se-
vere distortion because the high order dispersion terms are not
negligible. As an example, Fig. 3(a) and 3(b) depict the two
slow light pulses obtained with Tp of 4/� and 0.04/�, respec-
tively, after passing through an EIT medium with D = 1000
and η = 2.43. Figures 3(c) and 3(d) depict the corresponding
EIT transmission, phase shift and pulse spectrum. For the
long pulse case, the spectrum is relatively narrow, within the
transparent window. Also, the pulse spectrum lies in a spectral
range of nearly linear phase shift dependence on the detuning.
Thus, the group velocity is well defined, and the slow light
pulse resembles the input pulse with a certain group delay.
For the short pulse case, however, the spectrum extends over
the two Aulter-Townes absorption doublets as well as falling
within the complicated profile of the phase shift spectrum.
The pulse not only experiences significant absorption but also
significant dispersion leading to significant distortion of the
output pulse. This serious distortion in the temporal mode may
introduce some complications in quantum memory applica-
tions. In addition to the efficiency, it is necessary to define
another figure of merit to quantify this distortion to evaluate
the performance of an optical memory.
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C. Waveform likeness

Based on the above discussion, we invoke a figure of merit,
the waveform likeness (WL), to quantify the extent of pulse
distortion, formulated as follows:

WL ≡
∣∣∫ ∞

−∞ �∗
p,in(t − Td )�p,out (t )dt

∣∣2∫ ∞
−∞ |�p,in(t )|2dt

∫ ∞
−∞ |�p,out (t )|2dt

. (16)

The waveform likeness reflects the similarity between the
input and slowed (or retrieved) probe pulses. It has been
mentioned in many papers, although a different term might
be used [16–19]. We will explain later that it has a direct
relation to the adiabaticity of the memory. Figure 2(d) depicts
the WLs for different input pulse bandwidths, corresponding
to the TE shown in Fig. 2(c). The severe pulse distortion at a
high bandwidth can be manifested by degradation of the WL.
For clarity, we do not show the WL below 50% in Fig. 2(d).
Similar to the TE, there is a plateau for WL in the low B
regime. For a larger D, this plateau extends over a wider range,
but is slightly smaller than that of the TE. This suggests that
the WL is a more stringent parameter than TE at a high pulse
bandwidth.

As can be seen in Fig. 3(b) for the broadband case, the
output pulse profile splits over a long period of time. Although
the TE remains high (84.85%), the WL is very low (39.3%).
This highlights the need to introduce the parameter WL. In the
case illustrated in Fig. 3(b), the fragmentary signals needed to
be collected over a long time window to maintain the desired
SE. This may affect storage feasibility for quantum memory
applications, especially in the single-photon regime since the
noise makes it difficult to collect a signal over a long time
window. In addition, the group delay is not well defined in
the broadband case. A certain portion of the pulse is delayed
with sufficient time but a front tail virtually without any delay
exists. It is therefore not feasible to store the probe pulse with
a negligible amount of leakage.

1. Broadband limit

The numerator in the definition of WL in Eq. (16) can be
simplified to

WL ∝
∣∣∣∣∫ dω|Wp(ω, 0)|2e

i(k1(ω)L− D�ω

�2
c

)
∣∣∣∣2

. (17)

The expression k1(ω) of Eq. (5) can be written as

k1(ω)L = D�

�2
c

ω

1 − 2i ω�
�2

c
− 4ω2

�2
c

. (18)

In the broadband EIT memory regime, the condition B � �

is valid. With the EIT memory protocol, the condition B <

�ωEIT < �c is valid. Therefore, �c > B � �, and we have
�
�c

	 1 and B
�c

< 1. By replacing ω by the pulse bandwidth

B, the term 2 ω�
�2

c
in the denominator of Eq. (18) is thus much

smaller than unity and can be neglected. In this situation,
k1(ω) is almost a real number and reads as follows:

k1(ω)L � D�ω

�2
c − 4ω2

. (19)

Thus, the transmission efficiency of the output probe pulse is
near unity, as can be seen from Eq. (15) because Im[k1(ω)]

is near zero. This is understandable since the EIT transparent
window is very wide and has a flat-top profile in the broad-
band regime, as shown in Fig. 3(d). If B 	 �c, almost all
the pulse spectrum lies in the near-unity transparent window,
which leads to a near-unity transmission.

Because WL is actually determined by the relative inter-
play between Wp and k1(ω), we can consider all spectral
behaviors to be normalized to B. We define k̃1(ω̃) = k1(ω̃B)
and W̃p(ω̃) = Wp(ω̃B), where ω̃ = ω

B . Considering the differ-
ent bandwidth B, W̃p(ω̃) remains the same and the WL of the
spectral integral Eq. (17) is determined by k̃1(ω̃) alone, which
reads

k̃1(ω̃)L = D�

B

ω̃(
�c
B

)2 − 4ω̃2
. (20)

Here, we introduce two parameters: ξc and ξD, defined as

ξc ≡ �c

B
,

ξD ≡ D�

B
. (21)

Therefore, Eq. (20) can be rewritten as

k̃1(ω̃)L ≈ ξD
ω̃

ξ 2
c − 4ω̃2

. (22)

If we keep the same values for ξc and ξD when varying
B, the normalized response k̃1(ω̃)L can be maintained ex-
actly at the same value by adjusting �c and D according to
Eq. (21) with �c = ξcB and D = ξD

B
�

. Since the same WL
is maintained for the normalized spectrum, it is the values
of ξc and ξD which determine the criterion for the waveform
likeness. These two parameters connect to η by η = 1

4 ln(2)
ξD

ξ 2
c

.
For simplicity, hereafter, we consider ξc and η as the two
independent variables, while ξD can be determined based on
the other two parameters. Thus, the whole picture of WL in the
broadband limit can be summarized by η and ξc. It should be
pointed out that ξc denotes the ratio of the EIT bandwidth (in
the strong control limit) to the bandwidth of the input probe
pulse. Conceivably, a larger ξc means that the probe spectrum
is well located in the central EIT window, which results in a
high WL.

Note that once (ξc, η) is fixed, WL converges to a constant
value in the large bandwidth limit, as depicted in the example
of Fig. 4(a). A numerical simulation of the convergent WL
for different (ξc, η) with a given large B of 880� is shown
in Fig. 4(b). In the broadband EIT regime, one can use the
information in Fig. 4(b) to determine the WL and estimate
the required experimental parameters (D,�c) by Eq. (21). In
other words, under the condition of B/� � 1, all information
about WL has been mapped in Fig. 4(b). The trend of WL is
easily captured in Fig. 4(b): decreasing η and increasing ξc is
favorable to WL. However, there is a minimum requirement
for η such that the storage of almost the whole pulse is pos-
sible. For a fixed η of 2.5, WL is determined solely by ξc,
as depicted in Fig. 4(c). In the high-WL condition, the pulse
distortion mainly comes from the third-order dispersion term.
Under such a condition, the approximate analytical form for
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FIG. 4. (a) Solid curves denoting the WLs simulated with different bandwidths with fixed (ξc, η) = (5.18, 2.77). (b) WLs for different
(ξc, η) when B/� � 1. In the simulation, B/� = 880. Note that WL will converge to the value in this figure in the broadband limit. (c) Cross
section of (b) along the ξc axis for η = 2.5.

WL ≈ 1 can be obtained by

WL ≈
[

1 − 5.4 ×
(

η

ξ 2
c

)2]2

. (23)

With a given parameter set of (ξc, η), the approximate WL is
also determined.

2. Adiabatic storage

Experimentally, the three variable parameters are D, �c,
and Tp (or B). By putting the relation of ξc into that of η and
reducing �c, one gets

DTp� = ηξ 2
c × [4 ln(2)]2. (24)

In Ref. [10], the parameter DTp� has been identified as a
measure of degree of adiabaticity in EIT storage, with a larger
value indicating a higher degree of adiabaticity. Therefore, we
term it the adiabaticity parameter. As mentioned before, the
parameter η must be larger than a certain value (e.g., ∼2.5)
in order to store most of the probe pulse in the media. The
adiabaticity parameter DTp� is thus mainly determined by ξc.
Once both η and ξc are determined, the adiabaticity parameter
can be directly link to WL through Eq. (23). Due to this direct
connection, one can reverse the logic and consider WL as an
experimentally observable parameter useful for evaluating the
degree of adiabaticity of the memory.

The dashed line in Fig. 5(a) depicts an example of the cal-
culated WL through Eq. (23) versus the adiabaticity parameter
for D = 1000 and η = 2.5. The solid line indicates the WL

FIG. 5. (a) WL versus DTp�. Here, we fix D = 1000 and vary Tp.
The solid curve is based on the numerical simulation and the dashed
curve is calculated through Eq. (23). (b) WL as a function of Tp and D
in logarithmic-logarithmic scale. In both graphs, η = 2.5 is assumed.

obtained from the numerical calculation. The analytic formula
matches the numerical calculation at high WLs but shows
some deviation at lower WLs. Fig. 5(b) depicts the numerical
calculation of the two-dimensional contour plot of WL versus
Tp� and D for η = 2.5. It is evident that the WL is nearly
constant for a constant product of DTp�, which is expected as
mentioned above.

In comparison with the ATS protocol [12,13], which uti-
lizes the nonadiabatic process to convert the polarization
coherence into spin coherence, the value DTp� is located
between 1 and 100, and therefore the WL is not high. In
the ATS protocol, pulse distortion comes from the oscillation
between the polarization and spin coherence and one extracts
one of the pulses but not all of the photonic signal in the
temporal domain. If one only focuses on the extracted pulse, it
is not severely distorted but retains a Gaussian shape [12,13].
However, there is certainly a sacrifice in efficiency. In the
EIT protocol, all optical signals in the temporal domain are
included in the evaluation of WL. It is possible to reach a high
WL and a high SE simultaneously for adiabatic EIT storage.
However, there is a high demand for D and �c, which will be
discussed below.

D. Experimental requirements

In this section, we provide a guide on the required optical
depth D and control intensity (characterized by �c) when
implementing a broadband EIT memory with values of SE
and WL above a given threshold. Figures 6(a) and 6(b) de-
pict two representative examples of TE and WL versus D
for the narrowband and broadband cases, with B/� of 0.277
and 693.15, respectively, with η = 2.5 to satisfy the storage
requirement. In the narrowband case, the WL is larger than the
TE, while the situation is the opposite for the broadband case.
In other words, TE (WL) is the bottleneck for the operation of
the narrowband (broadband) EIT storage. From many of these
plots of different bandwidth (B), one can plot WL (or TE)
versus B under the condition that TE (or WL) is kept at a given
fixed value. As one representative example, Fig. 6(c) [6(d)]
depicts WL (TE) versus B for TE (WL) kept at a fixed value
of 0.9 (red circles) and 0.8 (blue squares). From Fig. 6(c), it
can be seen that WL (TE = 0.9) or WL (TE = 0.8) is larger
than 0.9 or 0.8, respectively, for B smaller than a certain value
(denoted as BM) of ≈2.5�. For B > BM , WL of a given fixed
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FIG. 6. (a) and (b) depict the TE and WL versus D for a given Tp (or B) with Tp� = 10 and 0.004 or B/� = 0.277 and 693.15, respectively.
Here, �c is determined by the relation η = 2.5. (c) Red circles (blue squares) depict WL versus B for TE fixed at 0.9 (0.8). (d) Red circles
(blue squares) depict TE versus B for WL fixed at 0.9 (0.8). Red dotted (blue dash dotted) lines indicates the y-axis value of 0.9 (0.8) in (c) and
(d). The black dotted line at B = BM ≈ 2.5� divides the EIT storage into two regimes: TE-limited (WL > TE) and WL-limited (TE > WL)
regime for B < BM and B > BM , respectively. (e) The required optical depth (Dreq) versus the bandwidth B. (f) The corresponding required �c

for Dreq in (e). In (e) and (f), the red circles (blue squares) denote the required D and �c needed to satisfy TE = 0.9 (TE = 0.8) and the red
plus (blue cross) makers denote the Dreq and �c,req to satisfy WL = 0.9 (WL = 0.8). The blue dotted line in (e) and (f) indicates the boundary
of the TE-limited and WL-limited regimes.

TE is smaller than that TE. The EIT storage is thus naturally
divided into two regimes: the narrowband regime (B < BM)
which is TE limited and the broadband regime (B > BM)
which is WL limited. One can apply similar argument to the
case of Fig. 6(d) and reach the same conclusion.

The corresponding D and �c for the four conditions in
Figs. 6(c) and 6(d) are plotted in Figs. 6(e) and 6(f), respec-
tively. It is evident that the required optical depth (denoted
as Dreq) and control Rabi frequencies (denoted by �c,req) are
constrained by TE or WL when B � BM or B � BM , respec-
tively. A similar trend of the TE- and WL-limited regimes still
holds if one chooses different threshold values for TE and WL,
although the exact quantities Dreq and �c,req may change. In
the memory application, one may want to obtain a TE and WL
greater than a certain threshold value simultaneously (e.g.,
with TE � 0.9 and WL � 0.9 or another combination of the
values of TE and WL). One can choose D and �c greater
than the larger ones among Dreq and �c,req of the two regimes
constrained by TE or WL of the required threshold values.
The behavior of TE-limited or WL-limited regime is related
to the dispersion properties discussed in Sec. II B. Dispersion

up to O(ω3) is needed to be considered for the broadband
EIT memory regime (B > �), such that the pulse distortion
and thus the WL are a bottleneck. In the narrowband regime,
the Gaussian waveform is well preserved and WL is not the
bottleneck but the TE is. This also explains why previous
studies in narrowband EIT memories were not affected much
by the distortion issue [16,17]. In contrast, pushing towards
the broadband regime, one steps into the WL-limited regime
so pulse distortion must be considered. As can be observed in
Fig. 6(e), the required optical depth is linearly proportional
to the bandwidth in the WL-limited regime. This trend is
understandable if we look at Eq. (24) and modify it to

Dreq = 4 ln(2)ηξ 2
c

B

�
. (25)

From Figs. 6(e) and 6(f) it is clear to see that, using the
EIT protocol, the required D and �c to achieve a high TE or
WL are very high. The required D and �c for a fixed WL are
greater than those required for a fixed TE. For example, for a
B of ∼20�, D ∼ 740 (3400) and �c ∼ 50 (100) are required
for a TE (WL) of � 0.9. The corresponding values of WL
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and TE for TE = 0.9 and WL = 0.9 are 0.465 and 0.988,
respectively. Experimentally, an optical depth greater than 103

has been achieved for cold atoms in free space [25] or in a
hollow-core fiber [26]. An effective optical depth of 7600 has
been achieved with cold atoms inside a cavity [27].

Broadband EIT memory requires a high optical depth and a
strong control intensity; it is expected that some complicated
effects may appear in real world situations which are beyond
the scope of this paper. For example, nonlinear optical effects
such as the photon switching effect due to off-resonant exci-
tation of the coupling field to the nearby transition [28,29] or
four-wave mixing [30] may become serious issues, although
these effects can be reduced with some existing methods
[17]. The influence of cooperative effects due to the resonant
dipole-dipole interaction on the EIT memory could also be-
come significant and warrant further study [17]. With these
theoretical considerations in mind, we now present our exper-
imental results towards achieving broadband EIT memory.

III. EXPERIMENTAL SETUP

A cesium magneto-optical trap (MOT) with a cigar-shaped
atomic cloud is utilized to implement the EIT-based optical
memory. To increase the optical depth of the atomic media,
we employ a temporally dark and compressed MOT, as well as
Zeeman-state optical pumping [25]. Pumping the population
towards the single Zeeman substate (|F = 3, m = 3〉) also
makes the storage performance less sensitive to stray magnetic
fields [17,31], which is desirable for long-time storage. Efforts
are made to reduce the ground-state decoherence rate γgs, such
as minimizing the stray dc and ac magnetic fields and using
the near copropagating probe and control beams to reduce the
residual Doppler broadening. Details of the MOT setup can be
found in [17,25].

The EIT optical memory is operated at the D1 line with
the probe beam driving the |F = 3〉 → |F ′ = 4〉 σ+ transi-
tion and the control beam driving the |F = 4〉 → |F ′ = 4〉
σ+ transition, as shown in Fig. 7(a). As pointed out in [17],
operating the EIT at the D1 transition can reduce the control-
intensity-dependent ground-state decoherence rate due to the
off-resonant excitation of the control beam to the nearby tran-
sition. A detailed plot of the setup appears in Fig. 7(b). The
probe beam from the laser source passes twice through one
acousto-optic modulator (AOM1) to adjust the frequency with
minimal spatial movement. It is then sent to another AOM
(AOM2) to be switched into a 160-ns square pulse. The probe
beam is then coupled into a fiber electro-optic modulator
(EOM) to shape the probe pulse into a Gaussian waveform
with a full width at half maximum (FWHM) larger than 10 ns.
Due to the finite extinction ratio (∼18 dB) of the fiber EOM,
AOM2 is added as an additional switch to minimize the probe
leakage during storage. The probe beam is then coupled to the
control beam through a 50 : 50 beam splitter. Both beams are
sent into the cold atomic ensembles. Before entering the MOT
cell, the probe beam is focused by a lens (L1) to an intensity
e−2 diameter of ∼100 μm around the atomic cloud while
the coupling beam is collimated by the same lens (L1) to a
diameter of ∼240 μm. After leaving the MOT cell, the control
beam is focused by another lens (L2) and then blocked by a
black dot. The probe beam, on the other hand, is collimated
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FIG. 7. (a) Energy levels and laser excitations of 133Cs for EIT
memory. (b) Experimental setup for EIT memory. AOM: acousto-
optic modulator; BS: beam splitter. FEOM: fiber electro-optic
modulator; RF: radio-frequency signal; PMT: photomultiplier tube;
M: mirror; L: lens; QWP: quarter-wave plates; FC: fiber coupler;
Port 1 is the transmitted probe beam through a polarized-maintaining
fiber.

by the lens L2 and then coupled into a fiber before passing
through three irises and an etalon filter, to filter out unwanted
control light upon detection. The probe beam is then detected
by a photomultiplier tube (Hamamatsu R636-10).

IV. RESULTS AND DISCUSSION

Here, we present our experimental results on broadband
storage using the EIT protocol. We first discuss the efficiency
versus the optical depth at a fixed temporal width for the input
probe pulse. Then we vary the temporal width (or bandwidth)
of the input probe pulse and study the efficiency dependence.
Finally, we study the efficiency dependence on the storage
time.

A. Efficiency dependence on optical depth

In a previous work [17], we studied the storage efficiency
versus the optical depth for probe pulses of Tp = 200 ns.
The storage is in the narrowband regime because the pulse
bandwidth B = 2π × 2.2 MHz is smaller than the spon-
taneous decay rate of � = 2π × 4.56 MHz. To enter the
broadband regime, we first consider the storage of probe
pulses with a Tp of 30 ns, corresponding to a bandwidth of
B = 2π × 14.71 MHz. We then vary the optical depth (D)
and adjust the control intensity for each D to obtain an op-
timized efficiency. Representative raw data showing the input,
slowed, and stored-then-retrieved probe pulses are shown in
Fig. 8(a). In this case, the parameters D and �c are 392(46)
and 16.48(0.23)�, respectively, where the quantities shown
in parentheses are the 2σ standard deviation. The �c is
determined by the spectral separation of the Aulter-Townes
splitting in the EIT spectrum, taken at a low optical depth
(e.g., D < 3), such that the Aulter-Townes doublets are clear.
The optical depth is determined by the spectral fitting of the
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FIG. 8. (a) From left to right, the red solid, green dashed, and
blue dotted curves represent the input, slowed (efficiency 86.1%),
and stored-and-retrieved (efficiency 82.0%) probe pulses, respec-
tively. The Gaussian fitting curves for each corresponding pulse are
also shown (black solid lines). The parameters D and �c are 392(46)
and 16.48(0.21)�, respectively. (b) �2

c versus the control power. The
solid blue line shows the linear fit to the data. (c) The optimum �2

c

which maximizes the efficiency versus the optical depth. The blue
solid line indicates the linear fit to the data. (d) The efficiencies
of the slowed (blue squares) and stored-and-retrieved (red circles)
probe pulses versus the optical depth. The solid blue line indicates
the theoretically calculated slow light efficiency, assuming γgs = 0,
γge = 0.75�, and η = 2.5.

probe transmission spectrum with the control field off. In
the fitting, we set γge = 0.75�, which takes the finite laser
linewidth and the laser frequency fluctuation into account
[17].

As a consistency check of the determined �c, the opti-
mized �2

c for each D versus the control power, is shown
in Fig. 8(b). As expected, the data fit a linear relation very
well. Figure 8 (c) depicts the optimized �2

c versus D, which
reasonably follows a linear relation. This is expected since
η is chosen to be nearly a constant to obtain the optimized
efficiency. Due to Eq. (13), this implies that �2

c is linearly
proportional to D for a fixed Tp. However, there is a slightly
deviation from the linear relation in Fig. 8(c) for the data
with the highest D. We speculate that it maybe due to the
cooperative effect by resonant dipole-dipole interaction [32].
In our previous study [17], the cooperative effect is incorpo-
rated into the broadening of γge, which is more significant
for a higher D. In the current work, we assume γge to be
a constant for all D’s in the determination of D by spectral
fitting. This may overestimate the optical depth, especially for
a larger one. If that is true, the data point for the highest D
may shift slightly to the left side, making the trend closer to a
linear relation. However, the role of cooperative effect in EIT
memories certainly deserves a more systematic study.

The corresponding efficiencies of the slowed and stored-
then-retrieved probe pulses, determined by the ratio of the
probe pulse energies with and without the presence of cold
atoms, are indicated by the blue squares and red circles in
Fig. 8(d), respectively. The blue solid line indicates the the-
oretical slow light efficiency with γge = 0.75� and η = 2.5.
The theoretical curve matches the slow light efficiency well.
At the highest D of 392(21), the achieved efficiency of the
stored-then-retrieved pulse is 79.7(1.5)%.
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FIG. 9. From left to right, the red, green, and blue curves in
(a) and (b) represent the input, slowed, and stored-and-retrieved
probe pulses, respectively. (a) One representative example of the raw
data with Tp = 14 ns, D = 356(48), and �c = 17.37(0.27)�. The ef-
ficiency and waveform likenesses for the stored-then-retrieved pulse
are 54.8% and 79.7%, respectively. (b) One representative example
of the data to demonstrate the distortion in the slow light pulse.
In this case, the parameters {Tp, D, �c} are {18.6 ns, 123, 8.3�},
respectively. The efficiency and WL for the stored-then-retrieved
pulse are 31.8% and 64.7%, respectively. (c) The efficiency (blue
circles) and waveform likeness (red squares) versus the FWHM pulse
duration. The data points for Tp < 30 ns shown with lighter colors
are taken with nonoptimized �c, due to the limitation in available
control power. (d) The used �2

c versus the pulse bandwidth for the
data corresponding to those in (c). Data points shown in a lighter
color are taken with nonoptimized �c. The blue solid line indicates
the linear fit for the six data points with narrower bandwidth (or
larger Tp).

B. Efficiency dependence on the temporal width

Keeping at a large D of 356(48), we then vary the value of
Tp from large to small (or B from small to large) and adjust
the �c to obtain an optimized efficiency. Unfortunately, the
control intensity is technically limited to a certain level [cor-
responding to �c = 17.37(0.27)�] such that when Tp < 30 ns
we cannot obtain the optimized efficiency. The results are
shown in Fig. 9(c). The corresponding �2

c versus B are shown
in Fig. 9(d). In Figs. 9(c) and 9(d), data points shown with
lighter colors are those taken with nonoptimized �c. For Tp >

30 ns, the �2
c versus B show a good fit to a linear relation,

which means that η is maintained at nearly a constant value.
The corresponding efficiencies for Tp > 30 ns are essentially
constant with a variation of less than ±2% when η is kept at
a constant value. The efficiency goes down when Tp < 30 ns,
due to the nonoptimized �c. Based on the fitting curves for
the input and retrieved probe pulses, we can calculate the
waveform likeness. The WLs are indicated by the red squares
in Fig. 9(c). With the current experimental parameters, the
EIT storage is in the TE-limited regime such that WL is larger
than TE. Figure 9(a) depicts the raw data for Tp = 14 ns with
�c = 17.37�. Due to the nonoptimized �c, the slowed and
retrieved pulses have a significant broadening which leads
to a reduced WL. In Fig. 9(b), we show an example with
significant pulse distortion or even splitting in the slowed
pulse, in which B < �ωEIT is not satisfied. It is not surprising
that both the efficiency and WL of the retrieved pulse are low
in such a situation, being 31.8% and 64.7%, respectively.
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FIG. 10. Efficiency versus the storage time. The blue solid
line indicates the fitting curve to the data with the fit function
Ae−(t/τ )2

, where the fitting parameters are A = 80.3(3.8)% and τ =
54.5(3.4) μs. The grey dashed line represents the 50% efficiency.

C. Storage time

We now study the efficiency versus the storage time with
Tp = 30 ns input pulses. The stray magnetic field is mini-
mized to ∼5 mG level by prolonging the storage time through
three pairs of compensation coils [17]. Figure 10 shows an ex-
ample of efficiency versus the storage time up to 70 μs, which
behaved like a Gaussian-decay function. This suggests that
the atomic motion is the dominating decoherence mechanism
in our system. The data are fit to a curve of Ae−(t/τ )2

with
the fitting parameters A = 80.3(3.8)% and τ = 54.5(3.4) μs
[33]. The time-bandwidth product (TBP), defined as the ratio
of the storage time at 50% efficiency to the FWHM input
pulse duration (Tp), is an important figure of merit in quan-
tum memory applications. The determined TBP for Fig. 10
is 1267(89), slightly higher than the 1200 obtained in our
previous work with Tp = 200 ns [17]. The storage time may
still be limited by the residual magnetic field and the residual
Doppler broadening due to the atomic motion and the finite
angle (∼1◦) between the probe and control beams [33].

V. CONCLUSION

In summary, we explore the EIT-based memory towards the
broadband regime. The requirements for high-performance
broadband EIT memory are theoretically discussed. A high
optical depth and a strong control field are necessary to ob-
tain the high-performance storage for short pulses, and the
waveform likeness becomes the limitation in the broadband
regime. We experimentally demonstrate the broadband EIT
memory with a storage efficiency of ∼80% (WL = 92.6%)
for a 30-ns pulse and of >50% (WL = 79.7%) for a 14-ns
pulse (B = 31.4 MHz). The achieved time-bandwidth product
is 1267(89). Our work clarifies that it is possible to obtain
high-efficiency and high-bandwidth adiabatic EIT memory,
given a high optical depth and a strong control intensity.

Based on the calculation in Sec. II D and the achieved
optical depth of ∼1000 [17,25], we expect to obtain a band-
width of ∼100 MHz with an efficiency of ∼90% if we could
increase the control intensity by about a factor of 10, which is
feasible if we use the tampered amplifier with an output power
of a few watts for the control field. However, under such a
condition, the waveform likeness is still relatively low (∼0.5).
If one also wants to achieve a WL of >0.9, the required
control intensity is about two times stronger and the required

optical depth is >3000, which is beyond the capability of
our current system. We note that an effective optical depth
of ∼7600 has been achieved in the system with cold atomic
ensemble in an optical cavity [27].
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APPENDIX: LEAKAGE-INDUCED LOSS

In the Appendix, we consider the relation between the
choice of the parameter η and the optimized operational ef-
ficiency F due to pulse leakage during the storage process for
a given transmission efficiency (TE) of the slow light pulse,
as plotted in Fig. 2(b). We assume that EIT storage is in the
regime where dispersion up to O(ω2) is a good approximation.
As mentioned in the [17], the slow light pulse is broadened
by a factor of β and the relation TE = 1

β
is satisfied in the

ideal limit of γgs = 0. The overall operating efficiency F is
the product of two terms, Fi and Fo, due to the leakage of the
front and rear tails of the pulse, respectively [17]:

Fi = 1
2 [1 + erf (2

√
ln(2)κ )],

Fo = 1
2 [1 + erf (2

√
ln(2)(η − κ )/β )],

F = Fi × Fo. (A1)

Here, κ denotes the ratio of the turned-off time of the control
field (Tc) to the temporal width of the input pulse, i.e., κ ≡ Tc

Tp
.

To search for the optimal κ that minimizes the leakage-
induced loss, take the derivative of F with respect to κ ,

∂κF = e−(2
√

ln(2)κ )2

{
1

2
[1 + erf (2

√
ln(2)(η − κ )/β )]

}
− 1

β
e−(2

√
ln(2)(η−κ )/β )2

{
1

2
[1 + erf (2

√
ln(2)κ )]

}
= 0.

(A2)

If the broadening is not too severe such that β � 1, then
when κ = 1

β
(η − κ ) the derivative is approximately zero. This

assumption is valid if the TE is not much less than unity (see
Sec. II B). Under such an approximation, the optimized κ is

κ = η

1 + β
= η

1 + 1
TE

, (A3)

and

Fi = Fo. (A4)

The operating efficiency is then,

F = FiFo = F 2
i , (A5)

with

Fi = Fo = 1
2 [1 + erf (2

√
ln(2)κ )]. (A6)

063720-10



BROADBAND COHERENT OPTICAL MEMORY BASED ON … PHYSICAL REVIEW A 102, 063720 (2020)

[1] F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten,
C. Simon, and W. Tittel, Prospective applications of optical
quantum memories, J. Mod. Opt. 60, 1519 (2013).

[2] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Long-
distance quantum communication with atomic ensembles and
linear optics, Nature (London) 414, 413 (2001).

[3] K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee,
N. K. Langford, D. Jaksch, and I. A. Walmsley, Towards high-
speed optical quantum memories, Nat. Photonics 4, 218 (2010).

[4] K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K.
Langford, and I. A. Walmsley, Single-Photon-Level Quantum
Memory at Room Temperature, Phys. Rev. Lett. 107, 053603
(2011).

[5] M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G.
England, J. Nunn, X.-M. Jin, W. S. Kolthammer, A. Abdolvand,
P. S. J. Russell, and I. A. Walmsley, Broadband single-photon-
level memory in a hollow-core photonic crystal fibre, Nat.
Photonics 8, 287 (2014).

[6] D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, B.-S. Shi, and G.-C.
Guo, Raman quantum memory of photonic polarized entangle-
ment, Nat. Photonics 9, 332 (2015).

[7] J. Wolters, G. Buser, A. Horsley, L. Béguin, A. Jöckel, J.-P.
Jahn, R. J. Warburton, and P. Treutlein, Simple Atomic Quan-
tum Memory Suitable for Semiconductor Quantum Dot Single
Photons, Phys. Rev. Lett. 119, 060502 (2017).

[8] R. Finkelstein, E. Poem, O. Michel, O. Lahad, and O.
Firstenberg, Fast, noise-free memory for photon synchroniza-
tion at room temperature, Sci. Adv. 4, eaap8598 (2018).

[9] J. Guo, X. Feng, P. Yang, Z. Yu, L. Q. Chen, C.-H. Yuan,
and W. Zhang, High-performance raman quantum memory with
optimal control in room temperature atoms, Nat. Commun. 10,
148 (2019).

[10] A. V. Gorshkov, A. André, M. D. Lukin, and A. S. Sørensen,
Photon storage in �-type optically dense atomic media. II.
Free-space model, Phys. Rev. A 76, 033805 (2007).

[11] W.-T. Liao, C. H. Keitel, and A. Pálffy, All-Electromagnetic
Control of Broadband Quantum Excitations Using Gradient
Photon Echoes, Phys. Rev. Lett. 113, 123602 (2014).

[12] E. Saglamyurek, T. Hrushevskyi, A. Rastogi, K. Heshami, and
L. J. LeBlanc, Coherent storage and manipulation of broadband
photons via dynamically controlled Autler-Townes splitting,
Nat. Photonics 12, 774 (2018).

[13] A. Rastogi, E. Saglamyurek, T. Hrushevskyi, S. Hubele,
and L. J. LeBlanc, Discerning quantum memories based on
electromagnetically-induced-transparency and Autler-Townes-
splitting protocols, Phys. Rev. A 100, 012314 (2019).

[14] E. Saglamyurek, T. Hrushevskyi, L. Cooke, A. Rastogi, and L. J.
LeBlanc, Single-photon-level light storage in cold atoms using
the Autler-Townes splitting protocol, Phys. Rev. Research 1,
022004 (2019).

[15] D. D. Yavuz, Electromagnetically induced transparency with
broadband laser pulses, Phys. Rev. A 75, 031801(R) (2007).

[16] Y.-H. Chen, M.-J. Lee, I-C. Wang, S. Du, Y.-F. Chen, Y.-C.
Chen, and I. A. Yu, Coherent Optical Memory with High Stor-
age Efficiency and Large Fractional Delay, Phys. Rev. Lett. 110,
083601 (2013).

[17] Y.-F. Hsiao, P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung,
C.-H. Lee, Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen,
Highly Efficient Coherent Optical Memory Based on Elec-
tromagnetically Induced Transparency, Phys. Rev. Lett. 120,
183602 (2018).

[18] Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S.
Du, H. Yan, and S.-L. Zhu, Efficient quantum memory for
single-photon polarization qubits, Nat. Photonics 13, 346
(2019).

[19] S. Zhou, S. Zhang, C. Liu, J. F. Chen, J. Wen, M. M. T. Loy,
G. K. L. Wong, and S. Du, Optimal storage and retrieval of
single-photon waveforms, Opt. Express 20, 24124 (2012).

[20] T. Y. Abi-Salloum, Electromagnetically induced transparency
and Autler-Townes splitting: Two similar but distinct phenom-
ena in two categories of three-level atomic systems, Phys. Rev.
A 81, 053836 (2010).

[21] Y.-F. Chen, Y.-M. Kao, W.-H. Lin, and I. A. Yu, Phase varia-
tion and shape distortion of light pulses in electromagnetically
induced transparency media, Phys. Rev. A 74, 063807 (2006).

[22] M. Fleischhauer and M. D. Lukin, Dark-State Polaritons in
Electromagnetically Induced Transparency, Phys. Rev. Lett. 84,
5094 (2000).

[23] A. B. Matsko, Y. V. Rostovtsev, O. Kocharovskaya, A. S.
Zibrov, and M. O. Scully, Nonadiabatic approach to quantum
optical information storage, Phys. Rev. A 64, 043809 (2001).

[24] P.-J. Tsai, Y.-C. Wei, B.-H. Wu, S.-X. Lin, and Y.-C. Chen,
Theoretical study of a memory-based optical converter with
degenerate Zeeman states, Phys. Rev. A 100, 063843 (2019).

[25] Y.-F. Hsiao, H.-S. Chen, P.-J. Tsai, and Y.-C. Chen, Cold atomic
media with ultrahigh optical depths, Phys. Rev. A 90, 055401
(2014).

[26] F. Blatt, T. Halfmann, and T. Peters, One-dimensional ultracold
medium of extreme optical depth, Opt. Lett. 39, 446 (2014).

[27] Y. Jiang, Y. Mei, Y. Zou, Y. Zuo, and S. Du, Intracavity cold
atomic ensemble with high optical depth, Rev. Sci. Instrum. 90,
013105 (2019).

[28] H. Schmidt and A. Imamoglu, Giant Kerr nonlinearities ob-
tained by electromagnetically induced transparency, Opt. Lett.
21, 1936 (1996).

[29] S. E. Harris and Y. Yamamoto, Photon Switching by Quantum
Interference, Phys. Rev. Lett. 81, 3611 (1998).

[30] N. Lauk, C. O’Brien, and M. Fleischhauer, Fidelity of photon
propagation in electromagnetically induced transparency in the
presence of four-wave mixing, Phys. Rev. A 88, 013823 (2013).

[31] T. Peters, Y.-H. Chen, J.-S. Wang, Y.-W. Lin, and I. A. Yu,
Optimizing the retrieval efficiency of stored light pulses, Opt.
Express 17, 6665 (2009).

[32] S. Jennewein, M. Besbes, N. J. Schilder, S. D. Jenkins, C.
Sauvan, J. Ruostekoski, J.-J. Greffet, Y. R. P. Sortais, and A.
Browaeys, Coherent Scattering of Near-Resonant Light by a
Dense Microscopic Cold Atomic Cloud, Phys. Rev. Lett. 116,
233601 (2016).

[33] B. Zhao, Y.-A. Chen, X.-H. Bao, T. Strassel, C.-S. Chuu, X.-M.
Jin, J. Schmiedmayer, Z.-S. Yuan, S. Chen, and J.-W. Pan, A
millisecond quantum memory for scalable quantum networks,
Nat. Phys. 5, 95 (2009).

063720-11

https://doi.org/10.1080/09500340.2013.856482
https://doi.org/10.1038/35106500
https://doi.org/10.1038/nphoton.2010.30
https://doi.org/10.1103/PhysRevLett.107.053603
https://doi.org/10.1038/nphoton.2014.45
https://doi.org/10.1038/nphoton.2015.43
https://doi.org/10.1103/PhysRevLett.119.060502
https://doi.org/10.1126/sciadv.aap8598
https://doi.org/10.1038/s41467-018-08118-5
https://doi.org/10.1103/PhysRevA.76.033805
https://doi.org/10.1103/PhysRevLett.113.123602
https://doi.org/10.1038/s41566-018-0279-0
https://doi.org/10.1103/PhysRevA.100.012314
https://doi.org/10.1103/PhysRevResearch.1.022004
https://doi.org/10.1103/PhysRevA.75.031801
https://doi.org/10.1103/PhysRevLett.110.083601
https://doi.org/10.1103/PhysRevLett.120.183602
https://doi.org/10.1038/s41566-019-0368-8
https://doi.org/10.1364/OE.20.024124
https://doi.org/10.1103/PhysRevA.81.053836
https://doi.org/10.1103/PhysRevA.74.063807
https://doi.org/10.1103/PhysRevLett.84.5094
https://doi.org/10.1103/PhysRevA.64.043809
https://doi.org/10.1103/PhysRevA.100.063843
https://doi.org/10.1103/PhysRevA.90.055401
https://doi.org/10.1364/OL.39.000446
https://doi.org/10.1063/1.5065431
https://doi.org/10.1364/OL.21.001936
https://doi.org/10.1103/PhysRevLett.81.3611
https://doi.org/10.1103/PhysRevA.88.013823
https://doi.org/10.1364/OE.17.006665
https://doi.org/10.1103/PhysRevLett.116.233601
https://doi.org/10.1038/nphys1153

