
PHYSICAL REVIEW A 102, 063713 (2020)

Optical Kerr nonlinearity in quantum-well microcavities: From polariton to dipolariton
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In this paper, we investigate the nonlinear optical properties and photon correlations in a cavity containing
quantum wells and interacting with a third-order nonlinear medium. More precisely, we study the interaction of
the photonic Kerr nonlinearity with polariton and dipolariton quasiparticles in thermal environments. The optical
bistability, the intensity spectrum, and the squeezing spectrum of the transmitted radiation are analyzed. It is
shown that the regime of the bistability is reached in the dipolariton cavity faster than attained by the polariton
system. Furthermore, the increase of the coupling with the wells reduces the squeezing. More interestingly, it
turns out that the additional interactions arising in the dipolariton cavity, between direct and indirect excitons,
slow down the variation of the squeezing. As a consequence, dipolaritons offer a greater margin of squeezed
light than polaritons, and also than the χ (3) medium in the absence of quantum wells. Moreover, the dipolariton
system is found to be much more robust against the bath temperature in the weak-coupling regime.
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I. INTRODUCTION

The optical Kerr effect is the nonlinear response of optical
media to applied electromagnetic waves. Studying this effect
is one of the basic topics in quantum and nonlinear optics as
it is fundamental for the realization of many nonlinear optical
processes [1,2]. The Kerr effect has several applications such
as quantum nondemolition measurement [3,4], nonlinear and
quantum controls of light fields [5], all-optical deterministic
quantum logic [6,7], quantum bit regeneration [8], quantum
state teleportation [9], and the generation of optical solitons
[10,11]. The Kerr effect mainly appears in nonlinear disper-
sive materials owing to a third-order light-matter interaction
[12]. Examples of devices generating nonlinear optical re-
sponses are the well-known nonlinear Fabry-Pérot resonators
[13,14], structures with epitaxial Bragg reflectors [15,16], su-
perlattices [17], and nonlinear interference filters [18].

Furthermore, and for several decades, semiconductor
heterostructures have been widely studied both on the funda-
mental and applied aspects for the multitude and richness of
the optical properties that they produce [19–21]. Semiconduc-
tor microcavities with quantum wells is a bright example that
has highly contributed to the understanding and the develop-
ment of these materials [22–28]. In this particular structure, it
is possible to confine the electromagnetic field and electrons
of the quantum well. This confinement increases the mutual
interactions of the two fields and allows us to reach the strong-
coupling regime. As a result, the fundamental excitation of
this regime is a hybrid particle called a polariton, an exciton-
photon mixed state [29]. This hybrid character leads to various
observations and fascinating phenomena, having no classical
counterpart, such as photon antibunching, radiation squeez-
ing, and optical bistability [30–32]. These nonclassical prop-
erties are of growing interest in fundamental spectroscopic
investigations and in optical measurement precision [33–35].

By placing a second quantum well inside the cavity, with
a judicious choice of the width between the wells, another
quasiparticle can be created: the dipolariton. This new hybrid
particle is a combination of a polariton and indirect exciton.
The first is the result of the coupling between the cavity
photonic field and exciton of the left quantum well (called
direct exciton), whereas the second is the interaction between
a hole of a left and an electron of a right quantum well via elec-
tronic tunneling [36]. A powerful feature of the dipolariton
cavity is that it constitutes a novel source of generating strong
and tunable terahertz radiations [37–40]. Moreover, we have
shown in previous works that the system exhibits intriguing
optical properties compared to the polariton cavity, and is a
good device for producing a strong and thermally resistant
squeezing owing to direct and additional indirect excitonic
nonlinearities [41–46].

In this paper, we study the photons correlations and the
statistical properties of light transmitted by an optical mi-
crocavity containing a single, then two, coupled quantum
wells and interacting with a Kerr nonlinearity resulting from a
third-order nonlinear medium. First, we consider the polariton
cavity and we examine the regime of the bistability, the noise
spectrum, and the intensity power spectrum. After that, we
study the dipolariton cavity in the presence of nonlinearity,
and we take the opportunity to compare the two systems. The
coupling with thermal environments is considered.

II. POLARITON CAVITY

A. Hamiltonian, quantum dynamics, and fluctuations

We consider a semiconductor microcavity containing a
quantum well placed in a position which corresponds to the
maximum of the light field. The cavity has a length of the or-
der of the wavelength λ. On both sides of the microcavity are
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FIG. 1. Schematic diagram of the polariton cavity. The quantum
well is placed in the maximum of the electromagnetic field between
a set of Bragg mirrors ensuring high reflectivity. The cavity is driven
by a coherent field. A Kerr medium is attached to the cavity and
the resulting photons from the nonlinear process are directly injected
into the cavity.

disposed a set of Bragg mirrors ensuring the high reflectivity
of light and allowing us to reach the strong-coupling regime
(Fig. 1). The electromagnetic field inside the cavity excites
an electron from the filled valence band to the conduction
band. As a result, a hole is created in the valence band. The
formed electron-hole system possesses bound states called
excitonic states, similar to hydrogenic states. Due to the strong
coupling of the electromagnetic dipolar oscillations of the
excitons and photons, a hybrid light-matter quasiparticle is
created: the polariton. Furthermore, we consider a nonlinear
χ (3) medium attached to the cavity in such a way that the
produced photons from the nonlinear process interact with the
quantum well. The interaction Hamiltonian of the total system
including the quantum-well excitons and the χ (3) medium, in
the rotating-wave approximation, is given by (h̄ = 1)

H = − δaa†a − δbb†b + iε(a† − a)

+ i
�

2
(a†b − b†a) + α

2
a†a†aa. (1)

The first term is the energy of the cavity mode where δa =
ωl − ωc is the pump laser-cavity detuning. The second one
denotes the free energy of excitons in the quantum well where
δb = ωl − ωx is the frequency detuning between the external
pump and the excitonic mode. The interaction of the coherent
pump of amplitude ε and the cavity mode is described by the
third term. The fourth term denotes the interaction between
the exciton and the cavity field where � characterizes the
strength of this coupling. The last term is the Kerr-type pho-
tonic nonlinearity with a coefficient α. a† and b† are creation
operators of the cavity and the excitonic modes, respectively,
satisfying the commutation relations given by [a, a†] = 1 and
[b, b†] = 1. The quantum Langevin equations describing the
time evolution of the two fields are given by

ȧ =
(

i(δa − αa†a) − κ

2

)
a + �

2
b + ε + √

κain, (2)

ḃ =
(

iδb − γ

2

)
b − �

2
a + √

γ bin, (3)

where κ is the decay rate of the cavity mode and γ represents
the dissipation rate of the excitonic field. In these equations,√

κain and
√

γ bin are the Langevin forces associated with the

reservoirs for the electromagnetic field and for the excitons in
the quantum well. The noise correlation functions are obtained
from the generalized Einstein relations [47,48] as

〈b†
in(t )bin(t ′)〉 = nthδ(t − t ′), (4)

〈bin(t )b†
in(t ′)〉 = (nth + 1)δ(t − t ′), (5)

〈ain(t )a†
in(t ′)〉 = δ(t − t ′), (6)

where nth is the thermal exciton mean number.

B. Photonic intensity and stability analysis

The time dependences of the mean fields are obtained from
Eqs. (2) and (3) and governed by the following equations:

ȧ =
(

i(δa − αIa) − κ

2

)
a + �

2
b + ε, (7)

ḃ =
(

iδb − γ

2

)
b − �

2
a. (8)

At the steady state, the previous equations can be solved using

the condition ȧ = ḃ = 0. From the previous set, the steady-
state mean number of photons inside the cavity, Ia = |a|2,
satisfies Ia[κ2

0 + (−�a0 + αIa)2] = |ε|2, where

κ0 = κ

2
+

(
�
2

)2 γ

2

δ2
b + (

γ

2

)2 , �a0 = δa −
(

�
2

)2
δb

δ2
b + (

γ

2

)2 . (9)

To study the bistable behavior, we calculate ∂|ε|2/∂Ia =
0, which gives the bistability condition as �2

a0
− 3κ2

0 > 0, or
explicitly
[
δ2

a −3
(κ

2

)2]
− 2β

(
δaδb + 3

κ

2

γ

2

)
+ β2

[
δ2

b − 3
(γ

2

)2]
>0,

(10)

where β is given by β = ( �
2 )2/[δ2

b + ( γ

2 )2]. In the absence
of a quantum well (β = 0), the bistability condition reduces
simply to δ2

a > 3( κ
2 )2. Moreover, the solution for Ia should

be real and positive. With these conditions, the bistability is
obtained when δa < −√

3κ/2, i.e., ωc >
√

3κ/2 + ωl . This
corresponds to the condition of a Kerr medium, without addi-
tional couplings.

It is useful to normalize the parameters of the system to the
round-trip time of photons inside the cavity τc. In our study,
the numerical values of the system parameters are chosen in
such a way that they are close to that of a typical experiment
[45,49–53].

Figure 2 represents the intracavity photonic intensity in two
coupling regimes as a function of the frequency detuning for
various nonlinearity coefficients α (after assuming that δa =
δb = � and κ = 2γ ). For strong coupling (� � γ , κ), the
intensity is centered around the detunings � = ±�/2 in the
case of zero or weak nonlinearities. As the interaction between
the photons increases, the intensity peaks are blueshifted
and decrease progressively. However, in the weak-coupling
regime (� � γ , κ) the intensity peak is around the resonance
but also decreases with the nonlinearity. We note here that
the maximum of intensity in weak coupling is stronger than
that of strong coupling. Furthermore, we conclude that the
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FIG. 2. Photonic intensities in (a) the strong-coupling regime
(� = 2, γ = 0.05, ε = 100, and κ = 0.1), and (b) for the weak
coupling (� = 0.008, γ = 0.05, ε = 100, and κ = 0.1) as a function
of the detuning for various nonlinearity coefficients α.

nonlinear interaction between photons is unfavorable to strong
photonic intensity and creates a dissymmetry of the peaks.

In Fig. 3, we plot the photonic intensity as a function
of the laser pumping amplitude for various dissipation rates.
The increase of the input field is favorable to higher intensity
inside the cavity for weaker decay rates. The system is fully
stable. The bistability behavior can be controlled by varying
the power of the laser field and the detunings. By choos-
ing appropriate values that satisfy Eq. (10), the bistability
is represented by Fig. 3(b) as a function of the square of ε

which is proportional to the power of the coherent pump. This
clearly shows a parameter region for which the dynamics of
the system becomes unstable. By increasing the external pump
power, the system reaches the first bistable point. Then, the
hysteresis follows the narrow and jumps to the upper branch.
To obtain the second bistable point, we should scan the input
power for lower values.

C. Fluctuation spectrum

Now, we analyze the noise properties of the light transmit-
ted by the polariton cavity. The operators of the system can
be split into the mean value of the field and its fluctuation
term as a = a + δa and b = b + δb. The fluctuation operators
δa and δb satisfy the following relations: [δa, δa†] = 1 and
[δb, δb†] = 1. They are very small compared to their cor-
responding mean values. Thus, using Eqs. (2) and (3) and

FIG. 3. (a) Photonic intensity as a function of the coherent pump
amplitude ε for various dissipation rates (� = 0.008, α = 10−6, and
� = 0.1). (b) Photonic intensity as a function of the square of the
coherent pump amplitude ε for � = 0.008, α = 10−6, � = 0.2, γ =
0.02, and κ = 0.04: optical bistability.

FIG. 4. Variation of the noise spectrum vs the frequency detun-
ing for various bath temperature values for (a) strong coupling (α =
0, � = 2, γ = 0.05, κ = 0.1, and ε = 100) and (b) weak coupling
(α = 0, � = 0.008, γ = 0.05, κ = 0.1, and ε = 100).

Eqs. (7) and (8), we obtain the following linearized evolution
equations for the fluctuations:

δȧ =
(

i(δa − 2αIa) − κ

2

)
δa − iαa2δa† + �

2
δb + √

κain,

(11)

δḃ =
(

iδb − γ

2

)
δb − �

2
δa + √

γ bin. (12)

The fluctuation spectrum of the single-mode cavity is de-
fined as the Fourier transform of the two-time correlation
〈δXθ (t + τ )δXθ (t )〉ss [54],

Sθ (ω) =
∫ +∞

−∞
〈δXθ (t + τ )δXθ (t )〉ss e−i(ω−ω0 )τ dτ

=〈δXθ (ω)δXθ (ω)〉, (13)

where δXθ (ω) = e−iθ δa(ω) + eiθ δa†(ω) is a field quadrature
and θ represents its controllable phase. A light has the prop-
erty of nonclassicality, or squeezing, if one of its quadratures
has fluctuations where one of the frequency components
shows lower noise than the standard quantum noise, that is
to say, [Sθ (ω)]shot = 1. In other words, if it exists, θ and ω

satisfy Sθ (ω) < 1. Equation (13) takes the form

Sθ (ω) =Caa(ω)e−2iθ + Ca†a† (ω)e2iθ

+ Ca†a(ω) + Caa† (ω), (14)

where Caa, Ca†a† , Ca†a, and Caa† are the correlation
functions of the intracavity field fluctuations defined by
〈δo1(ω)δo2(ω′)〉 = 2πδ(ω + ω′)Co1o2 (ω), (o1, o2) ∈ {a, a†}.
The optimum fluctuation spectrum is defined by Sopt(ω) =
minθ∈[0,2π]. The correspondent quadrature is obtained by
minimizing Eq. (14) with respect to the phase angle θ

[dSθ (ω)/dθ = 0]. The optimal angle θopt then satisfies
e2iθopt = −Caa(ω)/|Caa(ω)|. Combining the previous equa-
tions, we obtain the following relation of the optimized fluctu-
ation spectrum: Sopt(ω) = −2|Caa(ω)| + Caa† (ω) + Ca†a(ω).
For our system, these correlation functions can be derived
by solving Eqs. (11) and (12) in Fourier space which
yields for the fluctuating photonic field a linear combina-
tion of the noise operators as δa(ω) = √

κζ1(ω)ain(ω) +√
γ ζ2(ω)bin(ω) + √

κζ3(ω)a†
in(ω) + √

γ ζ4(ω)b†
in(ω).

The standard input-output relation δaout = √
κδa − ain and

its Hermitian conjugated δa†out = √
κδa† − ain† allow us to

obtain the correlations in the output of the cavity. With
the help of these relations, we can express the fluctuation
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spectrum of the emergent light as

Sout
opt =1 − 2κ|[κζ1(ω)ζ3(−ω) + γ (nth + 1)ζ2(ω)ζ4(−ω)

− ζ3(−ω)]| + κ (κ|ζ1(ω)|2 + γ (nth + 1)|ζ2(ω)|2

+ γ nth|ζ4(ω)|2 − 2 Re[ζ1(ω)]) + κ (κ|ζ3(−ω)|2

+ γ nth|ζ2(−ω)| + γ (nth + 1)|ζ4(−ω)|2), (15)

where ζi are functions of the system parameters. Sout
opt = 1

corresponds to the standard quantum noise, whereas when
Sout

opt > 1 the transmitted light shows fluctuations above the
standard limit. Sout

opt < 1 is a signature of nonclassical prop-
erties of light, the squeezing effect.

D. Spectrum of the linear system

When the nonlinear interaction between photons is not
strong enough, the term (αa†a†aa/2) can be neglected com-
pared to the other terms of the Hamiltonian (1). In this
linear system case, the transmitted field cannot exhibit fluctu-
ations below the vacuum level, and consequently is unable to
show the squeezing effect. Moreover, as the bath temperature
increases, the fluctuations are above the vacuum level and ap-
pear around the detunings � = ±�/2 in the strong-coupling
regime [Fig. 4(a)]. In the weak-coupling regime [Fig. 4(b)],
we observe small fluctuations localized around the resonance
weakly dependent on the temperature. Away from these par-
ticular detunings, the emitted light is coherent.

E. Squeezing of the output field

In the case where the photonic nonlinearity is important,
the nonlinear term in the Hamiltonian must be considered.
This interaction gives rise to fluctuations under the standard
quantum noise or the squeezing effect. This nonclassical ef-
fect occurs for specific frequency detunings equal to half of
the constant coupling �, when the strong-coupling regime is
reached [Fig. 5(a)]. For increasing nonlinearities, a stronger
squeezing is realized and the squeezing peaks lose their sym-
metry progressively. In the weak-coupling regime [Fig. 5(b)]
and for weak values of α, the nonclassical effect is centered
around the resonance. An increase of nonlinearity generates
higher squeezing and also a dissymmetry. We notice here that
the weak coupling is more favorable to higher squeezing than
the strong coupling. Figure 5(c) depicts the variation of the
squeezing as a function of the detuning and the coupling con-
stant � for a fixed value of nonlinearity. It is shown that in the
weak-coupling regime (� � κ, γ ), the nonclassical effect is
at its maximum. As the photon-exciton interaction increases,
the emitted light becomes less squeezed and the spectrum is
duplicated into two branches following a V form.

We have to mention here the peaks of the noise spectrum
are blueshifted and follow the behavior of the photonic in-
tensity (Fig. 2). This effect can be explained by the fact that
the strong light-matter coupling in the system (exciton-photon
coupling) induces a generation of two polaritonic branches:
the upper polaritonic branch and the lower polaritonic branch.
The nonlinearity favors one branch over the other: the lower
polaritonic branch [31,55].

0.2

0.4

0.6

0.8

FIG. 5. The zero-temperature dependence of the noise spectrum
on the frequency detuning for various nonlinearity coefficients α

(a) in the strong-coupling regime (� = 2) and (b) in the weak-
coupling regime (� = 0.008). (c) Density plot of the noise spectrum
as a function of the detuning and the coupling constant � for α =
10−7. In all plots, the other parameters are chosen to be γ = 0.05,
ε = 100, and κ = 0.1.

F. Squeezing and temperature

Here, we discuss the stability of the nonclassical effect
produced by photonic nonlinearity. In Fig. 6(a) we plot the
variation of the noise spectrum in the strong-coupling regime
as a function of the nonlinearity coefficient α at zero temper-
ature (T = 0). First, for weak nonlinearities, the squeezing
increases with increasing α and reaches a maximum ap-
proaching 70%. After that, it decreases progressively towards
the coherent light (Sout

opt = 1). For a nonzero bath temperature
(nth = 0.2), the maximum squeezing of the previous situation
is rapidly transformed to high fluctuations, and the whole
system loses some amount of squeezing [Fig. 6(b)]. In the

FIG. 6. Variation of the noise spectrum of the polariton cavity
as a function of the photonic nonlinearity α and the temperature of
the thermal bath in the (a), (b) strong-coupling regime (� = 2, γ =
0.05, � = 1.05, ε = 100, and κ = 0.1) and (c) for weak coupling
(� = 0.008, γ = 0.05, � = 0.08, ε = 100, and κ = 0.1).
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FIG. 7. Intensity power spectrum of the output field in the strong-
coupling regime as a function of (a) the detuning and (b) the
frequency for α = 10−8, � = 2, γ = 0.05, κ = 0.1, ε = 100, and
nth = 0.5.

weak-coupling regime [Fig. 6(c)], the emitted light may be
perfectly squeezed for a weak range of α. With increasing
temperature, this range of maximum squeezing shows strong
fluctuations above the vacuum level, whereas this spectrum
is still unchanged for the other nonlinearities. Moreover, we
notice a higher resistance against the bath temperature than
the strong-coupling regime.

In conclusion, it is clear that the temperature destroys the
nonclassical effect in the strong-coupling regime. However,
in the weak-coupling regime it is weakly affected except for a
small range of α.

G. Intensity power spectrum

The intensity power spectrum of the transmitted radia-
tion is defined as the Fourier transform of the correlation
〈δa†out(t + τ )δaout(t )〉:

Sout
I (ω) =

∫ +∞

−∞
dτe−i(ω−ω0 )τ 〈δa†out(t + τ )δaout(t )〉

= Cout
a†a(ω) = κCa†a(ω). (16)

In Fig. 7(a) we plot the intensity power spectrum outside
the cavity as a function of the detuning. At zero frequency
(ω − ω0 = 0), the spectrum is formed by two peaks of max-
imal intensity centered around the coupling constants ±�/2
and then separated by �. For higher frequency (ω − ω0 = 3),
the spectrum is translated to negative detunings. However, the
peaks keep the same intensities, and also the same spacing.
The variation against the frequency is illustrated by Fig. 7(b).
At the resonance the spectrum consists of a single peak around
ω − ω0 = �/2. By increasing the detuning, the peak is dupli-
cated and the whole spectrum is centered around ω − ω0 =
|�|.

III. DIPOLARITON CAVITY

A. Hamiltonian, quantum dynamics, and fluctuations

In this section, we consider the dipolariton cavity. This
system is formed by two coupled quantum wells in a semicon-
ductor microcavity, confined between a set of Bragg mirrors
with high reflection (Fig. 8). Because the quantum wells are
with different band gaps, the cavity mode excites only elec-
trons of the first quantum well and forms a direct exciton. Via
an electronic tunneling, a second quasiparticle appears as a
result of the interaction between holes appertaining to the first
quantum well and electrons localized in the second quantum

FIG. 8. Schematic diagram of the dipolariton cavity. The two
quantum wells are placed between a highly reflecting set of Bragg
mirrors. The wells are coupled via a tunnel effect with a tunneling
rate J . The cavity is driven by a coherent field. A Kerr medium is
attached to the cavity and the resulting photons from the nonlinear
process are directly injected into the cavity.

well: an indirect exciton. This tunnel effect is allowed owing
to the thin barrier separating the wells. When the electron
levels of both quantum wells are tuned into resonance, a
strong coupling is achieved between the direct and indirect
excitons. As a consequence, the whole system shows three
eigenmodes: a lower dipolariton, middle dipolariton, and an
upper dipolariton. The interaction of the nonlinear medium
with the cavity is the same as for the polariton cavity discussed
above. The total system Hamiltonian can be written as (h̄ = 1)

H = − δaa†a − δbb†b − δcc†c + iε(a† − a)

+ i
�

2
(a†b − b†a) + i

J

2
(b†c − c†b) + α

2
a†a†aa, (17)

where b now denotes the annihilation operator of the direct ex-
citon and c is the annihilation operator of the indirect excitonic
mode. The parameter J characterizes the rate of tunneling
between the coupled wells, and thus indicates the coupling
strength between direct and indirect excitons. δc = ωl − ωix is
the frequency detuning between the coherent pump frequency
and the indirect excitonic mode. The quantum Langevin equa-
tions of the three modes of the system are expressed as

ȧ =
(

i(δa − αa†a) − κ

2

)
a + �

2
b + ε + √

κain, (18)

ḃ =
(

iδb − γb

2

)
b − �

2
a + J

2
c + √

γbbin, (19)

ċ =
(

iδc − γc

2

)
c − J

2
b + √

γccin. (20)

ain(t ), bin(t ), and cin(t ) are the Langevin noise operators of
the cavity and the excitonic modes. γc denotes the damping
rate of the indirect exciton mode. As thermal excitations in
the excitonic fields are not necessarily the same, then the noise
operators satisfy the following equations,

〈b†
in(t )bin(t ′)〉 = ndxδ(t − t ′), (21)

〈bin(t )b†
in(t ′)〉 = (ndx + 1)δ(t − t ′), (22)

〈c†
in(t )cin(t ′)〉 = nixδ(t − t ′), (23)

〈cin(t )c†
in(t ′)〉 = (nix + 1)δ(t − t ′), (24)
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FIG. 9. The real parts of the system eigenvalues represented as a
function of the decay rate γ for ε = 100, � = J = 2, α = 10−6, and
� = 0.1.

where ndx and nix are the direct and indirect thermal excitons
mean numbers, respectively.

B. Validity of the steady-state solutions

In the following sections, the performed study is based on
the steady-state solutions of the Langevin equations. How-
ever, it is not obvious that this system always reaches a
steady state. For some parameter regimes, in particular in the
strong-coupling regime, the system could also end up in some
oscillatory behavior in density between direct and indirect
excitonic modes, never reaching a steady state [37]. Here, we
make sure of the validity of the steady-state regime. Our sys-
tem is an open quantum system (coupled to an environment).
In the quantum Markovian description, the environment is
modeled as a thermal reservoir with a short correlation time
and weakly coupled to the system. This kind of system is
described by a non-Hermitian Hamiltonian H with complex
eigenvalues Ek = Ek + i

2�k . These eigenvalues provide the
energies Ek of the states and their lifetimes defined by the in-
verse of the widths �k [56,57]. The set of equations (18)–(20)
has the form dU/dt = LU + F . Mathematically, if the matrix
L has all eigenvalues so that the real part of each eigenvalue is
negative, then the stability of the system is assured and we will
not have oscillatory stationary values. All the parameters used
in our study fulfill this condition with respect to the dissipation
rates. As we can observe in Fig. 9, all the real parts of the
eigenvalues Ek of the system are negative.

C. Photonic intensity and stability analysis

The time evolutions of the mean fields are deduced from
the set (18)–(20) and read

ȧ =
(

i(δa − αIa) − κ

2

)
a + �

2
b + ε, (25)

ḃ =
(

iδb − γb

2

)
b − �

2
a + J

2
c, (26)

ċ =
(

iδc − γc

2

)
c − J

2
b. (27)

The solution with respect to the photonic mean field in the
steady state yields

a = ε

κ ′
0 + i

(−�′
a0

+ αIa
) , (28)

(c) (d)

FIG. 10. Photonic intensity in (a) the strong-coupling regime vs
the detuning for � = J = 2, γ = 0.05, and κ = 0.1, and for (b) the
weak coupling vs the detuning for � = J = 0.008, γ = 0.05, and
κ = 0.1. Both representations are calculated for several nonlinearity
coefficients. (c) and (d) are three-dimensional (3D) plots of the
photonic intensities vs the tunneling rate J and the detuning in the
strong- and weak-coupling regimes, respectively, for α = 10−8 [the
other parameters are the same as (a) and (b)].

where

κ ′
0 = κ

2
+ ( �

2 )2( γb

2 + γc

2 βc)

( γb

2 + γc

2 βc)2 + (δb − βcδc)2
, (29)

�′
a0

= δa − ( �
2 )2(δb − δcβc)

( γb

2 + γc

2 βc)2 + (δb − βcδc)2
, (30)

and βc is given by βc = (J/2)2/[δ2
c + ( γc

2 )2] which contains
the indirect exciton parameters. Similarly to the calcula-
tion made above for the polariton cavity, from Eq. (28) we
get for the photonic intensity Ia[κ ′2

0 + (−�′
a0

+ αIa)2] = |ε|2.
Furthermore, the intracavity direct and indirect excitonic in-
tensities are linked by Ic = βcIb, and we have

Ib = ( �
2 )2

( γb

2 + γc

2 βc)2 + (δb − βcδc)2
Ia. (31)

The bistability condition �′2
a0

− 3κ ′2
0 > 0 yields in this case

[
δ2

a − 3
(κ

2

)2]
− 2βb,c

[
δa(δb − δcβc) + 3

κ

2

(γb

2
+ γc

2
βc

)]

+ β2
b,c

[
(δb − δcβc)2 − 3

(γb

2
+ γc

2
βc

)2]
> 0, (32)

where the quantity βb,c is given by

βb,c = ( �
2 )2

( γb

2 + γc

2 βc)2 + (δb − βcδc)2
, (33)

taking into account the direct and indirect exciton parameters.
It is clear that in the absence of the second quantum well (βc =
0), Eq. (32) reduces to the same bistability condition given by
Eq. (10) for the polariton cavity.

Differently from the polariton cavity, the photonic intensity
of the linear dipolariton system in the strong-coupling regime
[Fig. 10(a)] shows three peaks: a big peak at resonance and
two small symmetrical peaks centered around the particular
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FIG. 11. (a) Photonic intensity as a function of the coherent
pump amplitude ε for various damping rates (� = 0.008, α = 10−6,
� = 0.1, and ε = 100). (b) Comparison of the photonic intensities
between the polariton and the dipolariton cavity before the regime
of the optical bistability for γ = 0.06. The other parameters are the
same as (a). (c) Photonic intensity as a function of the square of
the coherent pump amplitude ε for � = 0.008, α = 10−6, γ = 0.02,
κ = 0.04, and three detunings �: optical bistability.

detunings ±�/
√

2. As the nonlinearity increases, the intensity
peaks are blueshifted and decrease considerably for suffi-
ciently strong values of α. For weak coupling [Fig. 10(b)],
the photonic intensity is localized around the resonance and
is stronger than that of the strong coupling. The tunneling
between the wells is an additional important parameter. It
describes the degree of the interaction between the wells, and
thus the strength of the coupling between direct and indirect
excitons. The variation of the intensity versus the tunneling
rate J is illustrated by Figs. 10(c) and 10(d). We clearly
observe that in the strong-coupling regime and in the absence
of the tunneling, the photonic intensity is similar to that of
the polariton system. When the tunneling becomes important,
a third peak appears at resonance and reaches its maximum
for � = J . In return, the symmetrical peaks decrease cor-
respondingly. In the weak-coupling regime, the intensity is
quasi-independent on the tunneling rate. Consequently, the
polariton and dipolariton cavities are similar in this regime.

By varying the amplitude of the coherent pump field, we
plot the dependence of Ia against ε before the regime of the
bistability [Fig. 11(a)]. The intensity increases with deceasing
direct and indirect excitonic damping rates. As a comparison
of the two systems and by choosing the same physical pa-
rameters, we conclude that the dipolariton cavity reaches the
regime of the optical bistability before the polariton cavity
[Fig. 11(b)]. When the condition (32) is fulfilled, the bistable
behavior appears [Fig. 11(c)]. This indicates that the dynamics
of the system exhibit an instability in a certain parameter
region.

D. Fluctuation spectrum

In order to determine the expression of the fluctuation spec-
trum, the system operators are decomposed into two parts: a

FIG. 12. Variation of the spectrum of noise as a function of the
frequency detuning for various bath temperature values in the strong-
coupling regime. The parameters are α = 0, � = J = 2, γ = 0.05,
ε = 100, and κ = 0.1.

mean field and fluctuation such as a = a + δa, b = b + δb,
and c = c + δc. Adopting the same procedure as for the po-
lariton cavity, we get the following set of linearized evolution
equations of the fluctuations:

δȧ =
(

i(δa − 2αIa) − κ

2

)
δa − iαa2δa† + �

2
δb + √

κain,

(34)

δḃ =
(

iδb − γb

2

)
δb − �

2
δa + J

2
δc + √

γbbin, (35)

δċ =
(

iδc − γc

2

)
δc − J

2
δb + √

γccin. (36)

In this case, the solution of such a system for
the fluctuating cavity field δa(ω) is in the form
δa(ω) = √

κη1(ω)ain + √
γbη2(ω)bin + √

γcη3(ω)cin +√
κη4(ω)a†

in + √
γbη5(ω)b†

in + √
γcη6(ω)c†

in. Then, the output
optimum noise spectrum is written as

Sout
opt =1 − 2κ|[κη1(ω)η4(−ω) + γb(ndx + 1)η2(ω)η5(−ω)

+ γc(nix + 1)η3(ω)η6(−ω) − η4(−ω)]|
+ κ (κ|η1(ω)|2 + γb(ndx + 1)|η2(ω)|2

+ γbndx|η5(ω)|2 + γc(nix + 1)|η3(ω)|2)

+ κ (κ|η4(−ω)|2 + γbndx|η2(−ω)|2

+ γb(ndx + 1)|η5(−ω)|2 + γcnix|η3(−ω)|2)

+ κγcnix|η6(ω)|2 + κγc(nix + 1)|η6(−ω)|2
− 2κ Re[η1(ω)]. (37)

E. Spectrum of the linear system

First, we consider the linear system. As shown in Fig. 12,
when thermal excitations occur only in the direct excitonic
field (solid line), the spectrum shows two symmetrical peaks
around � = ±�/

√
2. When indirect thermal excitons come

into play (dashed and dotted lines), first we observe three
peaks where the biggest is at resonance, then the two sym-
metrical peaks gain more fluctuations. In the weak-coupling
regime, we obtain similar curves than as for the polariton
cavity (figure is not shown here). In conclusion, the degree
of the fluctuations depends on the strength of the coupling.
Furthermore, the dipolariton system generates higher fluctu-
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FIG. 13. Squeezing spectrum as a function of the detuning and
the nonlinearity coefficient for some values of α [(a), (b)], and a
continuous variation of α [(c), (d)]. (a) and (c) represent the strong-
coupling regime for � = J = 2. (b) and (d) represent the weak-
coupling regime for � = J = 0.008. (e) Density plot of the noise
spectrum as a function of the detuning and the coupling constant �

for J = 0.3 and α = 10−7. In all representations, γ = 0.05, ε = 100,
and κ = 0.1.

ations than the polariton cavity. These additional fluctuations
appear essentially at resonance.

F. Squeezing of the output field

Now we turn our attention to the squeezing generated by
the nonlinear photonic term. It is shown in Fig. 13(a) that
in the strong-coupling regime the spectrum is formed by
three squeezed peaks. The maximal squeezing is obtained
at resonance and the two other peaks are centered around
� = ±�/

√
2. By increasing the nonlinearity coefficient from

10−8 to 10−6 in normalized units, the squeezing is strongly
enhanced with a slight dissymmetry towards the positive de-
tunings. We notice the same behavior in the weak-coupling
regime [Fig. 13(b)] except that the nonclassical effect appears
only around the resonance and may be perfect with a judicious
choice of detuning. This entirely squeezed radiation was al-
ready expected in nonlinear quantum systems [58,59]. For an
in-depth overview of the situation, we vary the nonlinearity
coefficient continuously in both regimes. For strong coupling,
we observe three squeezed branches with a small blueshift
compared to the initial position of detunings [Fig. 13(c)]. In
the weak-coupling regime [Fig. 13(d)], a perfect squeezing
is attainable for some region of nonlinearity and increasing
frequency detunings. The variation with respect to the photon-
exciton coupling strength � is illustrated by Fig. 13(e). We

0.94

0.96

0.98

1.00

0.85

0.90

0.95

1.00

(a)

(c)

FIG. 14. 3D and density plots of the squeezing spectrum vs the
tunneling rate J in the strong-coupling regime [(a), (b)] for � = 2,
and for the weak coupling [(c), (d)] for � = 0.008. In all representa-
tions, the other parameters are γ = 0.05, κ = 0.1, and α = 10−8.

observe, as for the polariton cavity, that the squeezing is
maximal for weak coupling. However, as soon as the inter-
action becomes important (� � κ, γ ), the spectrum shows
three branches of squeezing in W form with a decrease of the
magnitude of the nonclassical effect.

It is worth noting that, similarly to the polariton cavity case,
the forms of the noise spectrum and the blueshift character are
imposed by the photonic intensity. The system favors also a
dipolaritonic branch over the two others.

G. Squeezing and electronic tunneling

The electronic tunneling between the quantum wells is an
important factor as it decides the nature of the created quasi-
particles in the cavity, and governs the passage of the system
from the polaritonic to dipolaritonic cavity. The magnitude of
this effect is imposed by the barrier width which separates
the quantum wells. From this, two regimes are observed: a
pulsed tunneling if � > J and a pulsed lasing when J > �.
Experimentally, the first regime corresponds to a barrier width
LB greater than 4 nm, however, the pulsed lasing occurs if
LB < 4 nm [36]. We consider first the regime of strong cou-
pling. The 3D and density plots of Figs. 14(a) and 14(b)
show that the fluctuation spectrum consists of three branches
of squeezed states in the emergent light. Except in these
branches, the light is coherently transmitted (Sout

opt = 1). We
also observe that for J = 0 (LB > 15 nm), the quantum wells
are decoupled. This seems evident because by increasing the
distance between them, the tunneling will not happen and
the indirect excitons cannot be created. In this situation, the
system is equivalent to the polariton cavity showing two peaks
centered around the detunings � = ±�/2. If one decreases
the widths, and thus increasing the tunneling, a third branch
appears at resonance. Meanwhile, the symmetrical branches
deviate from the initial positions of frequency detunings.
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FIG. 15. Variation of the noise spectrum of the dipolariton cavity
(and the polariton cavity) as a function of the photonic nonlinearity
α and the temperature of the thermal baths in the strong-coupling
regime (a) and (b) [� = J = 2, � = 1.05 (polariton), and � = 0.1
(dipolariton)]. (c) Same conditions as (b) and for higher values of
nonlinearity. The three systems are represented together: solid line
(dipolariton), dashed line (polariton), and dotted line (no quantum
well with � = 0.1). (d) The weak-coupling regime (� = J = 0.008
and � = 0.15). In all representations γ = 0.05, κ = 0.1, and ε =
100.

For weak coupling, the situation is quite different
[Figs. 14(c) and 14(d)]. The squeezing effect is obtained only
for a quasiresonant excitation. Additionally, we observe that
the strongest magnitude effect is realized for � = J . This
corresponds to the limit of the pulsed tunneling regime.

H. Squeezing and temperature

In this section, we focus on the effect of the temperature of
the baths on the stability of the squeezing. First, we assume
that our system is at zero temperature. Figure 15(a) represents
the spectrum of noise against the nonlinearity coefficient of
the two systems. It is shown that in both situations, the sys-
tems show similar behaviors. However, the squeezing of light
in the polariton cavity reaches its maximum faster than the
dipolariton cavity. But, interestingly, the dipolariton system
attains the coherent state in a slower way, meaning that the
system gives us a good margin for showing a strong squeezing
before the light becomes coherent. When thermal excitations
take place [Fig. 15(b)], the spectrum of the dipolariton cavity
shows also a nonlinearity interval corresponding to high fluc-
tuations. But, differently, the maximum of these fluctuations
is attained first by the polariton cavity. After the peak, the
squeezing appears again. The same behavior as the zero-
temperature case is noticed: The polariton system reaches
the coherent state faster. This feature is better illustrated by
Fig. 15(c). We note here that the comparison between the three
systems is made for detuning values close to that of giving the
maximal squeezing of each system.

In the weak-coupling regime, the squeezing effect is very
weakly disturbed even at high temperature. In this situation,

FIG. 16. Intensity power spectrum of the output field in the
strong-coupling regime plotted against (a) the detuning and (b) the
frequency, for α = 10−8, � = J = 2, γ = 0.05, ε = 100, κ = 0.1,
and ndx = nix = 0.5.

the polariton cavity showed fluctuations may reach a value of
2.5 in normalized units [Fig. 6(c)]. However, in the dipolariton
system, these fluctuations are nonexistent. The only effect of
the temperature is a weak decrease of squeezing in a small
range of α.

I. Intensity power spectrum

We plot the extracavity intensity power spectrum versus the
detuning and the frequency. In Fig. 16(a), at zero frequency,
the spectrum consists of three distinct peaks of comparable
amplitudes. They are centered around the particular detunings
given by � = 0 and � = ±�/

√
2. The symmetrical peaks

are then separated by
√

2�. By increasing the frequency,
the whole spectrum is also translated towards the negative
detunings and keeps the same spacing between peaks. We
notice that the peak in the middle corresponds perfectly to
|�| = ω − ω0. A different aspect from the spectrum of the
polariton system is that here the peaks are closer to each other.
The variation as a function of the frequency is represented
by Fig. 16(b). It is shown that at resonance, the spectrum is
formed by two peaks: the first at ω − ω0 = 0 and the second
placed around ω − ω0 = �/

√
2. For higher detunings, a third

peak appears where the peak in the middle corresponds to
ω − ω0 = |�|. Additionally, the peaks are also closer than for
the polariton cavity.

IV. CONCLUSION

We have studied the quantum properties and the pho-
ton correlations of the light emitted by a cavity containing
a single, then two, coupled quantum wells and interacting
with photons resulting from a nonlinear process through a
third-order nonlinear medium. By deriving the conditions
of the optical bistability in the two systems, we have shown
that this regime is reachable in the dipolariton cavity faster
than the polariton cavity. Furthermore, dipolaritons induce a
more flexible squeezing owing to the additional interactions
appearing in the dipolariton system. These extra couplings
generate a slower attenuation of the nonclassical effect. In
addition, it turns out that the weak-coupling regime is favor-
able to stronger squeezing than the strong coupling in the two
systems. In the weak-coupling regime, the two systems have
similar behaviors except for a higher resistance against the
temperature in favor of the dipolariton system.
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[3] Y.-F. Xiao, Ş. K. Özdemir, V. Gaddam, C.-H. Dong, N. Imoto,

and L. Yang, Opt. Express 16, 21462 (2008).
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