
PHYSICAL REVIEW A 102, 063711 (2020)
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We investigate a one-dimensional Rabi-Hubbard type of model, arranged such that a quantum dot is sand-
wiched between every cavity. The role of the quantum dot is twofold, to transmit photons between neighboring
cavities and simultaneously act as an effective photon nonlinearity. We consider three-level quantum dots in the
� configuration, where the left and right leg couple exclusively to the left or right cavity. This noncommuting
interaction leads to two highly entangled incompressible phases, separated by a second-order quantum phase
transition; the degrees of freedom of the quantum dots can be viewed as a dynamical lattice for the photons
which spontaneously breaks Z2 symmetry due to a bosonic Peierls instability, leading to a phase with dimerized
order. Additionally, we find a normal insulating phase and a superfluid phase that acts as a quantum many-body
superradiant phase. In the superradiant phase, a Z2 symmetry is broken and the phase transition falls within the
universality class of the transverse-field Ising model. Finally, we show that the model can be interpreted as a Z2

lattice gauge theory in the absence of a dipolar field on the lower qutrit levels.

DOI: 10.1103/PhysRevA.102.063711

I. INTRODUCTION

At the quantum level of single photons, strongly coupled
light and matter can form novel states with no counterparts in
other branches in physics [1]; new interacting quantum many-
body models arise which may host exotic phases. The study
of phase transitions (PTs) in light-matter systems dates back
to the early days of the laser, when the onset of lasing with
increasing pump power was identified as a nonequilibrium
continuous PT [2].

Predating the laser, in 1954 Dicke showed how the rate of
spontaneous emission for a set of N two-level atoms could
be enhanced by a factor

√
N [3]. This phenomenon, arising

due to collective multipartite interference, has been termed
superradiance and can be derived from the Dicke model de-
scribing the coupling of N identical two-level systems with a
single-photon mode [4]. In 1973, first by Hepp and Lieb [5]
and shortly afterwards by Wang and Hioe [6], it was demon-
strated that the Dicke model supports a second-order PT from
a “normal” to a “superradiant” phase as the light-matter cou-
pling is raised above a critical value. The corresponding PT is
accompanied by a spontaneous breaking of a Z2 symmetry. In
more recent times, there has been a strong interest in realizing
PTs, like the Dicke one, in quantum optical lattice systems [7].
This development was spurred by the increased experimental
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control over many-body quantum systems and in the wake of
quantum simulators [8].

One manifestation of a quantum PT (QPT), i.e., a transi-
tion driven by quantum rather than thermal fluctuations, is
a nonanalytic behavior of the system’s ground state [9]. For
the Dicke PT one finds such a nonanalyticity, and as such
it has often been referred to as a QPT. Nevertheless, the
transition is of a mean-field type, and the role of quantum
fluctuations becomes irrelevant in the thermodynamic limit
[10]. In this strict sense, the Dicke PT is not a proper QPT. In a
truly quantum normal-superradiant PT, quantum fluctuations
should remain extensive in the thermodynamic limit, as the
system approaches the superradiant transition. This is more
in the vein of paradigmatic quantum critical models like the
transverse-field Ising or Bose-Hubbard models [11]. One way
to enhance the role of quantum fluctuations is to consider
multimode Dicke models [12] or cavity arrays [13]. In such
models, arrays of cavities or resonators are constructed on
microchips such that photons can tunnel between neighboring
cavities. Each transmission-line resonator is equipped with a
quantum dot (q-dot) that acts as an artificial two-level atom
[14]. This produces a Jaynes-Cummings nonlinearity [15],
which serves as an effective photon-photon interaction. When
photon losses can be neglected, the effective excitations are
polaritons governed by a Hamiltonian similar to the Bose-
Hubbard model. Similarly, superfluid and insulating phases of
polaritons appear [16].

In [17], the light-matter terms of the model were used to
produce an effective interaction as well as the kinematics. The
authors studied a one-dimensional array of resonators, with
a two-level system (qubit) placed between neighboring res-
onators, such that photon tunneling is mediated by a Rabi-type
interaction. It was demonstrated that the low-energy physics
is described by the transverse-field Ising model. While not
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FIG. 1. Figure (a) shows a schematic picture of a qutrit in the
� configuration. The operators λ(1), λ(4), and λ(6) act like Pauli
σ x matrices between each pair of qutrit levels. Figure (b) displays
how these qutrits are connected with cavities in our model. Each
cavity supports a single mode, with frequency ω. Each qutrit has two
degenerate bare ground states |1〉 and |2〉, and an excited state |3〉
separated in energy by � [see (a)]. Resonators of odd index couple
to the λ(4) operator of its adjacent qutrits (shown in red). Resonators
of even index instead couple to the λ(6) operator of its adjacent qutrits
(shown in blue). In addition, there is a direct coupling between the
|1〉 and |2〉 states with an amplitude s (shown in green).

discussed in Ref. [17], we may think of the emerging Ising
transition as a normal-superradiant PT, driven by quantum
fluctuations. The idea of interconnecting cavities via super-
conducting qubits dates back to the works of Ref. [18], where
the qubits were considered as controllable switches for the
tunneling of photons between the cavities. Based on these
ideas, it was possible to experimentally connect three or
more resonators with the help of qubits [19].

In this paper we also consider a one-dimensional closed
cavity array with mediated photon tunneling. While photon
losses are inevitable in cavity arrays, the properties of the cor-
responding closed system can reveal vital information about
the open system [10,20], which motivates our paper. Our
model differs from that of Ref. [17] in two important aspects.
First, instead of qubits we consider three-level systems, i.e.,
qutrits with three internal states |1〉, |2〉, and |3〉. Second, res-
onators of odd index couple only to the |1〉 ↔ |3〉 transitions
of its adjacent qutrits, while resonators of even index instead
address only the |2〉 ↔ |3〉 transitions of its adjacent qutrits
(see Fig. 1). These modifications lead to the appearance of
novel exotic phases in our model.

It may be helpful to picture the photons as “site variables”
and the qutrits as “bond variables,” forming a “dynamical lat-
tice” for the photons as in quantum link models [21]. A salient
result that may arise from a dynamical lattice is an altered
periodicity, leading to novel phases such as charge-density
waves [22] first predicted by Peierls in one dimension [23],
and supersolids [24]. Indeed, for weak coupling strengths we
find a bosonic Peierls (BP) phase with altered periodicity.
Contrary to a traditional Peierls instability for free fermions,

the periodicity is not set by the filling but is induced by
effective interactions between the photons. This is akin to the
bosonic Peierls transition recently discussed in an extended
Bose-Hubbard model with a similar dynamical lattice as the
one considered here [25]. Note that the photon number is not
a conserved charge in our problem—which is why we refrain
from calling the bosonic Peierls phase a charge-density wave
despite great similarities. For stronger light-matter couplings,
the system undergoes a QPT and is restored to a symmetric
phase with a constant, sizable entanglement entropy over the
chain [see Eq. (22)].

In order to realize the aforementioned many-body normal-
superradiant QPT we assume a static dipolar field driving
the |1〉 ↔ |2〉 transitions. Such a field has a “resetting” ef-
fect on the qutrits; e.g., a qutrit undergoing the transitions
|1〉 → |3〉 → |2〉 by transferring one photon between two res-
onators can be reset by the field to its original state |1〉 without
involving further photons from the resonators. When this field
becomes appreciable, two new phases appear in our model.
For weak light-matter coupling g, a normal symmetric phase
(N) appears, characterized by unbroken translational symme-
try. For strong values of g we find a superradiant (SR) phase
which spontaneously breaks the Z2 parity symmetry that is
connected to the superradiant PT.

The outline of the paper is as follows. In the next section
we introduce our model and find its symmetries. In Sec. III we
present the zero-temperature phase diagram as obtained from
density-matrix renormalization-group (DMRG) calculations,
and characterize the different phases. We also determine the
possible transitions between the phases, and in Sec. IV we
give a discussion about physical relevance of our model. Fi-
nally, in Sec. V we conclude with a summary.

II. MODEL SYSTEM AND ANALYSIS

A. Full Hamiltonian

We assume ideal qutrits (three-level systems) in the � con-
figuration: the two states |1〉 and |2〉 are degenerate, while the
state |3〉 is of a higher energy. We assume that all transitions
can be addressed and coupled to resonators individually. We
will suggest methods of experimental realization in Sec. IV.
The level configuration and system parameters are shown
in Fig. 1(b).

The full model system, as shown in Fig. 1(a), consists
of an infinite chain of cavities interspersed with qutrits. We
label each qutrit and the resonator to its right by the same
site index i. Resonators of odd index couple with a Rabi
interaction of strength g to the |1〉 ↔ |3〉 transitions of its
adjacent qutrits, while resonators of even index instead have
a Rabi interaction of the same strength with the |2〉 ↔ |3〉
transitions of its adjacent qutrits [26]. As mentioned in the
Introduction, we include a static dipolar field between the two
lower qutrit states |1〉 and |2〉. Note that such a field breaks
the angular momentum conservation if the qutrit is realized
with spin quantum numbers, which is possible to realize by
external two-photon driving [27]. We do not restrict the anal-
ysis to moderate couplings g � ω, in which the rotating-wave
approximation is applicable, but allow for g ∼ ω, i.e., the deep
strong-coupling regime [28].

063711-2



SUPERRADIANCE, BOSONIC PEIERLS DISTORTION, … PHYSICAL REVIEW A 102, 063711 (2020)

The Hamiltonian can be split in a bare and an
interaction part:

H = HB + Hint. (1)

The bare Hamiltonian is composed of the harmonic oscillators
representing the single light modes of the resonators, the bare
energies of the qutrits, as well as the dipolar field on the two
lower qutrit states. Expressed in terms of Gell-Mann matrices
[29] (see Appendix A for the definition of the Gell-Mann
matrices λ

(α)
i ), the bare Hamiltonian reads (h̄ = 1 throughout)

HB = ω
∑

i

a†
i ai − �√

3

∑
i

λ
(8)
i − s

∑
i

λ
(1)
i , (2)

where ω is the resonant angular frequency of the cavities,
� is the frequency (energy) of the upper qutrit states, s is
the strength of the dipolar field on the lower qutrit states,
and a†

i (ai) is the photon creation (annihilation) operator for
the ith cavity; i.e., for a photon Fock state of the ith cavity,
ai|n〉i = √

ni|n − 1〉i, a†
i |n〉i = √

ni + 1|n + 1〉i, and for the
number operator ni|n〉i = a†

i ai|n〉i = ni|n〉i. The interaction
Hamiltonian can be written as

Hint = g
∑
i odd

(ai + a†
i )

(
λ

(4)
i−1 + λ

(4)
i

)

+ g
∑
i even

(ai + a†
i )

(
λ

(6)
i−1 + λ

(6)
i

)
, (3)

where g is the Rabi coupling strength. Note that the opera-
tors λ

(4)
i and λ

(6)
i are proportional to dipole operators for the

|1〉 ↔ |3〉 and |2〉 ↔ |3〉 transitions, respectively, and act like
σx Pauli matrices for these transitions. Since [λ(4), λ(6)] �= 0,
the individual interaction terms do not commute. Also, note
that it is possible to reformulate the Hamiltonian with spin-1
operator matrices [30], Sα (α = x, y, z), but the price one pays
is that it will contain higher-order terms, e.g., λ(4) = S2

x − S2
y .

There is a duality which maps the Hamilto-
nian H (s, g, ω,�) → H (−s, g, ω,�). The unitary
transformation is

UD = exp

[
iπ

∑
i

(
|1〉i〈1|i + 1 − (−1)i

2
ni

)]
. (4)

Hence, it is sufficient to consider s > 0, and we remark that for
any superradiant phase for s < 0 there exists a corresponding
superradiant phase for s > 0, but with a staggered ordered
parameter 〈ai〉 ∝ (−1)i.

B. The normal-superradiant phase transition

Our Hamiltonian is invariant under a π rotation with re-
spect to the total excitation number

Nex =
∑

i

(
ni +

√
3λ

(8)
i

)
, (5)

with the corresponding unitary

	 = exp(−iπNex) = (−1)Nex . (6)

Since the eigenvalues of Nex are integers, we clearly have
	2 = I as required for a Z2 symmetry. That the Hamiltonian

is symmetric under the action of 	 follows from noticing

	ai	
† = −ai, 	λ

(4)
i 	† = −λ

(4)
i ,

	λ
(6)
i 	† = −λ

(6)
i , 	λ

(8)
i 	† = λ

(8)
i . (7)

Apart from a few special exceptions, continuous phase
transitions occur when the ground state of a system spon-
taneously breaks the symmetries of its Hamiltonian [31].
We can then find a (local) order parameter, which is zero in
the symmetric phase and nonzero in the symmetry-broken
phase. For the normal-superradiant PT, which is connected
to the breaking of a similar Z2 symmetry, a proper choice is
φ = 〈a〉 [32]. Given a real light-matter coupling g, the order
parameter will be real; the sign of φ determines the parity
[10]. Similarly in our model, for s > 0, breaking of the parity
symmetry results in a real nonzero value of

φ ≡ 1

L

∑
i

〈ai〉. (8)

Because of the duality (4), a similar but staggered order
appears for s < 0. The order parameter is the same, except
that each term in (8) has to be multiplied by (−1)i. Since
the symmetry 	 involves both qutrits and resonators, there
are two qutrit order parameters which should show the same
(anti)-ferromagnetic order:

φ4/6 ≡ 1

L

∑
i

〈
λ

(4/6)
i

〉
(9)

where, again, for s < 0 each term in (9) has to be
multiplied by (−1)i.

As a one-dimensional spin chain supporting a Z2 symme-
try, the critical point should belong to the universality class
of the transverse-field Ising model. To elucidate this, we in-
vestigate the limit of s → ∞ and extrapolate to finite s. By a
Hadamard transformation of the qutrit states

|1〉i → (|1〉i + |2〉i )/
√

2,

|2〉i → (|1〉i − |2〉i )/
√

2,

|3〉i → |3〉i,

(10)

the Hamiltonian can be rewritten as

H ′
B = ω

∑
i

a†
i ai − �√

3

∑
i

λ
(8)
i − s

∑
i

λ
(3)
i ,

H ′
int = g

∑
i odd

(ai + a†
i )(τ (+)

i−1 + τ
(+)
i )

+ g
∑
i even

(ai + a†
i )(τ (−)

i−1 + τ
(−)
i ), (11)

where

τ
(±)
i ≡ λ

(4)
i ± λ

(6)
i√

2
. (12)

The bare Hamiltonian has eigenvalues

E1n = s + ωn, E2n = −s + ωn, E3n = � + n. (13)

The population in the state with bare energy E2n will be small
if s is large enough and the mean photon number n̄ of each
resonator is small. In this limit, we project the qutrit degrees
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of freedom of the Hamiltonian by P = ∏
i (|1〉i〈1|i + |3〉i〈3|i )

to find

PH ′
BP = ω

∑
i

a†
i ai −

√
3�

2

∑
i

σ z
i + const,

PH ′
intP = g√

2

∑
i

(
ai + a†

i

)
(σ x

i + σ x
i−1), (14)

where σ z
i = |1〉i〈1|i − |3〉i〈3|i and σ x

i = |1〉i〈3|i + |3〉i〈1|i. In
this limit, the model is equivalent to that considered in
Ref. [17], where it was already concluded that the phase tran-
sition falls within the Ising universality class. By the duality
(4), we conclude that the Hamiltonian is “antiferromagnetic”
for s < 0.

C. Quasitranslation symmetry

Assuming periodic boundary conditions, there is a second
global symmetry of the model which we call quasitranslation
symmetry: a permutation of the qutrit states |1〉, |2〉, followed
by a translation by one site. Calling it T̃ , its action on the
operators is

T̃ aiT̃ † = ai+1, T̃ λ
(3)
i T̃ † = −λ

(3)
i+1,

T̃ λ
(4)
i T̃ † = λ

(6)
i+1, T̃ λ

(6)
i T̃ † = λ

(4)
i+1,

T̃ λ
(3)
i T̃ † = λ

(3)
i+1, T̃ λ

(8)
i T̃ † = λ

(8)
i+1. (15)

Since this symmetry involves no change in parity of the
photonic operators, no superradiance is involved in a corre-
sponding symmetry-breaking phase transition. It can still be
called a parity symmetry, since T̃ 2 = 1, but the parity change
involves the qutrit operator λ

(3)
i rather than λ

(4)
i and λ

(6)
i as in

Eq. (7). For the spontaneous breaking of the quasitranslation
symmetry T̃ , we introduce the order parameter

ϕ ≡ 1

L

∑
i

〈λ(3)
i 〉. (16)

D. Local gauge symmetries for s = 0

In the limit that s = 0, we find an infinite set of local
conserved quantities

	i ≡
{

B1
i QiB1

i+1 i odd

B2
i QiB2

i+1 i even,
(17)

where Qi = exp (iπni ) and Bk
i = exp (iπ |k〉i〈k|i ) (k = 1, 2).

We note that the global parity symmetry 	 = ⊗
i 	i and that

	i have the form of generators of a Z2 lattice gauge theory
(LGT), where the photons play the role of the “matter field”
and the qutrits are bond variables [21]. Gauge theories can
lead to interesting phenomena such as confinement, but in
one-dimensional quantum systems the gauge theory is “triv-
ial” [33]. The LGT has, however, one immediate consequence.
Elitzur’s theorem [34] tells us that gauge symmetries can
never be broken, and only gauge invariant observables can
have nonzero expectation values. E.g., the photon annihilation
operator ai is not gauge invariant, and we can predict that
φ, φ4, φ6 = 0 when s = 0, for all values of the light-matter
coupling.

E. Effective qutrit Hamiltonian

It is possible to eliminate the photon degrees of freedom
to derive an effective model of interacting SU(3) spins in
one dimension. To obtain such an effective model, we em-
ploy the polaron transformation (also called the Lang-Firsov
transformation) [35,36], which is an ansatz for the ground
state relying on a time-scale separation between fast and
slow variables. The method has proven efficient in describing
phonon physics, where the states of the ions in a crystal are
“displaced” according to the electronic state; phonons (fast
variables) dress the electrons (slow variables) to form a pola-
ronic excitation [37]. If the phonons are displaced, the idea is
to find the new minima, i.e., the displaced phononic vacuum
[36]. The variational ansatz of the polaron transformation for
our model is given by

|({ci}, {αi}, γ )〉 = U †
γ |ψqutrit({ci})〉 ⊗ |�α〉, (18)

where we have defined |�α〉 ≡ ⊗
i |αi〉. Here, {ci} are the 3N

coefficients of the entire many-body state of the qutrits, αi ∈
R is the amplitude of a photonic coherent state |αi〉, and γ is
a real parameter which is later chosen such that the photonic
and qutrit variables are decoupled. While this is a mean-field
ansatz for the photonic variables, it allows for general quan-
tum correlations in the qutrit variables. The unitary polaron
transformation is

Uγ ≡ exp

[
γ

∑
i

(
ai − a†

i

)
Pi−1,i

]
, (19)

where we have defined

Pi−1,i ≡
{
λ

(4)
i−1 + λ

(4)
i , i odd,

λ
(6)
i−1 + λ

(6)
i , i even.

(20)

Taking the expectation value with respect to the photonic
variables, 〈�α|H |�α〉, yields the effective qutrit Hamiltonian

Heff = −s̃
∑

i

λ
(1)
i − �̃√

3

∑
i

λ
(8)
i

− J
∑
i odd

λ
(4)
i−1λ

(4)
i − J

∑
i even

λ
(6)
i−1λ

(6)
i , (21)

where J , s̃, and �̃ are renormalized couplings. A detailed
calculation of Eq. (21), as well as the expressions for the
renormalized couplings, are given in Appendix B.

III. NUMERICAL RESULTS

A. Matrix product states

To investigate the possible phases of the system, we have
used DMRG to calculate the ground state [38]. DMRG is
a variational method with matrix product states (MPSs) as
trial states. It can represent gapped, finite-entanglement many-
body states to arbitrary accuracy, provided one keeps large
enough bond dimension χ [39]. Even the thermodynamic
limit of a translation-invariant system can be described by a
MPS representing the unit cell.

Our system can be viewed as a spin model with finite range
interactions [40]. For such models, we expect an “area law”
behavior of the entropy in gapped phases, i.e., the entropy
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FIG. 2. Schematic phase diagram in the (s, g) plane, calculated
with DMRG in the thermodynamic limit for ω/� = 0.03. A max-
imal bond dimension χ = 100 was used and the bosonic Hilbert
spaces were truncated to dimension 5. The superradiant (SR) phase is
characterized by an order parameter φ �= 0, while the bosonic Peierls
(BP) phase is characterized by an order parameter ϕ �= 0. Note that
there is no region where both order parameters are nonzero. The
normal (N) phase and the normal-entangled (NE) phase are separated
in the phase diagram by a multicritical point but are both symmetric
phases, having φ, ϕ = 0. The sweeps made to calculate the phase
boundaries are indicated with dashed red lines.

is proportional to the length of the boundary between the
two subsystems, which in one dimension is a single bond.
At the critical points, the entanglement is expected to grow
logarithmically with subsystem size. In the thermodynamic
limit, the entanglement entropy of gapped states should be
finite, but diverge as we approach the critical point.

For bosonic degrees of freedom, DMRG requires that we
truncate the local Hilbert-space dimension d . Increasing d will
in principle lead to greater accuracy. However, the computa-
tional cost scales as O(χ3d2) [41]. We found that expectation
values had a strong dependence on d close to critical points,
leading to time-consuming calculations. To circumvent this
issue, we have used the effective qutrit model (21) to calculate
critical exponents. This is justified since the effective qutrit
model shares the symmetries of the exact Hamiltonian.

In the paper throughout, we have worked with DMRG
directly in the thermodynamic limit, as described above. The
Hamiltonian was rescaled as H/� and we have assumed
ω/� = 0.03. This choice is close to what can be achieved in
an implementation with transmon qudits [17].

B. Phase diagram

In Fig. 2 we show a phase diagram in the (s, g) plane,
where the phase boundaries were obtained by sweeping across
the boundary and calculating the ground state and order pa-
rameters using DMRG, with a maximal bond dimension of
χ = 100. We verified that choosing a higher value of χ did
not improve the quality of the figure. We find two regions
in Fig. 2 where both order parameters are zero, which we
call the normal (N) and the normal-entangled (NE) phases.
These are separated in the phase diagram by a multicritical

FIG. 3. Plot (a) and log plot (b) of the order parameter (9) over
the phase boundary between the N and SR phases. The circles give
the numerical DMRG results, calculated in the thermodynamic limit
with a maximal bond dimension χ = 100, for the effective qutrit
model (21), while the solid lines are curve fits with the exponent
β = 1/8. The agreement is convincingly good. The remaining pa-
rameters were taken as ω/� = 0.03 and s/� = 0.2.

point. There are two regions where the ground state sponta-
neously breaks symmetries: the superradiant (SR) phase has
φ, φ4, φ6 �= 0 and thus breaks the parity symmetry (7). We
call the phase superradiant because of the aforementioned
similarities to the Dicke model. The BP phase has ϕ �= 0
and breaks the quasitranslation symmetry (15). In this phase,
every other resonator interacts strongly with its neighboring
qutrits, leading to a modulation of period 2 in the density
of photons. We find no phase with both symmetries broken
simultaneously, i.e., a supersolid. Elitzur’s theorem predicts
that the SR order parameters cannot be broken, as discussed
in Sec. II D. In this sense, the NE phase is to be expected
and is connected to the LGT when s = 0. It is interesting to
note that this phase extends to finite s, where the gauge theory
description does not hold strictly.

As quasitranslation symmetry and the superradiant sym-
metry are both Z2 symmetries in one spatial dimension, both
PTs are expected to fall within the universality class of the
transverse-field Ising model in one dimension [11]. We have
verified this hypothesis by fitting the magnetization critical
exponent β = 1/8 to the order parameters calculated using
DMRG. As mentioned above, we used the effective qutrit
model in these calculations, which is justified when investi-
gating critical features. Figure 3 displays the calculated order
parameter (9), tuning g from the N to the SR phase and keep-
ing s/� = 0.2, ω/� = 0.03 constant. The data can be fitted to
a power law with exponent β = 1/8 to excellent agreement.
Figure 4 displays the order parameter (16), tuning g from
the BP to the NE phase and keeping s/� = 0, ω/� = 0.03
constant. Again, a power law with exponent β = 1/8 is an
excellent fit. The symmetry-broken phases SR and BP can
be reached from either the N or the NE phases, and in all
cases we have numerically verified that the exponent β = 1/8
is obtained. In all calculations, we found that the MPS and
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FIG. 4. The same as Fig. 3 but for the order parameter (16) across
the phase boundary between the BP and NE phases, with a maximal
bond dimension χ = 100. Again we find the exponent β = 1/8. The
other parameters were ω/� = 0.03 and s/� = 0.

expectation values converged for a maximal bond dimension
of χ = 100.

C. The bosonic Peierls and normal-entangled phases

Consider the von Neumann entanglement entropy
defined as

SvN ≡ −Tr1[ρ1lnρ1], (22)

where ρ1 is the reduced density operator of subsystem 1,
obtained by tracing the full density operator over the degrees
of freedom of subsystem 2. It is understood that the trace in the
above expression is over the degrees of freedom for subsystem
1. In Fig. 5, we plot the entanglement entropy (a) as well as
expectation value of the photon number (b) across the BP-NE
phase transition for the full model of qutrits and resonators,
keeping s/ω = 0 and ω/� = 0.03. The subsystems 1 and
2 are defined from splitting the full system into two equal
halves. In obtaining the figures, the MPS was truncated to a
bond dimension of χ = 100 and the bosonic Hilbert spaces
were truncated to dimension 5, allowing a maximal occupa-
tion of four bosons per site. In Fig. 5(a), we see that in the
BP phase, the entanglement is higher between resonators of
odd or even index and its adjacent qutrits. The state chooses a
higher entanglement around odd or even sites. This staggered
structure of the entanglement entropy is another indication of
the breaking of the Z2 quasitranslation symmetry. In Fig. 5(b)
the photon number also breaks quasitranslation symmetry.

The N and normal-entangled NE phases are both fully
symmetric, and thus considered identical in the Landau clas-
sification. They are, however, different in terms of the amount
of entanglement entropy (22). Deep in the N phase, SvN <

10−2 such that the qutrits and resonators almost form a prod-
uct state. In the NE phase, however, SvN ∼ 0.7 even inside
the bulk of the phase, such that the qutrits and resonators
are strongly correlated. Even if the N and NE phases share
the same global symmetries, there could still exist nonlo-
cal topological order parameters to distinguish them. In the

FIG. 5. (a) Entanglement entropy across both the bonds between
resonators and qutrits, calculated with DMRG in the thermodynamic
limit, for the full Hamiltonian with s/� = 0, ω/� = 0.03, and a
bond dimension χ = 100. The bosonic Hilbert spaces were truncated
to dimension 5. The entanglement entropy between resonators of odd
(even) index and its adjacent qutrits is shown in dashed (dotted) lines.
Note that the true entanglement entropy diverges at the critical point,
but the chosen entanglement entropy converged for the selected sam-
ple points. The plot (b) displays the expectation value of the photon
number operator 〈a†

i ai〉, for odd (even) indices with dashed (dotted)
lines, from the same DMRG calculations. The spontaneous breaking
of the T̃ symmetry is evident in the periodic modulation in particle
number in (b) and in the staggered entanglement entropy around odd
and even resonators in (a).

entanglement structure and MPS description, the NE phase
is similar to the Affleck-Kennedy-Lieb-Tasaki (AKLT) state
[42], or possibly a valence bond state [43]. The AKLT state
has been found to be a symmetry-protected topological
state for spin S of odd integer values. One telltale sign of a
symmetry-protected topological state is a twofold degeneracy
in the entanglement spectrum of the MPS. We have found
no such degeneracy in the entanglement spectrum, which
indicates that the NE phase is not a symmetry-protected topo-
logical state [44].

If the Landau paradigm is not enough to distinguish the
N phase from the NE phase, and no topological [45] feature
distinguishes them, there is the possibility that the N phase
could be smoothly deformed into the NE phase. In order to
settle the issue, one would need further explorations, e.g., one
could try to extract local excitations and determine their prop-
erties. For completeness we point out that one could imagine
that the vanishing order parameters, φ4 = 0 and ϕ = 0, in the
NE phase are some numerical artifacts and the two symme-
tries are indeed broken to give a supersolid. However, this is
physically unlikely since for at least s = 0 we should find an
insulator with φ = 0 due to the following argument.

Assume no dipolar field on the qutrits, i.e., s = 0, and
further that all qutrits are initially prepared in states |1〉i (|2〉i).
Then, photons are only able to tunnel between sites i and
i + 1 if i is odd (even), precisely because of the noncom-
muting structure of the interactions. This “blockade” causes
the ground state to be an insulator (the s = 0 line in the
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phase diagram). We see that these two phases survive for
small nonzero coupling values s, but for some critical sc the
two phases terminate. If the light-matter coupling g is small,
the photon number remains small and the system stays an
insulator even for large |s| values—the normal phase. In order
to find a superfluid state, g has to be increased and the system
enters into the SR phase.

IV. PHYSICAL REALIZATION

The main experimental significance is the selected cou-
pling between a qutrit and its resonators to the left and right.
Such selection is easily achieved by adjusting the photon
frequencies to become resonant with their respective qutrit
transition, but has the disadvantage of leading to a stag-
gered self-energy ω of the resonators. While the symmetry
	 connected to the N-SR phase transition survives, such a
modification destroys the quasitranslation symmetry T̃ . We
have confirmed numerically that the SR phase is robust to such
changes [12,46], while unfortunately the BP and NE phases
do not survive. Consequently, to access the full phase diagram
we need to implement the selection rules by other means.
One possibility is to consider external Raman driving between
the qutrit levels [47]. There are two advantages with this
approach, namely, that the external drive frequency sets the
light-matter coupling and it is therefore possible to enter the
deep strong-coupling regime, and one can choose to couple
the desired transitions. By imposing the rotating-wave approx-
imation, and with the correct frequencies of the resonators
and the drive, one circumvents the above-mentioned problem
with alternating frequencies of every second resonator (the
effective parameter that enters the problem is the detuning
which is externally controlled). The resulting Hamiltonian
becomes

HRWA = �
∑

i

a†
i ai − δ√

3

∑
i

λ
(8)
i − s

∑
i

λ
(1)
i ,

+ ν
∑
i odd

[ai(λ
+
4,i−1 + λ+

4,i ) + H.c.]

+ ν
∑
i even

[ai(λ
+
6,i−1 + λ+

6,i ) + H.c.], (23)

where � is the detuning between the corresponding resonator
and drive frequencies, δ is the energy offset of the third
level and the lower levels, ν is the Raman coupling am-
plitudes (proportional to the external drive amplitudes), and
raising and lowering operators are λ

(±)
6,i ≡ (λ(4)

i ± λ
(5)
i )/2 and

λ
(±)
6,i ≡ (λ(6)

i ± λ
(7)
i )/2. The price one pays is that the rotating-

wave approximation alters the symmetries, and thereby also
the possible phases [16]. For example, particle conservation
(typically arising from the application of the rotating-wave
approximation) results in a continuous U (1) symmetry which
cannot be broken in one dimension [48]. Nevertheless, a
Kosterlitz-Thouless transition is not ruled out by the Mermin-
Wagner theorem, and one could still expect phases with
superfluidlike properties. We have verified numerically that
at least the structure of the phase diagram is the same for the
Hamiltonian (23) as that of Fig. 2(b), although the BP phase
only survives when the dipolar field strength s is strictly zero.

The largest experimental hindrance is most likely the loss
of photons. Two questions arise: how well can we approxi-
mate the system by a closed one at short times, and for longer
times when losses are significant how is the phase diagram
modified? The photon lifetime κ−1 limits the operation time
for any experiment. These typically range between tenths of
μs to the ms regime. If the setup functions in the deep strong-
coupling regime, this lifetime is orders of magnitude longer
than typical tunneling times g−1, which would allow one to
explore the equilibrium phase diagram. However, with current
experiments this is a challenge.

The alternative is to actually study nonequilibrium scenar-
ios with coherent photon sources accompanying incoherent
photon losses. It is known that the N-SR PT in the Dicke
model survives photon losses, even if the universality class
is altered [10]. Most likely, also our many-body N-SR PT
would survive photon losses. How the superfluid properties
are affected by losses has been studied in the past [20]. It
was argued that signatures of the equilibrium phase diagram
will remain in the driven-dissipative situation, even if novel
phenomena may arise [49]. The BP phase is robust and does
not depend on photon number conservation, which suggests
that it could be verified experimentally. The fate of the NE
phase is more subtle since it is a highly entangled state, pos-
sibly sensitive to decoherence. However, if the NE phase has
topological properties, these can be expected to survive losses.

V. CONCLUSION

In this paper, we have studied a generalized Rabi-Hubbard
chain, composed by alternating resonators and qutrits in a �

configuration. The qutrits in this setup act both as photon
mediators and as a photon nonlinearity. The specific form
of the light-matter coupling was chosen to limit the interac-
tion of each resonator to the left (right) leg of its adjacent
qutrits. This leads to an insulating bosonic Peierls phase with
broken quasitranslational symmetry, which is best understood
by considering bosons in a dynamical lattice of the qutrits.
The inclusion of the dipole field opens up for a superradiant
phase. The transition from the normal insulating phase to this
superfluid phase can be identified with a truly many-body
normal-superradiant QPT, contrary to the one of the Dicke
model which is of the mean-field type. Despite the presence
of the BP and SR phases, we do not find numerical evidence
for a supersolid.

The simplest scheme in order to realize the qutrit-resonator
setup would be to consider Raman transitions driven by exter-
nal classical fields. This, however, is typically analyzed within
the rotating-wave approximation. The effect of omitting the
counter-rotating terms is interesting and left for the future.
In our analysis we did not take losses into account, mean-
ing that the results are strictly only experimentally relevant
for time scales shorter than the photon and qutrit lifetimes.
However, the findings are still experimentally justifiable since
the physics of the closed system is believed to leave traces in
the driven open system [20], i.e., the photon blockade effect
is known to exist also for driven-dissipative systems. Never-
theless, a drive combined with losses might give additional
interesting features not captured in our paper.
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We end by mentioning the idea of studying similar q-dot
generated photon tunneling in two dimensions. Extending an
experiment in this way should not be too difficult. In higher
dimensions the lattice geometry may play an important role—
one can imagine a plethora of different settings like lattices
supporting flat bands, confinement, Dirac cones [50], or other
more exotic lattices [51].
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APPENDIX A: GELL-MANN MATRICES

Just as the Pauli matrices are generators of SU(2), the
Gell-Mann matrices λ(i) (i = 1, 2, . . . , 8) are generators of
SU(3); i.e., they are Hermitian, traceless [Tr(λ(i) ) = 0], and
orthogonal [Tr(λ(i)λ( j) ) = 2δi j] [29]. It should be clear that
together with the identity matrix, any complex 3 × 3 matrix
can be expressed as a linear combination of the λ(i) matrices.
The usual representation of the Gell-Mann matrices is

λ(1) =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, λ(2) =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠,

λ3 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, λ(4) =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

λ(5) =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, λ(6) =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

λ(7) =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, λ(8) = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠.

(A1)

Note that the Gell-Mann matrices can be written as products
of matrices of the spin-1 representation of SU(2). However,
only by using the Gell-Mann matrices can Eq. (1) of the main
text be written as a quadratic Hamiltonian.

APPENDIX B: POLARON ANSATZ

The goal of this Appendix is to calculate the effective qutrit
Hamiltonian (21), which is found by taking the expectation
value with respect to the photonic variables only, i.e.,

Heff = 〈�α|H |�α〉, (B1)

where, as in the main text, we have defined |�α〉 ≡ ⊗
i |αi〉. It

is useful to write the polaron unitary Uγ as follows:

Uγ = exp(−iγ S),

S =
∑

i

i(ai − a†
i )Pi−1,i =

∑
i

Si,i+1, (B2)

where we have defined the two-site operators

Pi−1,i ≡
{

λ
(4)
i−1 + λ

(4)
i i odd,

λ
(6)
i−1 + λ

(6)
i i even,

(B3)

and

Si,i+1 =
{

−√
2
(
piλ

(4)
i + λ

(6)
i pi+1

)
i odd,

−√
2
(
piλ

(6)
i + λ

(4)
i pi+1

)
i even,

pi = − i√
2
(ai − a†

i ).

(B4)

Note that both Pi−1,i and Si,i+1 are unitary, both in-
volve operators from two sites, and [Pi−1,i, Pi,i+1] �= 0 and
[Si−1,i, Si,i+1] �= 0. Si,i+1 only involves qutrit operators for one
site, while (ai − a†

i )Pi−1,i only involves photonic operators
from one site.

Uγ acts like a displacement operator on the photonic vari-
ables, i.e.,

Uγ aiU
†
γ = ai + γ [ai − a†

i , ai]Pi−1,i = ai + γ Pi−1,i, (B5)

which allows us to calculate the contribution to Heff from the
photonic part of HB immediately as∑

i

〈�α|Uγ a†
i aiU

†
γ |�α〉 =

∑
i

(
α2

i + 2γαiPi−1,i + γ 2P2
i−1,i

)
.

(B6)

The transformation of the qutrit part of HB is more in-
volved. Using the Hadamard lemma [52], the transformed
qutrit operators can be expanded as power series of nested
commutators as

Uγ λ
(α)
i U †

γ = λ
(α)
i − iγ

[
Si,i+1, λ

(α)
i

]
+ (−iγ )2

2!

[
Si,i+1,

[
Si,i+1, λ

(α)
i

]] + · · · . (B7)

To compute coherent-state expectation values, we use the
formula (assuming α ∈ R)

〈α|pn|α〉 =
{

0 n odd
�

(
n+1

2

)/√
π n even.

(B8)

Using (B8), we find

−s
∑

i

〈�α|Uγ λ
(1)
i U †

γ |�α〉 = −s f1(γ )
∑

i

λ
(1)
i

− �√
3

∑
i

〈�α|Uγ λ
(8)
i U †

γ |�α〉 = − �√
3

f8(γ )
∑

i

λ
(8)
i , (B9)

where the functions of γ can be expanded as rapidly converg-
ing power series

f1(γ ) = 1 − γ 2 + 5γ 4

6
− 17γ 6

30
+ O(γ 8),

f8(γ ) = 1 − 3γ 2 + 4γ 4 − 16γ 6

5
+ O(γ 8). (B10)
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It remains to calculate the contribution from the interaction
Hamiltonian:

g
∑

i

〈�α|Uγ (ai + a†
i )U †

γ Uγ Pi−1,iU
†
γ |�α〉

= g
∑

i

〈�α|(ai + a†
i )Uγ Pi−1,iU

†
γ |�α〉

+ 2gγ
∑

i

Pi−1,i〈�α|Uγ Pi−1,iU
†
γ |�α〉. (B11)

In the calculation, we will need to use the formula

〈α|(a + a†)pn|α〉 =
{

in/
√

2〈α|pn−1|α〉 n odd

2α〈α|pn|α〉 n even.
(B12)

Using (B12), we find

g
∑

i

〈�α|(ai + a†
i )Uγ Pi−1,iU

†
γ |�α〉

= g
∑
i odd

∑
β=2,4,6

(
h4β

i−1,iλ
β

i−1 + h4β

i,i+1λ
β
i

)

+ g
∑
i even

∑
β=2,4,6

(
h6β

i−1,iλ
β

i−1 + h6β

i,i+1λ
β
i

)

= gfg(γ )
∑

i

2αiPi−1,i, (B13)

since h64
i−1,i = h46

i−1,i = 0 for all i, h42
i,i+1 = h62

i−1,i = 0 and
h42

i,i+1 = −h62
i−1,i for i odd and vice versa for i even, while

h66
i,i+1 = h44

i,i+1 = fg(γ ) for all i, where

fg(γ ) = 1 − γ 2

2
+ γ 4

6
− γ 6

30
+ γ 8

210
+ O(γ 10). (B14)

Note that the denominators are the primorial numbers [53], so
fg(γ ) is the “primorial version” of e−γ 2

.
Furthermore, from (B8), we know that only coherent-state

expectation values of even powers of pn are nonzero. By
expanding in a power series using the Hadamard lemma and
setting all terms which are odd in pi−1 or pi to zero, we find

2gγ
∑

i

Pi−1,i〈�α|Uγ Pi−1,iU
†
γ |�α〉 = 2gγ fg(γ )

∑
i

P2
i−1,i.

(B15)

The expression (B13) and the cross-term in (B6) are the
only terms which couple the photonic mean-field and qutrit
degrees of freedom. Both terms can be eliminated by choosing

γ to be a root of the equation

gfg(γ ) = −ωγ , (B16)

which has a solution γ ∼ −g/ω close to g/ω = 0. By this
choice, the photonic and qutrit degrees of freedom are com-
pletely decoupled. Once decoupled, the photonic degrees
of freedom can be minimized independently to αi = 0. In
this sense, the polaron ansatz is a “dynamic displacement”
of the photonic vacuum. The ansatz neglects any contribu-
tion to quantum fluctuations from the resonators around this
vacuum state.

We found that the photonic part of the effective qutrit
Hamiltonian was minimized to zero, so the remaining part is
a qutrit Hamiltonian:

Heff = −s f1(γ )
∑

i

λ
(1)
i − �√

3
f8(γ )

∑
i

λ
(8)
i

+ [ωγ 2 + 2gγ fg(γ )]
∑

i

P2
i−1,i. (B17)

Assuming periodic boundary conditions, we find (the constant
term is dropped)∑

i

P2
i−1,i =

∑
i odd

[(
λ

(4)
i−1

)2 + (
λ

(4)
i−1

)2 + 2λ
(4)
i−1λ

(4)
i

]

+
∑
i even

[(
λ

(6)
i−1

)2 + (
λ

(6)
i−1

)2 + 2λ
(6)
i−1λ

(6)
i

]
= 2

∑
i odd

λ
(4)
i−1λ

(4)
i + 2

∑
i even

λ
(6)
i−1λ

(6)
i

+
∑

i

(
4

3
I3×3 − 1√

3
λ

(8)
i

)
, (B18)

such that the effective qutrit Hamiltonian can be written as

Heff = −s̃
∑

i

λ
(1)
i − �̃√

3

∑
i

λ
(8)
i

− J
∑
i odd

λ
(4)
i−1λ

(4)
i − J

∑
i even

λ
(6)
i−1λ

(6)
i , (B19)

where

s̃ = f1(γ )s,

�̃ = f8(γ )� + J/2,

J = −2[ωγ 2 + 2gγ fg(γ )] = 2ωγ 2. (B20)
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