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Single-photon switch controlled by a qubit embedded in an engineered electromagnetic environment
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A single-photon switch is an important element for the building of scalable quantum networks. In this paper,
we propose a feasible scheme for efficient single-photon switching. The proposed switch is controlled by a
state of a qubit formed by the pair of the lowest levels of a three-level system (qutrit) coupled to a resonator.
This resonator-qutrit system comprises a switching unit of the considered setup. For suppression of the Purcell
relaxation of the control qubit, the switching unit is embedded into a coupled-resonator array serving as an
engineered electromagnetic environment with a band gap on a qubit transition frequency. We discuss the
possible implementation of the considered single-photon switch on the microwave circuit QED architecture. We
demonstrate that high switching contrasts can be attained for the parameters achievable for the state-of-the-art
superconducting circuit QED setups.
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I. INTRODUCTION

A quantum network is an essential ingredient necessary for
the realization of scalable systems for quantum information
processing (QIP) [1]. It is built of a set of nodes, where
quantum information is processed and/or stored, intercon-
nected via quantum channels, where flying qubits propagate
transferring information between remote quantum nodes [2].
Photons are considered as a prime candidate for the role of
flying qubits due to the ultimate propagation speed and the
ability to retain the coherence over the large distances [3].
Precise and rapid control of photon propagation in quantum
networks is requisite for the efficient operation of quantum
networks. In this regard, various devices aimed to manipulate
the transport of photons, such as quantum switches [4–11]
and routers [12–17], photonic valves [18], diodes [19,20], and
transistors [21–23], were proposed.

A single-photon switch is a system that coherently con-
trols the photonic transport on a level of individual quanta.
A switch interconnects different quantum channels and rep-
resents an important component (node) of quantum networks,
which motivates the studies of various schemes for switch-
ing and routing. Besides a plethora of theoretical proposals
[4–6,9–12,14–16], a number of experimental demonstrations
of various schemes of single-photon switches and routers op-
erating in both microwave and optical domains were reported
[24–28].

Waveguide QED structures, such as optical nanofibers
[29], photonic-crystal waveguides [30], or coplanar mi-
crowave transmission lines [31], can serve as quantum
channels providing robust transmission of photons. In waveg-
uides, light is transversely confined, which gives rise to
light-emitter interaction enhancement and pronounced inter-
ference between the incident and scattered fields. It was
demonstrated that an individual quantum emitter embedded
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in a one-dimensional waveguide can act as a tunable scat-
terer for an incident photon [32–34]. By varying the strength
[6,35,36] and phase [37] of light-emitter coupling or utilizing
a control field (classical [4,10–12,14,15] or quantum [38,39]),
one can achieve either complete transmission or reflection
of an incident (probe) photon. This feature is used for the
implementation of optical switches and routers [25–27].

In the paper, we propose a scheme of an efficient single-
photon switch based on a waveguide QED system which
can be realized on a microwave superconducting circuit QED
(cQED) hardware platform. In the scheme we consider, the
pair of semi-infinite waveguides is coupled to ends of a
coupled-resonator array (CRA). One of the resonators com-
posing the CRA is coupled to a three-level system (3LS)
implemented by a Josephson-junction artificial atom. This
resonator-qutrit system works as an active (switching) unit in
the considered scheme. The two lowest states of a 3LS con-
stitute a qubit the state of which controls whether the system
transmits or reflects the input photon. Thus, there is no need
in the continuous classical drive to switch the system between
the reflective and transmissive states, which is required in var-
ious proposals of single-photon switches [4,7,11,12,14,15]. In
the considered setup, one requires only short classical control
pulses for preparation of the qubit state [40]. Moreover, recent
theoretical [41] and experimental studies [42] suggest that one
can use single-flux quantum pulses for this purpose. Such an
approach allows one to integrate the control electronics along
with the resonators and artificial atoms on a single chip, which
reduces the length of interconnects and brings most of the
setup components into the cryogenic stage.

In the considered scheme, the CRA represents an engi-
neered electromagnetic environment with a band gap. The
frequency of the controlling qubit is tuned to fall within that
band gap, which inhibits the Purcell relaxation of the qubit
and improves the performance of the switch.

We provide a fully quantum-mechanical description of
the single-photon wave-packet transport in the system under
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FIG. 1. Scheme of the single-photon switch under analysis. A coupled-resonator array (CRA) is coupled on both sides to semi-infinite
waveguides (marked with indices 1 and 2). A switching unit, highlighted by a shaded area, is composed of a resonator coupled to a 3LS
(qutrit). The level structure of the 3LS is shown in the inset.

consideration. The dependence of the switching contrast
on the system parameters is studied. A set of parameters
of the system providing the maximal switching contrast is
determined.

The paper is organized as follows. In Sec. II we describe
the scheme, the principle of operation, and the possible cQED
implementation of the proposed single-photon switch. The
model Hamiltonian of the studied system is given as well.
In Sec. III we derive the effective Hamiltonian of the system
and use it to describe a single-photon transport. The results
of calculations of the dependence of a switching contrast on
the system parameters are demonstrated in Sec. IV. In Sec. V
we discuss possible extensions and applications of the consid-
ered switch and summarize the results. Derivations of various
equations of motion used in the main text are presented in
Appendix A. The definition of the parameter characterizing
the photon spectrum modification after traversing the switch
is given in Appendix B.

II. SETUP

A. Scheme and operational principle

We consider a realization of the single-photon switch con-
sisting of an array (chain) of an odd number Nres = 2N + 1
of optical resonators. The terminal resonators of an array are
coupled to semi-infinite one-dimensional optical waveguides
marked with indices 1 and 2. In what follows, we assume that
the first waveguide acts as an input dispatching the ingoing
single-photon wave packet to the CRA, while the second
waveguide acts as an output channeling the scattered (trans-
mitted) photon. The central resonator of the array is coupled
to a 3LS. In practice, the latter is represented by a super-
conducting artificial atom. All resonators in the array, apart
from the central resonator, have identical frequencies ωr . The
central resonator has frequency ωc. Each resonator is coupled
to its nearest neighbors with strength J . The schematic of the
considered setup is presented in Fig. 1.

First, let us elucidate the principle of operation of the
proposed single-photon switch. The switching unit, which
controls the photon transport in the setup we consider, con-
sists of a resonator coupled to a 3LS or qutrit. We use the

conventional notation for the qutrit eigenstates, where |g〉
stands for the ground state, and |e〉 and | f 〉 are excited states.
The eigenstates form a ladder configuration implying that
only |g〉 ↔ |e〉 and |e〉 ↔ | f 〉 transitions are allowed. The
transition frequency ωe f between |e〉 and | f 〉 levels is tuned
in resonance with the resonator frequency ωc. In contrast,
the transition frequency ωge between |g〉 and |e〉 states is
strongly detuned from the resonator frequency, which inhibits
the excitation exchange between the |g〉 ↔ |e〉 transition and
the resonator mode. Such an interaction regime between the
resonator mode and the |g〉 ↔ |e〉 transition is referred to as
the dispersive coupling regime [43].

Now, let us qualitatively explain how the resonator-qutrit
system provides control over the photon scattering. For this
purpose, we consider a simplified version of the single-photon
switch, which is represented by the resonator-qutrit system
directly coupled to a pair of semi-infinite one-dimensional
waveguides acting as input and output. The scheme of this
setup is demonstrated in Fig. 2. In such a system, the trans-
mission of itinerant photons from the input waveguide to the
output waveguide can be controlled by manipulating the state
of the qubit encoded by the pair of the lowest states of the
qutrit, namely, |g〉 and |e〉. When one prepares the qubit in the
ground state |g〉, the resonator-qutrit system acts effectively
as just a resonator alone, since the interaction between the
resonator mode and |g〉 ↔ |e〉 transition is dispersive.1 When
the control qubit is prepared in the state |e〉, the transitions
between |e〉 and | f 〉 states can occur due to excitation ex-
change with the resonator, while the transition from the state
|e〉 to the ground state |g〉 is inhibited due to the dispersive
interaction with the resonator. In this case, the resonator-qutrit
system acts similarly to a resonator coupled to a two-level
system (2LS) formed by states |e〉 and | f 〉. The single-photon
transmission spectrum of such a resonator-2LS system ex-
hibits a “dip” on the resonator frequency in contrast to the

1Note that the frequency of this “effective” resonator is slightly
shifted compared to the frequency of the “bare” (uncoupled) res-
onator. This shift is induced by the dispersive interaction with the
|g〉 ↔ |e〉 transition of the qutrit (see details in Sec. III A).
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FIG. 2. Scheme of the simplified version of the single-photon
switch. The plot shows the dependence of the single-photon transmit-
tance on the ingoing photon frequency for the uncoupled resonator
(solid line) and the resonator coupled to a 2LS with strength ge f

(dashed line). The transmittance exhibits the maximum on the res-
onator frequency ωc for the uncoupled resonator and the minimum
for the resonator coupled to a 2LS.

transmittance maximum in the case of an uncoupled resonator.
This effect is referred to as the dipole induced reflection (DIR)
[44].2

However, due to the Purcell effect [46], the excited state
|e〉 relaxes to the ground state |g〉, which deteriorates the per-
formance of the waveguide-resonator-qutrit switch described
above and illustrated in Fig. 2. To remedy this limitation
and improve the switching efficiency, instead of coupling the
resonator-qutrit system directly to the waveguides (as shown
in Fig. 2), we embed the former into an engineered elec-
tromagnetic environment with a band gap, where photons
cannot propagate. The CRA can act as such an environment.
Assuming that ωc ≈ ωr, the CRA composed of Nres resonators
exhibits the dispersion relation En = ωr − 2J cos qn, where
qn = nπ/(Nres + 1). Thus, the CRA features a passband of
width 4J centered around ωr [47]. We can harness this prop-
erty and specifically design the energy levels of an artificial
atom (qutrit) in a way that the transition frequency ωe f lies
within the passband of the CRA, while ωge falls into its band
gap. In this case, the Purcell relaxation of the state |e〉 to the
state |g〉 is completely suppressed [48].

B. Circuit QED implementation

Let us briefly discuss a possible experimental realization
of the proposed device within the superconducting cQED

2Here we consider the setup featuring the direct coupling of a
resonator to a pair of semi-infinite waveguides, as shown in Fig. 2.
In the case of a resonator side-coupled to a single bidirectional
waveguide, one encounters the related effect referred to as the dipole
induced transparency. In the latter arrangement, the single-photon
transmission on the resonator frequency has a minimum for the
case of an uncoupled resonator and a maximum when a resonator
is coupled to a 2LS [45].

FIG. 3. Schematic illustration of the potential cQED implemen-
tation of the considered single-photon switch. The CRA is composed
of capacitively coupled CPWRs. The CPWRs are arranged similarly
to that in Ref. [49]. The state of the transmon is prepared using the
control line (CL). Both sides of the CRA are coupled to coplanar
transmission lines (TL1 and TL2). In this particular setup, all res-
onator frequencies and couplings are fixed and set on a fabrication
stage.

architecture. Microwave superconducting circuits provide a
versatile and scalable hardware platform for the implemen-
tation of QIP devices [50]. Josephson-junction artificial atoms
[51] are genuinely multilevel systems offering tunable level
structure and transition frequencies.

The cQED realization of the model system illustrated in
Fig. 1 can be as follows. The CRA is composed of coplanar
waveguide resonators (CPWRs) [52] interacting via capacitive
couplings, which can be made either fixed or tunable. The
latter is achieved by coupling resonators via superconduct-
ing quantum interference devices (SQUIDs) [53,54], which
allows one to individually control the interaction strength
between the resonators by changing the external flux through
each SQUID loop. However, the payoff for tunability is
the increase of the setup complexity. A pair of microwave
coplanar transmission lines coupled to the terminal resonators
of the CRA serves as semi-infinite one-dimensional waveg-
uides. The central resonator in the CRA is coupled to a
transmon-type [55] superconducting artificial atom featuring
a ladder-type structure of energy levels. This type of super-
conducting artificial atom and its modifications [56,57] offers
high coherence times and tunable couplings, which makes
it widely utilized for the building of various QIP devices
[58]. The state of the qubit is manipulated on-demand via
the control line (CL) [51]. Since, in the considered scheme,
the switching between the reflective and transmissive state
of the device is realized via applying the X gate (quantum
bit-flip gate) to the qubit, the time of switching is determined
by the X-gate time. For transmons, the latter is typically
≈20 ns with �0.999 fidelity [59]. The cQED incarnation of
the single-photon switch outlined above is feasible for the
current technologies. The sketch of this cQED setup is shown
in Fig. 3.

C. Model Hamiltonian

The Hamiltonian describing the model system outlined in
Sec. II A reads as

Ĥ = Ĥr + Ĥr−r + Ĥs + Ĥw + Ĥw−r. (1)
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The first term in Eq. (1) is the Hamiltonian of 2N identical
resonators with frequencies ωr:

Ĥr = h̄
N∑

n=1

ωr (a
†
−na−n + a†

nan), (2)

where an is the annihilation operator of a photon in the nth
resonator of the CRA obeying the equal-time commutator
[an, a†

n′ ] = δn,n′ . In what follows, the subscript n is reserved
for the resonator indices running sequentially from −N to N .
The index n = 0 is attributed to the central resonator.

The second term in Eq. (1) describes the nearest-neighbor
coupling between the resonators in the array. The Hamiltonian
Ĥr−r reads

Ĥr−r = h̄J
N∑

n=−N

(a†
nan+1 + a†

n+1an). (3)

The term Ĥs describes the switching unit—the system
composed of the central resonator coupled to the ladder-
configuration 3LS. The Hamiltonian Ĥs reads

Ĥs = h̄ωca†
0a0 + h̄ωgeσee + h̄(ωge + ωe f )σ f f

+ h̄gge(a†σge + σega) + h̄ge f (a†σe f + σ f ea). (4)

The first term in Eq. (4) describes the central resonator. The
second and the third terms constitute the Hamiltonian of the
3LS. The last pair of terms in Eq. (4) describes the cou-
pling between the qutrit and the central resonator. In Eq. (4),
we have introduced an operator σkl = |k〉〈l|, where k, l ∈
{g, e, f }. This operator obeys the commutation relation as
follows:

[σkl , σk′l ′ ] = σkl ′δk′l − σk′lδkl ′ . (5)

Parameters gge and ge f stand for the coupling strengths be-
tween the central resonator and |g〉 ↔ |e〉 and |e〉 ↔ | f 〉
transitions, correspondingly. For the transmon, these cou-
plings are related as ge f /gge ≈ √

2 [55].
The resonator-resonator and resonator-qutrit couplings are

described within the rotating-wave approximation (RWA).
The latter is valid provided that the following criteria are
satisfied:

|ωr − ωc| 	 ωr + ωc,

|ωge(e f ) − ωc| 	 ωge(e f ) + ωc, (6a)

J 	 ωr, ωc, gge 	 ωge, ωc, ge f 	 ωe f , ωc.

(6b)

While there are experimental demonstrations of ultrastrong
coupling [the criterion (6b) breaks down] between the res-
onator and the artificial atom in cQED [60,61], the use of the
RWA is well justified for the range of parameters we use in
the paper.

The waveguides are described by the Hamiltonian

Ĥw = h̄
∫ ∞

0
dωω

2∑
j=1

b†
j,ωb j,ω. (7)

The bosonic operator b j,ω annihilates a photon with frequency
ω in the jth waveguide and obeys the commutation relation
[b j,ω, b†

j′,ω′ ] = δ(ω′ − ω)δ j′ j .

The Hamiltonian Ĥw−r, which describes the couplings be-
tween the waveguides and the CRA, reads

Ĥw−r = h̄
∫ ∞

0
dω f1(ω)(b†

1,ωa−N + a†
−N b1,ω )

+ h̄
∫ ∞

0
dω f2(ω)(b†

2,ωaN + a†
N b2,ω ), (8)

where f j (ω) stands for the frequency-dependent coupling of
the CRA to the jth waveguide. The coupling between the
jth waveguide and the CRA gives rise to the photon ex-
change between them with rate κ j = 2π f 2

j (ωr ) (see details in

Appendix A 1). The Hamiltonian Ĥw−r in Eq. (8) is given
within the RWA, assuming that κ j 	 ωr.

In our model, we do not account for the dissipation pro-
cesses, assuming that they occur on timescales much longer
than the coherent processes in the system. Indeed, the inter-
nal quality factor of CPWRs [62,63] can surpass 106, which
corresponds to the resonator dissipation rate γres/(2π ) �
0.01 MHz. The probability of photon loss in an individual
resonator is determined as �res ≈ γresτres, with τres ∼ 1/(2J )
being a photon lifetime in a resonator.3 Since the processes
of dissipation in each resonator comprising the CRA are inde-
pendent, the photon loss probability in the CRA is determined
as �cra ≈ Nres�res. Thus, the photon loss in the CRA can be
neglected in the analysis of the photon transport provided that
the following condition is satisfied:

�cra = Nresγres

2J
	 1. (9)

Taking the typical parameters J/(2π ) ∼ 10 MHz and Nres ∼
10, one arrives at the estimate for the photon loss probability
in the CRA �cra � 0.01. Thus, the dissipation has a minor
effect on photon transport through the CRA. The effect of
the qubit relaxation can be neglected in the case the qubit
coherence time τcoh fulfills the criterion

τcoh � τtvl, (10)

where τtvl ≈ τp + Nresτres stands for a wave-packet travel time
through the CRA. Taking J/(2π ) ∼ 10 MHz and Nres ∼ 10,
one obtains τtvl � 1 μs, while the coherence times of the
modern transmons approach τcoh = 100 μs [64–66], implying
that the relaxation of the artificial atom can be neglected in
the analysis of the photon transport. Throughout the paper,
we assume that the criteria (9) and (10) are satisfied. The
systematic study of the regimes when one or both of these
criteria are violated, and when the effects of dissipation should
be taken into account in the analysis of the photon transport
through the system, goes beyond the scope of this paper and
will be presented elsewhere.

3The photon lifetime in the terminal resonators is estimated as τ j ∼
1/(J + κ j ) with j ∈ {1, 2}. However, assuming that κ j and J are of
the same order of magnitude, the estimate τ j ∼ τres is applicable.
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III. SINGLE-PHOTON TRANSPORT

A. The effective Hamiltonian

As was mentioned in Sec. II A, to suppress the excitation
exchange between the control qubit and the central resonator,
the frequencies of the resonator and |g〉 ↔ |e〉 transition of the
qutrit are strongly detuned from each other. Provided that the
condition

|λ| 	 1, λ ≡ gge

ωge − ωc
(11)

holds [43], one can treat the interaction between the resonator
and |g〉 ↔ |e〉 transition perturbatively and eliminate the inter-
action term ∝(a†σge + σega) in the Hamiltonian (4) using the
Schrieffer-Wolff transformation [43,67]:

Ĥ → Ĥ′ = e−λŜĤeλŜ, Ŝ = a†
0σge − σega0. (12)

The Schrieffer-Wolff transformation (12) allows us to decou-
ple the qubit eigenspace from the resonator field up to the first
order in λ, and then project into the low-energy subspace of
the resonator field [68].

For deriving the transformed Hamiltonian Ĥ′, we use
Eq. (1) along with the Baker-Campbell-Hausdorff relation

Ĥ′ = e−λŜĤeλŜ

= Ĥ + λ[Ĥ, Ŝ] + λ2

2
[[Ĥ, Ŝ], Ŝ] + . . . , (13)

where we keep only the terms contributing up to first order in
λ. The form of terms Ĥr, Ĥr−r, Ĥtl, and Ĥtl−r are retained after
applying the transformation, while the Hamiltonian of the
resonator-qutrit system acquires the form e−λŜĤseλŜ = Ĥ′

s:

Ĥ′
s = h̄(ωc + χ Ẑeg)a†

0a0 + h̄(ωge + χ )σee

+ h̄(ωge + ωe f )σ f f + h̄ge f (a†
0σe f + σ f ea0), (14)

where Ẑeg = σee − σgg and χ = λgge. In the transformed
Hamiltonian Ĥ′, we dropped λJa†

±1σge, λggea†2
0 σgf , and their

conjugates, since these terms contribute in the order of λ2.
Since [σee + σ f f , Ĥ′] = 0, it is convenient to make a trans-

formation

Ĥ′ → Ĥ′ − h̄(ωge + χ )(σee + σ f f ), (15)

which turns Ĥ′
s into the Hamiltonian as follows:

Ĥ′
s = h̄ω̄ca†

0a0 + h̄ωaσ f f + h̄ge f (a†
0σe f + σ f ea0), (16)

where ω̄c = ωc + χ Ẑeg stands for the qubit–state-dependent
frequency of the “dressed” central resonator and ωa = ωe f −
χ denotes the frequency of the “dressed” |e〉 ↔ | f 〉 qutrit
transition. In what follows, for the description of the system
dynamics, we use the Hamiltonian Ĥ′ with Ĥ′

s expressed by
Eq. (16).

B. Scattering dynamics

The probability of finding the photon at time t in the output
waveguide for the control qubit prepared in one of its eigen-
states (|g〉 or |e〉) is determined as

Tq(t ) =
∫ ∞

0
dω

∣∣〈ψq
2,ω(t )

∣∣q
in

〉∣∣2
, q ∈ {g, e}, (17)

where ∣∣ψq
2,ω(t )

〉 = b†
2,ω(t )|∅q〉,

|∅q〉 = |q〉|∅〉w1|∅〉w2

N⊗
n=−N

|∅〉nr.
(18)

The state |ψq
2,ω(t )〉 corresponds to the state of the system

hosting a single photon of frequency ω propagating in the
second (output) waveguide, the qubit residing in the excited
state |q〉 and void of excitations in the CRA and the first
(input) waveguide.

In Eq. (18), the state |q
in〉 stands for the initial (at t = 0)

state of the entire system. We set that initially the single-
photon wave packet propagates in the input waveguide, while
the CRA and the output waveguide contain no photons. We
assume that the number of thermal excitations nth in the sys-
tem is negligible. Superconducting cQED systems typically
operate at frequencies ωs/(2π ) ∼ 3–8 GHz and the temper-
ature of the cryogenic stage Ts ∼ 10–20 mK [51]. For that
frequency range and setup working temperature, the upper
estimate for the thermal photon number in the system is nth <

10−3 assuming the Bose-Einstein distribution of thermal pho-
tons nth = [exp(− h̄ωs

kBTs
) − 1]−1, where kB is the Boltzmann

constant. Thus, the initial state of the system |q
in〉 reads

∣∣q
in

〉 = |q〉|1ξ 〉w1|∅〉w2

N⊗
n=−N

|∅〉nr, (19)

where |∅〉w j is a state of the jth waveguide void of photons,
and |∅〉 jr is a vacuum state of the nth resonator in the CRA.

The state |1ξ 〉w1 defined as

|1ξ 〉w1 ≡
∫ ∞

0
dω ξ (ω)b†

1,ω(0)|∅〉w1 (20)

stands for the state of the first (input) waveguide accommodat-
ing a single-photon wave packet characterized by the spectral
distribution function [69] denoted as ξ (ω). In the analysis,
we assume that the ingoing wave packet is narrowband, and
its spectrum is strongly localized near the central (carrier)
frequency ω0, i.e., γ0 	 ω0, where γ0 denotes the ingoing
pulse bandwidth.

The probability of photon transmission Tq(t ) is governed
by the evolution equation as follows (the derivation is given in
Appendix A2):

Tq(t ) = κ2

∫ t

0
dτ

∣∣〈∅q|aN (τ )
∣∣q

in

〉∣∣2
. (21)

Let us write down the equation of motion governing the
matrix element 〈∅q|aN (t )|q

in〉 standing on the right-hand side
of Eq. (21). Using the Heisenberg equations for the CRA
variables [see Eq. (A1) in Appendix A1], one obtains the
evolution equation for An(t ) as follows:

i∂t A
q
n(t ) = ωrA

q
n(t ) + J

[
Aq

n−1(t ) + Aq
n+1(t )

]
, (22)

where |n| ∈ [1, N − 1]. Here we introduced a notation
An(t ) = 〈∅q|an(t )|q

in〉. For n = 0, one has

i∂t A
q
0(t ) = [ωc + (2ηq − 1)χ ]Aq

0(t )

+ J
[
Aq

−1(t ) + Aq
1(t )

] + ge f Sq
e f (t ), (23)
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where ηq = |〈e|q〉|2. In Eq. (23), we introduced a nota-
tion Sq

e f (t ) = 〈∅q|σe f (t )|q
in〉. Using the Heisenberg equation

(A10) for the operator σe f , one derives the equation of motion
governing Sq

e f (t ) as follows:

i∂t S
q
e f (t ) = ωaSq

e f (t ) + ηqge f Aq
0(t ). (24)

Finally, for n = ±N , one arrives at the following evolution
equations (see derivation in Appendix A3):

i∂t A
q
N (t ) =

(
ωr − i

κ2

2

)
Aq

N (t ) + JAq
N−1(t ), (25a)

i∂t A
q
−N (t ) =

(
ωr − i

κ1

2

)
Aq

−N (t ) + JAq
1−N (t )

+ f1(ω0)�(t ). (25b)

Function �(t ) is defined as

�(t ) ≡
∫ ∞

−∞
dωe−iωtξ (ω) =

√
2π�(−t ), (26)

where �(t ) = (2π )−1/2
∫ ∞
−∞ dωeiωtξ (ω) describes the time-

domain probability density amplitude of the ingoing pulse.
For computations we model the spectral distribution of the

ingoing pulse ξ (ω) by the Lorentzian function

ξ (ω) =
√

1

2πτp

[
(ω − ω0) + i

2τp

]−1

, (27)

which corresponds to the decaying exponent profile of the
time-domain probability density amplitude:

�(τ ) = 1√
τp

exp

(
τ

2τp
+ iω0τ

)
θ (−τ ), (28)

where τp = 1/γ0 stands for the ingoing pulse duration and
θ (τ ) is the Heaviside step function. For convenience, we
assume that the front of the ingoing pulse, which initially
propagates in the first waveguide, reaches the CRA terminal
resonator at instant t = 0.

We solve the system of differential equations (22)–(25b)
numerically using the NDSolve function of MATHEMATICA.

IV. SWITCHING CONTRAST

As a measure of the efficiency of the considered single-
photon switch, we use a quantity given by

C = Tg(t∞) − Te(t∞), (29)

which is referred to as a switching contrast by analogy with
a measurement contrast employed for the characterization of
the accuracy of qubit measurement [70,71]. In Eq. (29), t∞
is attributed to the time when all scattering processes in the
system are finished and the scattered photon propagates in
one of the waveguides as a free excitation. It is determined
by the criterion t∞ � τtvl, where τtvl = τp + Nres/(2J ) is a
photon travel time through the CRA. For computations, we
set t∞ = 10τp.

We tune the frequency of the “bare” central resonator ωc

to satisfy the relation ωc − χ = ωr. Thus, when one pre-
pares the control qubit in its ground state |g〉, the frequency
of the “dressed” central resonator 〈g|ω̄c|g〉 = ωc − χ = ωr

matches the frequencies of the other resonators in the CRA.

In this case, the incident photon propagates through the
chain of resonators with identical couplings J and frequencies
ωr resulting in the maximal transmission. Using that χ =
g2

ge/(ωge − ωc) and ge f = √
2gge, one arrives at the relation

between ωc and ωr as follows:

ωc = 1

2

[
ωr + ωge −

√
(ωr − ωge)2 − 2g2

e f

]
. (30)

The frequency of the |e〉 ↔ | f 〉 transition is set in such a way
that when the qubit is prepared in its excited state |e〉 one
has 〈e|ω̄c|e〉 = ωc + χ = ωa. Thus, in this scenario, the qutrit
transition |e〉 ↔ | f 〉 is “switched on” and its “dressed” fre-
quency coincides with that of the central resonator that gives
rise to the DIR effect leading to photon reflection. Recalling
that ωa = ωe f − χ and using Eq. (30), one obtains

ωe f = ωr + 3g2
e f

ωr − ωge +
√

(ωr − ωge)2 − 2g2
e f

. (31)

Now, let us proceed to the analysis of the performance
of the proposed single-photon switch scheme. To satisfy the
criterion (11) of the dispersive regime of interaction between
the resonator and the |g〉 ↔ |e〉 qutrit transition, we keep
λ < 0.1 for all computations unless stated otherwise. The rel-
ative anharmonicity αrel = (ωe f − ωge)/ωge of energy levels
of the typical transmon artificial atom is around −0.05 [55].
Thus, in all calculations we choose the setup parameters in
such a way that the relative anharmonicity of the qutrit is
−0.06 � αrel � −0.04.

Calculations of the dependence of the switching contrast C
on the interrelation between the photon hopping rate J and the
CRA-waveguides exchange rates κ1,2 shown in Fig. 4 demon-
strate that the maximal contrast Cmax (for given values of J
and ge f ) is achieved when the CRA is equally coupled to both
waveguides, i.e., κ1 = κ2. In what follows, we consider only
this (symmetric) configuration of the setup. In this regard,
from now on, we use a notation κ ≡ (κ1 = κ2) for brevity.

Dependence of the switching contrast on the qutrit-
resonator coupling and the ingoing pulse duration is shown
in Figs. 5 and 6(a). Computations reveal that the contrast
improves with the increase of ge f /J . The explanation is as
follows. Assume that one prepares the qubit in the excited
state |e〉. Since we tune the “bare” frequencies of the central
resonator and the |e〉 ↔ | f 〉 transition to obtain a resonance of
the “dressed” frequencies ωc + χ = ωa, the single-excitation
eigenfrequencies of the JC system composed of the central
resonator and the 2LS formed by the qutrit levels |e〉 and | f 〉
are given by E±

1 = ωc ± ge f . Since we set ωc − χ = ωr, the
eigenstates of the JC system are detuned from the frequencies
of the neighbor resonators on (δ± = E±

1 − ωr ) = λgge ± ge f .
For J < |δ±|, photon hops from the resonator with index
n = −1 on the central resonator start to be suppressed, which
leads to photon reflection. For the transmon, couplings gge

and ge f are of the same order of magnitude (ge f ≈ √
2gge

[55]). Thus, the dominant contribution to the absolute value
of the detuning |δ±| comes from ge f since |λ| 	 1 due to
Eq. (11). Therefore, the increase of ge f /J results in the larger
probability of photon reflection and, thus, higher switching
contrast.

063709-6



SINGLE-PHOTON SWITCH CONTROLLED BY A QUBIT … PHYSICAL REVIEW A 102, 063709 (2020)

FIG. 4. Dependence of the switching contrast on the interrelation between the waveguide-CRA photon exchange rates and the photon
hopping rate in the CRA for different durations of the ingoing pulse: (a) τp = 0.1 μs, (b) τp = 0.5 μs, and (c) τp = 0.9 μs. Stars mark the
position of the maximal contrast: (a) Cmax = 0.956, (b) Cmax = 0.989, and (c) Cmax = 0.993. The rest of the parameters are the following:
J/(2π ) = 10 MHz, ge f /(2π ) = 30 MHz.

Figure 6 demonstrates that the proposed single-photon
switch can provide high contrasts for realistic values of
the resonator-resonator and resonator-qutrit couplings and
a wide range of the ingoing pulse durations. For exam-
ple, for J/(2π ) = 10 MHz and ge f /(2π ) ∼ 30–50 MHz, the
contrasts C > 0.95 can be achieved for the ingoing pulses
of duration τp > 0.07 μs, while for the longer pulses τp >

0.55 μs the contrasts C > 0.99 can be reached. Results pre-
sented in Fig. 6 suggest that the switching contrast is limited
by the incident pulse duration τp since shorter pulses exhibit a
broader spectrum leading to a higher probability of unwanted
reflection of a photon from the CRA, which reduces the
switching contrast. To mitigate this effect, one can use higher
values of κ . As follows from computations demonstrated in
Fig. 5, with the increase of κ , the resonator-resonator coupling
J should be increased as well to avoid the reduction of the
switching contrast. However, larger J requires stronger qutrit-

FIG. 5. Dependence of the switching contrast on κ/J and ge f /J
for the ingoing pulse durations (a) τp = 0.1μs and (b) τp = 0.8 μs.
The dashed line marks the position of maximum Cmax for given
ge f /J . For calculations, we use the parameters as follows: J/(2π ) =
10 MHz, ωr/(2π ) = 7.0 GHz, and ωe f /(2π ) = 7.36 GHz.

resonator couplings ge f to keep the ratio ge f /J . Thus, for the
fixed value of the resonator-qutrit coupling ge f , there should
exist a combination of κ and J , where the contrast reaches
its maximal value Cmax for a given ingoing pulse duration
τp. Due to the relation ge f ≈ √

2gge holding for transmons
[55], the increase of ge f entails the increase of gge, requiring
larger detuning between the qubit transition frequency and
the central resonator frequency to ensure the condition (11)
is fulfilled. Larger detuning also implies the necessity of the
stronger qutrit anharmonicity. Moreover, the increase of de-
tuning ωc − ωge may, at some point, lead to a breakdown of

FIG. 6. (a) Dependence of Cmax on ge f for the different ingoing
pulse durations τp encoded by the color gradient. (b) The region plot
demonstrating what switching contrast can be achieved for the given
ingoing pulse duration and coupling ge f . The dashed region shows
where λ � 0.1 and the condition (11) of the dispersive coupling
breaks down. The parameters used for calculations are the same as in
Fig. 5.

063709-7



E. V. STOLYAROV PHYSICAL REVIEW A 102, 063709 (2020)

TABLE I. Realistic parameters of the setup to achieve high switching contrasts C > 0.95 for the sub-μs ingoing pulses.

ωr/2π ωc/2π ωge/2π ωe f /2π α/2π J/2π κ/2π ge f /2π τp C ϒ

(GHz) (GHz) (GHz) (MHz) (GHz) (MHz) (MHz) (MHz) (μs)

7.000 7.004 7.360 7.011 −349.48 20.0 45.0 50.0 0.06 0.952 0.0118
7.000 7.002 7.360 7.007 −353.29 12.0 28.0 40.0 0.30 0.985 0.0044
7.000 7.001 7.360 7.004 −356.24 10.5 24.0 30.0 0.60 0.991 0.0036

the criterion (6a). In this case, the RWA is not applicable, and
the fast-oscillating terms in the qutrit-resonator Hamiltonian
(4) should be taken into account.

To sum up the quantitative analysis of the performance of
the proposed single-photon switch, we present Table I aggre-
gating several sets of setup parameters for reaching C > 0.95
for the sub-μs ingoing pulses. For all parameter sets, we
choose ωr/(2π ) = 7.0 GHz, which lies in a range of typical
values of CPWR frequency. The transition frequency between
the qubit levels is chosen ωge/(2π ) = 7.36 GHz, ensuring that
the relative anharmonicity is αrel ≈ 0.05. Frequencies ωc and
ωe f are determined using Eqs. (30) and (31). Parameters κ

and J , presented in Table I, provide the maximal switching
contrast for the given values of ge f and τp. Specific values of
ge f and τp are extracted from Fig. 6 to provide the switch-
ing contrasts around 0.95, 0.98, and 0.99. All parameters
demonstrated in Table I are achievable for the state-of-the-art
superconducting cQED systems.

In Table I, we also provide the values of parameter ϒ (see
definition in Appendix B) characterizing the degree of photon
spectrum modification after passing the device. Computations
reveal that for the setup parameters providing high switching
contrasts, one has ϒ 	 1, indicating that the proposed single-
photon switch introduces only a minor modification of the
photon spectrum.

All numerical results demonstrated in Figs. 4–6 and Table I
were obtained for the CRA composed of Nres = 7 resonators.
Figure 7 demonstrates the dependence of the maximal switch-

FIG. 7. The maximal switching contrast Cmax, which can be
reached for the given ge f and τp, as a function of the number of
the resonators in the CRA Nres. The ingoing pulse durations τp are
indicated near the corresponding point plots. For computation we
used ge f /(2π ) = 40 MHz. The rest of the system parameters are the
same as in Figs. 5 and 6.

ing contrast Cmax, which can be achieved for the given pulse
duration τp and coupling ge f , on the number of resonators in
the CRA Nres. Computations performed for Nres ∈ [5 . . . 17]
reveal that the dependence of Cmax on Nres is minor. The
system with Nres = 5 provides slightly lower contrasts than
Nres = 7 for all τp. For all Nres and τp used in Fig. 7, we
obtained ϒ < 0.015. Thus, Nres = 7 in the CRA already suf-
fices for the efficient operation of the proposed single-photon
switch. The low number of required resonators may be ben-
eficial for the realization of more complex systems requiring
multiple single-photon switches.

V. DISCUSSION AND SUMMARY

Having analyzed the performance of the proposed single-
photon switch, let us discuss its possible applications. By
inserting a circulator into the first (input) waveguide of the
switch, one can implement a two-port quantum router. A
nonreciprocal element (circulator) is required for the sepa-
ration of the input and reflected signals into the different
channels. Since in this scheme, both the signal and control
information are quantum, one can regard the considered router
as genuinely quantum [72]. The multiport routing can be
achieved by connecting a number of those two-port single-
photon routers in a cascade configuration as proposed, e.g., in
Refs. [16,26]. The scheme of this multiport router is shown in
Fig. 8. Recent advances in the demonstration of on-chip mi-
crowave circulators [73,74] pave the way to entirely on-chip

FIG. 8. Scheme of a five-port single-photon router composed of
a series of two-port routers. A two-port router is built by embedding
a circulator into the input waveguide of a proposed single-photon
switch. When the control qubit is prepared in the ground state |g〉,
the photon is routed to the output waveguide (port 2). The photon is
routed to port 1 when one prepares the qubit in the excited state |e〉.
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realization of the multiport quantum router for microwave
photons.

Besides the multiport single-photon router, one can harness
the proposed switch to implement the high-fidelity readout
of superconducting artificial atoms using the single-photon
probe pulses. As it was pointed out in Ref. [71], the use
of the single-photon probe allows one to avoid the readout
errors arising from the nonorthogonality of the probe state,
which is always the case for the coherent-state readout pulses.
The high-efficient on-demand sources of microwave single-
photon pulses are readily available [75,76]. Moreover, one
can employ a detector of itinerant photons [77] attached to
the output waveguide of the switch to provide a “click” for a
particular state of the qubit [71]. When one prepares the qubit
in the ground state, the probe photon is transmitted through the
switch to the output waveguide and the photodetector clicks.
Conversely, when the qubit is prepared in the excited state,
the switch is reflective, and the probe photon cannot reach
the detector. In this case, the latter gives no click. Promising
theoretical proposals [78–83], as well as recent experimental
demonstrations [84–88] of itinerant microwave photon detec-
tors, allow us to be optimistic about the perspectives of the
near-term realization of the scheme for the superconducting
qubit readout outlined above.

To summarize, we have proposed a scheme of an ef-
ficient single-photon switch and examined its performance
in detail. The possible superconducting cQED realization
of the considered single-photon switch was outlined. We
have demonstrated that parameters of the setup required for
achieving high switching contrasts are feasible for the state-
of-the-art superconducting cQED devices. A few applications
of the proposed switch, namely, a multiport quantum router
and a scheme for a single-photon readout of a qubit state, were
considered as well.

Study of the effects of dissipation and system inho-
mogeneities (e.g., random variations of frequencies and
couplings) on the efficiency of the considered switching
scheme may be of interest. Also, assessing the efficiency of
the proposed switch in the regime of the multiphoton input
constitutes a possible direction for follow-up research.
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APPENDIX A: DERIVATION OF EQUATIONS OF MOTION

1. Heisenberg equations

The effective Hamiltonian Ĥ′ generates the following
Heisenberg equations for the CRA variables:

i∂t an = ωran + J (an−1 + an+1). (A1)

For the central resonator variable a0, one has

i∂t a0 = (ωc + χ Ẑeg)a0 + ge f σe f + J (a−1 + a1). (A2)

The Heisenberg equations for the annihilation operators of a
photon in the terminal resonators read as

i∂t aN = ωraN + JaN−1 +
∫ ∞

0
dω f2(ω)b2,ω, (A3a)

i∂t a−N = ωra−N + Ja1−N +
∫ ∞

0
dω f1(ω)b1,ω. (A3b)

The waveguide variables b1,ω and b2,ω obey the equations
of motion

i∂t b1,ω = ωb1,ω + f1(ω)a−N , (A4a)

and

i∂t b2,ω = ωb2,ω + f2(ω)aN . (A4b)

The formal solutions of these equations read

b1,ω(t ) = b̃1,ω(t ) − i f1(ω)
∫ t

0
dτe−iω(t−τ )aN (τ ), (A5a)

b2,ω(t ) = b̃2,ω(t ) − i f2(ω)
∫ t

0
dτe−iω(t−τ )a−N (τ ), (A5b)

where b̃ j,ω(t ) = b j,ω(0)e−iωt denotes the annihilation operator
of a free-propagating photon in the jth waveguide.

Let us evaluate the integrals

I j (t ) =
∫ ∞

0
dω f j (ω)b j,ω(t ), j ∈ {1, 2},

standing in Eqs. (A3). Using Eqs. (A5), one obtains

I2(t ) =
∫ ∞

0
dω f2(ω)b̃2,ω(t )

− i
∫ t

0
dτ

∫ ∞

0
dω f 2

2 (ω)e−iω(t−τ )aN (τ ). (A6)

Consider the second term on the right-hand side of the above
equation. It follows from Eq. (25b) that one can write aN (t ) =
aN (t )e−iωrt , where aN (t ) represents a slowly varying compo-
nent of the operator aN (t ). Due to integration over τ , only the
narrow region of frequencies in the vicinity of ωr gives the
dominant contribution to the integral. Thus, one can assume
f2(ω) ≈ f2(ωr ). The lower boundary of integration over ω can
be extended to −∞. Using these approximations along with
the property

∫ ∞
−∞ dωe−iω(t−τ ) = 2πδ(t − τ ), one obtains

I2 = Ĩ2 − κ2

2
aN , I1 = Ĩ1 − κ1

2
a−N , (A7)

where κ j = 2π f 2
j (ωr ) and Ĩ j is defined as

Ĩ j (t ) ≡
∫ ∞

0
dω f j (ω)b̃ j,ω(t ). (A8)

For evaluation of I1(t ), we employed analogous reasons
as those used for evaluation of I2(t ). Finally, substituting
Eq. (A7) into Eqs. (A3), one arrives at the result

i∂t aN =
(
ωr − i

κ2

2

)
aN + JaN−1 + Ĩ2, (A9a)

i∂t a−N =
(
ωr − i

κ1

2

)
a−N + Ja1−N + Ĩ1. (A9b)
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It follows from the above equations that parameter κ j

stands for the rate of the photon exchange between the CRA
and the jth waveguide.

Using the Hamiltonian (16) and the commutation relation
(5), one obtains

i∂tσe f = (ωa − χa†
0a0)σe f − ge f Ẑ f ea0, (A10)

where Ẑ f e = σ f f − σee.

2. Equation of motion for Tq(t )

Let us derive the evolution equation for the transmission
probability Tq(t ) given by Eq. (17). Using Eq. (18) along with
Eq. (A5), one obtains

Tq(t ) =
∫ ∞

0
dω

∣∣〈∅q|b2,ω(t )
∣∣q

in

〉∣∣2

=
∫ ∞

0
dω

∫ t

0
dτ

∫ t

0
dτ ′ f 2

2 (ω)eiω(τ−τ ′ )

× 〈


q
in

∣∣a†
N (τ ′)|∅q〉〈∅q|aN (τ )

∣∣q
in

〉
, (A11)

where we used that b̃2,ω(t )|q
in〉 = 0, which follows from

Eqs. (19) and (20). Next, using the similar consideration that
led us to Eqs. (A7), we extend the lower limit of integration
over photon frequencies to −∞ and make an approximation
f2(ω) ≈ f2(ωr ). Now, integration over ω gives 2πδ(τ − τ ′)
leading to Eq. (21)

3. Derivation of Eqs. (25)

Using Eqs. (A3) and (A8), one derives the equation of
motion for Aq

±N (t ) = 〈∅q|a±N (t )|q
in〉 as follows:

i∂t A
q
N (t ) =

(
ωr − i

κ2

2

)
Aq

N (t ) + JAq
N−1(t )

+
∫ ∞

0
dωe−iωt f2(ω)〈∅q|b2,ω(0)

∣∣q
in

〉
, (A12a)

i∂t A
q
−N (t ) =

(
ωr − i

κ1

2

)
Aq

−N (t ) + JAq
1−N (t )

+
∫ ∞

0
dωe−iωt f1(ω)〈∅q|b1,ω(0)

∣∣q
in

〉
. (A12b)

Let us consider the last terms on the right-hand side of
the above equations. Employing Eq. (19) in Eq. (A12a), one

obtains 〈∅q|b2,ω(0)|q
in〉 = 0, which immediately leads to

Eq. (25a). In Eq. (A12b), one has 〈∅q|b1,ω(0)|q
in〉 = ξ (ω)

resulting in∫ ∞

0
dωe−iωt f1(ω)ξ (ω) ≈ f1(ω0)

∫ ∞

−∞
dωe−iωtξ (ω),

where the above approximation is obtained using that the
ingoing wave packet is narrowband γ0 	 ω0. Thus, following
the lines of derivation of Eqs. (A9), one can set f1(ω) ≈
f1(ω0) and extend the lower limit of integration on ω to
−∞. Combining this result with Eq. (A12b) and recalling the
definition of �(t ) given by Eq. (26), one arrives at Eq. (25b).

APPENDIX B: PHOTON SPECTRUM MODIFICATION

As a measure of a modification of the outgoing (transmitted
or reflected) photon spectrum, we introduce a parameter

ϒ = max{ϒg, ϒe}, (B1)

where ϒq characterizes the modification of the outgoing pho-
ton spectrum, provided that the control qubit is prepared in the
eigenstate |q〉. We define ϒq as

ϒq = 1 −
∫ ∞

0 dω Sq
out (ω)Sin(ω)∫ ∞

0 dω S2
in(ω)

, (B2)

where Sin(ω) = |ξω|2 is the spectrum of the ingoing single-
photon wave packet. In Eq. (B2), Sq

out (ω) stands for the
spectrum of the outgoing wave packet, provided the qubit is
prepared in the state |q〉. If the qubit is prepared in its ground
state |g〉, one expects transmission of the photon. In this case,
the photon spectrum is determined as

Sg
out (ω) = ∣∣〈∅g|b2,ω(t∞)

∣∣g
in

〉∣∣2
. (B3)

If one prepares the qubit in the excited state |e〉, the photon
is likely to be reflected. Then, the spectrum of the reflected
photon is given by

Se
out (ω) = ∣∣〈∅e|b1,ω(t∞)

∣∣e
in

〉∣∣2
. (B4)

In the ideal case, when the photon spectrum is preserved after
traversing the switch for both states of the qubit Sin(ω) =
Sg,e

out (ω), one has ϒ = 0. As a criterion of an acceptable op-
eration of the switch, we take ϒ 	 1.
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