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High-fidelity and controllable optical cloning of high-dimensional (high-D) optical beams is very important
for the development of novel techniques for optical imaging, lithography, and communications, etc. Here we
propose a scheme to realize the cloning of high-D optical beams with a Rydberg atomic gas via electromag-
netically induced transparency. We show that strong atom-atom interaction can map to two probe laser fields,
which may acquire giant nonlocal Kerr nonlinearities supporting the formation of stable high-D optical solitons
and vortices at very low light power. We also show that such optical solitons and vortices prepared in one probe
field can be cloned onto another one with high fidelity, and the cloning may be actively manipulated through
the tuning of the nonlocality degree of the Kerr nonlinearities. Moreover, we demonstrate that based on such
a cloning scheme multitimes and multicomponents cloning of high-D optical beams are also possible, which
allows us to acquire multiple copies of high-D optical beams. The results on the optical cloning reported here
are not only of fundamental interest for nonlocal nonlinear optics but also promising for practical applications in
optical information processing and transmission.
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I. INTRODUCTION

Due to practical applications in optical imaging, switch-
ing, lithography, and free-space communication technologies,
great efforts have been paid to the investigation on optical
guiding, steering, and cloning. However, transmitted images
with finite size imprinted in an optical beam are usually dis-
torted significantly because of diffraction effect even after
propagating only a few Rayleigh lengths, which leads to a
fundamental limitation to the transmission of small optical
images [1,2].

To suppress diffraction, in the past two decades many
schemes have been proposed based on various atomic co-
herence effects, including electromagnetically induced trans-
parency (EIT) [3–10], coherent population trapping [11–18],
saturated absorption [19], active Raman gain [20], electro-
magnetically induced absorption [21], and so on. The physical
mechanism behind these schemes can be understood through
the induced space-dependent refractive index contributed by
a strong, spatially modulated control field, which results in
self-focusing (waveguiding [5,6,22,23]) or self-defocusing
(antiwaveguiding [24]) for the propagation of a weak probe
field, and thereby an arbitrary optical image carried by the
control field can be converted or cloned onto a probe field.

The cloning of optical images beyond diffraction in atomic
gases, however, remains to be a challenging task due to the fol-
lowing reasons. First, most of the schemes mentioned above
have low transmission due to the presence of optical absorp-
tion. Even for the atomic gas working with conventional EIT
schemes, the space-modulated control field used for cloning is
not stronger than the probe field in some spatial regions, where

the EIT condition is violated. Second, in the region where the
control field is weak, the propagation of the probe field results
in a pronounced change of the control field, and hence the
images imprinted in the control field might be distorted before
and after they are cloned onto the probe field. Third, in free
space the diffraction effect for small images is not negligible
and the quality of the optical cloning is lowered significantly.

In this paper, we propose a scheme to realize the cloning
of high-dimensional (high-D) optical beams. Here high-D
optical beams mean (2 + 1)D optical ones, with “2” denoting
two transverse coordinates (e.g., x and y) and “1” denoting the
longitudinal coordinate (e.g., propagation coordinate z); see
below. The system we adopted is a cold Rydberg atomic gas
[25,26] with an inverted Y-type level configuration, coupled
with two weak probe laser fields and a control laser field with
no space modulation. Based on the mechanism of a double
Rydberg-EIT [27], we show that the strong, nonlocal atom-
atom interaction (also called Rydberg-Rydberg interaction)
can map to the two probe laser fields, which may acquire
giant, nonlocal self-Kerr and cross-Kerr nonlinearities that can
suppress diffraction and hence stabilize high-D optical soli-
tons and vortices of very low light power. We also show that
by virtue of the cross-Kerr nonlinearities such high-D optical
solitons and vortices prepared in one probe field can be cloned
onto another probe field with high fidelity of waveshape; fur-
thermore, the cloning can be actively controlled through the
manipulation of the nonlocality degree of the Kerr nonlinear-
ities. In addition, we demonstrate that it is possible to realize
multitimes and multicomponents cloning of high-D optical
beams, which allows us to acquire multiple copies through
such a cloning scheme. The findings for optical cloning
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FIG. 1. Schematics of the model. (a) Inverted Y-type level dia-
gram and excitation scheme of the double Rydberg-EIT. The weak
probe laser field with half Rabi frequency �p1 (�p2) couples the
transition |1〉 ↔ |3〉 (|2〉 ↔ |3〉); the strong control laser field with
half Rabi frequency �c couples the transition |3〉 ↔ |4〉, with |4〉
a Rydberg state; �α are detunings and �αβ are spontaneous emis-
sion decay rates; Vvdw = h̄V (r′ − r) is the van der Waals interaction
potential between the two Rydberg atoms located at r′ and r, respec-
tively. (b) The long-range interaction between Rydberg atoms blocks
the excitation of the atoms within blockade spheres [the blockade
spheres boundary indicated by the blue dashed lines] of radius Rb.
In each blocked sphere only one Rydberg atom (small dark green
sphere) is excited and other atoms (small light blue spheres) are
prevented from being excited. The blue and red arrows indicate
the propagating direction of the probe and control fields. SLM,
space light modulator; D, detector. (c) Cloning of the optical vortex.
The probe field 1 prepared to be an optical vortex (upper row) is
cloned onto the probe beam 2 (which is initially prepared to be a
hyperbolic secant mode; lower row). Illustrated here are normalized
peak intensity distributions of the both probe fields as functions of
nondimensional propagation distance s = z/(2Ldiff ) (Ldiff is typical
diffraction length).

reported here are not only of fundamental interest for the
development of nonlocal nonlinear optics based on Rydberg
atomic gases [28–32], but also useful for high-fidelity and
controllable optical cloning and hence promising for appli-
cations in information processing and transmission, including
diffractionless biological and medical imaging [33,34].

The paper is arranged as follows. In Sec. II, we present
the physical model and derive coupled nonlinear equations
that describe the propagation of the two probe laser fields
by using a method of multiple scales beyond mean-field ap-
proximation. In Sec. III, we investigate how to clone high-D
nonlocal optical solitons and vortices from one probe field
onto another one. In Sec. IV, we extend our investigation to
the realization of the multitimes and multicomponents cloning
of high-D optical beams. Finally, Sec. V gives a summary of
the main results obtained in this paper.

II. MODEL AND COUPLED NONLINEAR EQUATIONS

A. Physical model

We start with considering a cold gas of Rydberg atoms with
an inverted Y-type four-level configuration [see Fig. 1(a)],
where two weak probe laser fields with center frequencies
ωp1 and ωp2 (half Rabi frequencies �p1 and �p2) couple the

transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉, respectively; a strong
control laser field with center frequency ωc (half Rabi fre-
quency �c) couples the transition |3〉 ↔ |4〉, where |4〉 is a
high-lying Rydberg state; �α (α = 2, 3, 4) are detunings; �αβ

are spontaneous emission decay rates from |β〉 to |α〉. The
interaction between two Rydberg atoms, respectively, at posi-
tions r and r′ is described by van der Waals potential Vvdw ≡
h̄V (r′ − r). A possible experimental geometry is shown in
Fig. 1(b). Due to the long-range Rydberg-Rydberg interaction,
a blockade phenomenon (called Rydberg blockade) occurs,
by which an atom that has been excited to the Rydberg state
|4〉 will block the excitation of other atoms within a blockade
sphere (which has radius Rb). The role played by the Rydberg
blockade makes the effective interaction between atoms (and
also photons) finite. Note that in the inverted Y-shaped exci-
tation scheme shown in Fig. 1(a) there are two ladder-type
excitation paths, i.e., |1〉 → |3〉 → |4〉 and |2〉 → |3〉 → |4〉,
which constitute two standard Rydberg-EITs (with the state
|4〉 a shared Rydberg state). Thus the dynamics of the light
fields and the atoms in the system can be taken to be controlled
by a double Rydberg-EIT.

The electric field in the system reads E =∑
l=p1,p2,c

elEl eiθl (r,t ) + c.c.. Here c.c. represents complex
conjugate; θl (r, t ) = kl · r − ωl t , with el , El , kl , and ωl the
unit polarization vector, envelope, wave vector, and angular
frequency of the lth laser field, respectively. For simplicity
and for suppressing Doppler effect, the two probe fields are
assumed to propagate along the z direction (i.e., kp j = kpjez;
j = 1, 2), while the control field propagates along the −z
direction (i.e., kc = −kcez), with ez the unit vector along the
z direction.

Under electric dipole and rotating-wave approximations,
the Hamiltonian of the system is Ĥ = Na

∫
d3r Ĥ; here d3r =

dxdydz, Na is atomic density, and Ĥ is the Hamiltonian
density of the form

Ĥ =−
4∑

α=1

h̄�α Ŝαα (r, t ) − h̄[�p1Ŝ13(r, t ) + �p2Ŝ23(r, t )

+ �cŜ34(r, t ) + H.c.]

+ Na

∫
d3r′Ŝ44(r′, t )h̄V (r′ − r)Ŝ44(r, t ), (1)

where Ŝαβ = |β〉〈α| exp{i[(kβ − kα ) · r − (ωβ − ωα + �β −
�α )t]} is the atomic transition operator related to the
states |α〉 and |β〉, satisfying the commutation relation
[Ŝαβ (r, t ), Ŝμν (r′, t )] = (1/Na)δ(r − r′) [δαν Ŝμβ (r′, t ) − δμβ

Ŝαν (r′, t )]; �p1 = (ep1 · p13)Ep1/(2h̄), �p2 = (ep2 ·
p23)Ep2/(2h̄), and �c = (ec · p34)Ec/(2h̄) are, respectively,
half Rabi frequencies of the probe field 1, probe field 2, and
control field, with pαβ the electric dipole matrix element
associated with the transition |β〉 ↔ |α〉; the detunings
are given by �1 = �2 = 0, �3 = ωp1 − (E3 − E1)/h̄,
and �4 = ωc + ωp1 − (E4 − E1)/h̄, with Eα = h̄ωα

the eigenenergy of the state |α〉. The last term on the
right-hand side of Eq. (1) comes from the Rydberg-Rydberg
interaction, described by the van der Waals potential
Vvdw = −h̄C6/|r′ − r|6 (C6 is called dispersion parameter
[35]).
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The dynamics of the atomic motion is controlled by the
optical Bloch equation

∂ρ̂

∂t
= − i

h̄
[Ĥ , ρ̂] − � [ρ̂], (2)

where ρ̂ is the density matrix (DM) describing the atomic
population and coherence (with the DM elements defined by
ραβ ≡ 〈Ŝαβ〉) and � is the relaxation matrix describing the
spontaneous emission and dephasing. The explicit expression
of Eq. (2) is presented in Appendix A.

The evolution of the probe field 1 and probe field 2 are
controlled by the Maxwell equation ∇2E − (1/c2)∂2E/∂t2 =
[1/(ε0c2)]∂2P/∂t2, with P = Na{p13ρ31 exp[i(kp1 · r −
ωp1t )] + p23ρ32 exp[i(kp2 · r − ωp2t )] + c.c.}. We assume
that the two probe fields can be taken as classical fields
and hence a semiclassical approach for the system can
be adopted [36]. Under the paraxial and slowly varying
envelope approximations, the Maxwell equation is reduced
to [37]

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p1 + c

2ωp1
∇2

⊥�p1 + κ13ρ31 = 0, (3a)

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p2 + c

2ωp2
∇2

⊥�p2 + κ23ρ32 = 0, (3b)

where ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2, κ13=Naωp1|p13|2/(2ε0ch̄),

and κ23 = Naωp2|p23|2/(2ε0ch̄), with ε0 the vacuum dielec-
tric constant.

B. Coupled nonlinear envelope equations

We are interested in the steady-state property of the system,
for which the time derivative in the Maxwell-Bloch (MB)
equations (2) and (3) can be neglected, valid for the two
probe fields of long time durations. We expect that the initial
population in the atomic states will not change significantly
when the two nonlinear probe fields (which are weak com-
pared with the control field) are applied to the system, and
hence a perturbation expansion based on a method of multiple
scales [38] can be used to solve the MB equations. However,
due to the Rydberg-Rydberg interaction, atom-atom correla-
tions should be taken into account suitably beyond mean-field
approximation, which can be implemented by employing the
technique developed recently in Refs. [39,40]. The detail of
the calculation for solving the MB equations (2) and (3) based
on such a perturbation expansion exact to third-order approxi-
mation is given in Appendix B, where it is shown that �p1 and
�p2 obey the following (2 + 1)D coupled nonlocal nonlinear
Schrödinger (CNNLS) equations:

i
∂

∂z
�p1 + c

2ωp1
∇2

⊥�p1 + (W11|�p1|2 + W12|�p2|2)�p1

+
∫

d2r′
⊥G11(r⊥ − r′

⊥)|�p1(r′
⊥, z)|2�p1(r) +

∫
d2r′

⊥G12(r⊥ − r′
⊥)|�p2(r′

⊥, z)|2�p1(r) = 0, (4a)

i
∂

∂z
�p2 + c

2ωp2
∇2

⊥�p2 + (W21|�p1|2 + W22|�p2|2)�p2

+
∫

d2r′
⊥G21(r⊥ − r′

⊥)|�p1(r′
⊥, z)|2�p2(r) +

∫
d2r′

⊥G22(r⊥ − r′
⊥)|�p2(r′

⊥, z)|2�p2(r) = 0, (4b)

with r⊥ = (x, y), d2r′
⊥ = dx′dy′. Here the nonlinear coeffi-

cients Wj j ( j = 1, 2) and Wjl ( j, l = 1, 2; j 
= l) characterize,
respectively, local self-Kerr and cross-Kerr nonlinearities
(contributed by the weak, short-range interactions between
photons and atoms, which are present for conventional double
EIT systems [37]); Gj j and Gjl ( j 
= l) are nonlocal nonlin-
ear response functions characterizing, respectively, nonlocal
self-Kerr and cross-Kerr nonlinearities (contributed by the
strong, long-range Rydberg-Rydberg interaction). These non-
linear coefficients have the forms Wjl = κ j3a(3)

3 j,l and Gjl =
κ j3Na

∫
dzV (r′ − r)a(3)

3 j,l+2, with explicit expressions of a(3)
3 j,l

and a(3)
3 j,l+2 given in Appendix B. Note that when obtaining

Eq. (4) we have assumed that the spatial extension of the both
probe fields in the z direction (order of centimeters) is much
larger than that of the range of the Rydberg-Rydberg inter-
action (order of micrometers). It is worth indicating that due
to the Rydberg blockade the interaction between photons is fi-
nite. This point is manifested clearly by the nonlocal nonlinear
response functions Gjl , which approach a saturated value even
when r′ → r; i.e., the effective interaction potential between
photons is of a soft-core shape.

For the convenience of the following discussions
and numerical calculations, we take a laser-cooled 87Sr

atomic gas as a realistic, experimentally feasible ex-
ample, for which the hyperfine atomic levels are as-
signed to be |1〉 = |5s2 1S0, F = 9/2, mF = −1/2〉, |2〉 =
|5s2 1S0, F = 9/2, mF = 3/2〉, |3〉 = |5s 5p 1P1〉, and |4〉 =
|5s ns 1S0〉. The dispersion parameter of the van der Waals
potential for 87Sr is C6 = 2π × 10.9 GHz μm6 for main quan-
tum number n = 50, which can provide attractive Rydberg-
Rydberg interaction [41–44], and hence the Kerr nonlineari-
ties of the system will be self-focused ones [45]. The other
system parameters are given by �3 ≈ 2π × 32 MHz, �4 ≈
2π × 16.7 kHz; �3 = −2π × 240 MHz, �4 = 2π × 3 kHz,
�c = 2π × 20 MHz. The choice of the large one-photon de-
tuning �3 is to make the system work in a dispersive regime of
the double Rydberg-EIT, by which the spontaneous emission
of the intermediate state |3〉 can be largely suppressed and
hence the damping of the optical fields during propagation can
be reduced greatly.

From Eqs. (4a) and (4b), one can obtain the
expression of the optical susceptibility of the jth probe
field, defined by χ j = Na(ep · p j3)2ρ3 j/(ε0h̄�p j ) =
χ

(1)
j + ∑

l=1,2 χ
(3)
jl,loc|Epl |2 + ∑

l=1,2 χ
(3)
jl,nloc|Epl (r′)|2 + · · · .

Here χ
(1)
j is linear susceptibility; χ

(3)
jl,loc ( j, l = 1, 2)

are local third-order nonlinear susceptibilities; χ
(3)
jl,nloc
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( j, l = 1, 2) are nonlocal third-order nonlinear suscepti-
bilities. Based on the CNNLS equations (4), it is easy
to get χ

(3)
jl,loc = 2c(ep · p j3)2Wjl/(ωp j h̄

2) and χ
(3)
jl,nloc =

2c(ep · p j3)2
∫

d2r′Gjl/(ωp j h̄
2). With the system parameters

given above, we get χ
(3)
jl,loc ∼ 10−10 m2 V−2, χ

(3)
12,nloc ≈

χ
(3)
21,nloc ≈ χ

(3)
22,nloc ≈ χ

(3)
11,nloc = (4.1 + i0.3) × 10−7 m2 V−2.

Because the local Kerr nonlinearities are much smaller than
the nonlocal ones, they will be neglected in the following.

III. CLONING OF HIGH-D OPTICAL BEAMS

A. High-D nonlocal optical solitons and vortices
formed in the probe beam 1

We now consider optical cloning based on the CNNLS
equations (4a) and (4b). We assume that the probe field 1 is
the one to be cloned and the probe field 2 is the one cloned.
To implement the cloning, as a first step the probe field 1
must be prepared. We assume that the intensity of the probe
field 1 is much stronger than that of the probe field 2, and
thus the terms proportional to G12 and G22 in Eqs. (4a) and
(4b) can be disregarded. Based on such consideration and for
the convenience of latter numerical calculations, Eqs. (4a) and
(4b) are written into the nondimensional form

i
∂u

∂s
+ ∇̃2u +

∫
d2ζ ′ g11(
ζ − 
ζ ′)|u(
ζ ′, s)|2 u = 0, (5a)

i
∂v

∂s
+ ∇̃2v +

∫
d2ζ ′ g21(
ζ − 
ζ ′)|u(
ζ ′, s)|2 v = 0, (5b)

with (u, v) = (�p1,�p2)/U0, s = z/(2Ldiff ), 
ζ = (ξ, η) =
(x, y)/R0, ∇̃2 = ∂2/∂ξ 2 + ∂2/∂η2, d2ζ ′ = dξ ′dη′. Here
Ldiff = ωpR2

0/c is the typical diffraction length; R0 and
U0 are, respectively, the typical transverse size and half
Rabi frequency of the probe fields. The integral kernels
(nondimensional nonlinear response functions) in the above
equations are defined by g11,21 = 2Ldiff R2

0|U0|2G11,21. With
the system parameters given above, we have Ldiff ≈ 0.87 mm
for R0 = 8 μm.

From Eq. (5a) we see that the component u is controlled by
a (2 + 1)D NNLS equation. For the parameter choice given
in the last section, g11 is positive, i.e., the Kerr nonlinearity
in Eq. (5a) is a self-focused one, and hence Eq. (5a) supports
bright-soliton solutions. Since Eq. (5a) cannot be obtained an-
alytically, we find its soliton solutions by virtue of numerical
simulation. To this end, we assume the solution has the form

u(
ζ , s) = A(s) exp

[
− |
ζ |2

2w2(s)

]
exp

[
−iC(s)

|
ζ |2
2w2(s)

+ iφ(s)

]
,

(6)

where |
ζ |2 = ξ 2 + η2, A is amplitude, w is transverse width,
C is wavefront curvature, and φ is phase. All these parameters
are assumed to depend on the nondimensional propaga-
tion distance s. A variational method is employed to solve
Eq. (5a) by taking (6) as a trial solution. Through a Ritz
optimization procedure, the beam energy E , defined by E =∫∫ |u|2dξdη = πA2w2, is calculated as a function of the
transverse width w, with the result shown in Fig. 2(a). We find
that in the part represented by the solid red line where energy
E is near the minimum the soliton solution is stable, while in
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FIG. 2. High-D nonlocal optical soliton and vortices. (a) Soliton
energy E as a function of the transverse width w. The solid red
(dashed blue) part of the curve corresponds to the stable (unstable)
soliton. (b) Numerical results of A (amplitude; solid blue line), w

(transverse beam width; dot-dashed red line), and C (wavefront
curvature; dashed black line) as functions of propagation distance
s = z/(2Ldiff ). The initial condition is chosen from the point “b”
in panel (a), i.e., (A,C, w) = (1, 0, 0.4). (c) The same as (b) but
with the initial condition chosen from the point “c” in the panel
(a), i.e., (A,C, w) = (1, 0, 0.83). (d) Normalized peak intensity of
the soliton and vortex at different s. Upper row, soliton (the input
beam is a Gaussian mode); lower row, vortex (the input beam is a
Laguerre-Gaussian mode with l = 1, p = 0). All quantities in the
figure are nondimensional.

the parts represented by the blue dashed lines where E is far
away the minimum the soliton solution is unstable.

To prove the above conclusion further, two particular cases
are investigated in detail. Shown in Fig. 2(b) is the result
for the amplitude A (solid blue line), the transverse beam
width w (dot-dashed red line), and the wavefront curvature C
(dashed black line) of the soliton as functions of propagation
distance s = z/(2Ldiff ). The initial condition is chosen from
the point “b” [located in the unstable region of panel (a)], i.e.,
(A,C,w) = (1, 0, 0.4). One sees that in this case the soliton
is indeed unstable because the soliton parameters A, C, and
w change very drastically during propagation. However, if the
initial condition is chosen from the point “c” [located in the
stable region of panel (a)], i.e., (A,C,w) = (1, 0, 0.83), the
soliton is quite stable because the soliton parameters A, C,
and w can keep their values very close to the initial ones after
propagating to a long distance.

To give a visual picture for the spatial distribution of the
(2 + 1)D soliton during propagation, in the upper row of
Fig. 2(d) we illustrate the peak-normalized intensity of the
soliton for propagation distances, respectively, at s = 0, 1, 2,
obtained by using an input beam with a Gaussian mode.
We see that the soliton has no obvious deformation during
propagation.

The energy flux associated with an optical beam can be
estimated by a Poynting vector integrated over the transverse
area of the beam [38]. For the soliton given in the upper part
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of Fig. 2(d), we obtain

P ≈ 4.4 μW, (7)

which means that a very low input power is needed for gener-
ating the soliton. The physical reason for such low generation
power of the soliton is due to the giant nonlocal Kerr nonlin-
earities contributed by the Rydberg-EIT in the system.

One can also find stable vortex solutions of the (2 + 1)D
NNLS equation (5a) by virtue of a variational method-based
numerical simulation. Such solutions have also extremely low
generation power and are quite stable in some specific param-
eter regions. For instance, one can choose the input to be the
Laguerre-Gaussian (LG) mode [40]

u(
ζ , s = 0) = u0

w0

⎛
⎝

√
2|
ζ |2
w0

⎞
⎠

|l|

exp

(
−|
ζ |2

w2
0

)

× L|l|
p

[
2|
ζ |2
w2

0

]
exp(ilϕ), (8)

where L|l|
p is a generalized LG polynomial with l (p) the az-

imuthal (radial) index, u0 (w0) is the beam amplitude (waist),
and ϕ is the azimuthal angle with ϕ ∈ [0, 2π ]. The related
analysis is similar to that given above but omitted here for
saving space. Shown in the lower row of Fig. 2(d) is the
result for the propagation of an optical vortex, where the
input beam used is a LG mode with l = 1 and p = 0, for
u0 = 2.48 and w0 = 1. One sees that it is quite stable during
propagation.

The physical reason for the stability of the (2 + 1)D soli-
ton and vortices obtained here is the strong and long-range
nonlocal Kerr nonlinearity coming from the Rydberg-Rydberg
interaction between atoms, which not only can suppress the
diffraction in transverse directions but also can arrest the
spread or collapse of high-D nonlinear optical beams [40].

B. Cloning of high-D optical beams from the probe
field 1 onto the probe field 2

Now we turn to consider the second step of the cloning of
optical beams, i.e., to map the waveshape of the probe field
1 onto that of the probe field 2. The physical mechanism of
the optical cloning considered here is as follows. After the
probe field 1 (i.e., u, the optical beam to be cloned) is prepared
as a stable (2 + 1)D wave packet (as described in the last
subsection), due to the nonlocal cross-Kerr nonlinearity it will
play a role as a nonlocal external potential to the probe field
2 (i.e., v, the optical beam cloned) [see Eq. (5b)]. Then the
probe field 2 is confined and guided stably by the nonlocal
external potential contributed by the probe field 1. As a result,
the probe field 2 acquires a stable (2 + 1)D spatial distribu-
tion (copy) of the probe field 1. In order to have a better
illustration, we carry out a numerical investigation based on
the reduced CNNLS equations (5a) and (5b). Moreover, two
examples are considered in the following.

The first example is the cloning of a (2 + 1)D optical
vortex. At the beginning, a stable optical vortex (with l = 1
and p = 0) is obtained in the probe field 1 through solv-
ing Eq. (5a), with the result shown by the upper row of
Fig. 1(c), where the normalized peak intensity is illustrated

s
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0.6

0.7

0.8

0.9
HG mode(a)

LG mode
(b)

FIG. 3. Cloning of high-D optical beams. (a) Normalized peak
intensities of the probe field 1 (i.e., the optical beam to be cloned;
upper row) and the probe field 2 (i.e., the optical beam cloned; lower
row) for different propagation distance s = z/(2Ldiff ). The input of
the probe field 1 is a Hermite-Gaussian mode (with m = 1, n = 0).
The input of the probe field 2 is a Gaussian mode. (b) Waveshape
fidelity J as a function of s for the cloning of the Laguerre-Gaussian
mode (blue line) and for the Hermite-Gaussian mode (red line),
respectively. All quantities in the figure are nondimensional.

for different propagation distances, i.e., s = z/(2Ldiff ) =
0, 0.5, 1.0, 1.5, 2.0, respectively. Then, this optical vortex is
cloned onto the probe field 2 [controlled by Eq. (5b)] when
it propagates to the position s = 2.0. In the simulation, the
initial input waveshape of the probe field 2 is taken to be
a hyperbolic secant one, i.e., v(
ζ , s = 0) = v0 sech(|
ζ |/w0),
with v0 = 0.35 and w0 = 1. From the figure, we see that the
probe field 2 acquires almost the same waveshape as the probe
field 1.

The quality of the optical intensity cloning realized above
can be characterized by the overlap integral of the input in-
tensity of the probe field 1 (at position s = 0) and the output
intensity of the probe field 2 (at position s), which is called the
waveshape fidelity J , defined by [40]

J (s) =
∣∣ ∫ +∞

−∞ d2ζ v(
ζ , s) |u(
ζ , s = 0)|∣∣2

∫ +∞
−∞ d2ζ |v(
ζ , s)|2 ∫ +∞

−∞ d2ζ |u(
ζ , s = 0)|2 . (9)

Illustrated by the blue line in Fig. 3(b) is the waveshape
fidelity J as a function of s for the cloning of the optical vortex
(i.e., the LG mode with l = 1, p = 0), presented in Fig. 1(c).
At the propagation distance s = 2, we obtain J ≈ 78%, which
means that the waveshape of the optical vortex in the probe
field 1 can be well cloned onto the waveshape of the probe
field 2 with a high fidelity.

As a second example, we consider a numerical simulation
on the cloning of a Hermite-Gaussian (HG) mode:

u(
ζ , s = 0) = u0Hm

(√
2ξ

w0

)
Hn

(√
2η

w0

)
exp

(
−|
ζ |2

w2
0

)
,

(10)

where Hm is the Hermite polynomial of order m, and u0 and
w0 are the mode amplitude and waist, respectively. In the
simulation, we choose m = 1, n = 0, and u0 = 7.8, w0 = 1;
the input of the probe field 2 is a Gaussian beam v(
ζ , s =
0) = v0 exp[−|
ζ |2/w2

0], with v0 = 2 and w0 = 1. Shown in
Fig. 3(a) is peak-normalized intensities of the probe field 1
(i.e., the optical beam to be cloned; upper row) and the probe
field 2 (i.e., the optical beam cloned; lower row) for different
nondimensional propagation distance s. We see that the probe
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field 1 propagates very stably due to the role played by the
nonlocal self-Kerr nonlinearity in the system; for a larger
propagation distance, the waveshape of the probe field 2 is
changed from the Gaussian one into that of the probe field
1 (i.e., the HG one). Figure 3(b) shows J as a function of s;
at s = 2, one obtains J ≈ 88%, which means that the optical
cloning has a high waveshape fidelity.

To make a comparison, a numerical simulation for the
cloning of the same optical modes is also carried out for an
atomic gas working under a normal double EIT, which can
be realized by the present system with a lower atomic density
(i.e., the Rydberg-Rydberg interaction can be neglected). The
result shows that, though in such a case the optical cloning is
possible, the waveshape fidelity J is much lower than in the
case of the double Rydberg-EIT (i.e., the Rydberg-Rydberg
interaction cannot be neglected). For example, for the cloning
of the HG mode with (m, n) = (1, 0) via the normal double
EIT we obtain J ≈ 9% at propagation distance s = 2 (i.e.,
z = 3.48 mm), which is much lower than that obtained via
the double Rydberg-EIT (J ≈ 88%) for the same propagation
distance. Consequently, the optical cloning using the dou-
ble Rydberg-EIT is much better than that using the normal
double EIT. The physical reason for this lies in the fact that
the existence of the giant nonlocal self-Kerr and cross-Kerr
nonlinearities contributed by the strong Rydberg-Rydberg in-
teraction allows not only the formation and stable propagation
but also the high-fidelity cloning of high-D nonlinear optical
beams in the system.

C. Manipulation of the optical cloning

The cloning of the high-D optical beams demonstrated
above can be actively manipulated by changing the system
parameters. In particular, the nonlocality degree of the Kerr
nonlinearities in the system, defined by

σ = Rb/R0, (11)

may significantly influence the waveshape fidelity of the
cloning. Here Rb = (|C6/δEIT|)1/6 is the Rydberg blockade
radius, with δEIT = |�c|2/|�3| the linewidth of the EIT trans-
mission spectrum (for |�3| � �3) [31,32]. Based on our
system parameters, we have Rb ≈ 3.9 μm. One can obtain
different σ by tuning R0 (the typical transverse size of the
probe fields), �3, and �c, etc., and hence realize different
optical cloning with different waveshape fidelities.

Shown in Fig. 4(a) is the waveshape fidelity J for the
cloning of the LG mode (with l = 1 and p = 0) as a function
of nonlocality degree σ for s = 2. The upper inset in the figure
shows the input intensity distribution of the probe beam 2; the
lower insets give the output intensity distributions of the probe
beam 2 at s = 2 for the nonlocality degree σ = 0.5 (part A),
σ = 0.7 (part B), and σ = 2.7 (part C), respectively. From
the figure, we see that starting from σ = 0 the waveshape
fidelity J increases rapidly as σ increases, and reaches its
maximum Jmax ≈ 79% at σ ≈ 0.8; then, it turns to decrease
with a further increasing of σ .

Shown in Fig. 4(b) is the same as that in Fig. 4(a) but
for the cloning of the HG mode (with m = 1, n = 0). The
input intensity distribution of the probe field 2 and the output
intensity distributions of the probe field 2 are also illustrated

0 1 2 3

J

0

0.2

0.4

0.6

0.8

1

Output

Input

C

A

B

A B C

Probe field 2

0 1 2 3

J

0

0.2

0.4

0.6

0.8

1

Input

A B C

Output

Probe field 2

C

A

B
(a) (b)

FIG. 4. Manipulation of the optical cloning. (a) Waveshape fi-
delity J for the Laguerre-Gaussian mode (l = 1, p = 0) as a function
of nonlocality degree σ for the propagation distance s = 2.0. Upper
inset: The input intensity distribution of the probe field 2. Lower
insets: The output intensity distributions of the probe field 2 at
s = 2.0 for the nonlocality degree σ = 0.5 (part A), σ = 0.7 (part
B), and σ = 2.7 (part C), respectively. (b) The same as (a) but
for the Hermite-Gaussian mode (m = 1, n = 0). The input intensity
distribution of the probe field 2 (lower inset) and the output intensity
distributions of the probe field 2 (upper insets) are also shown. All
quantities in the figure are nondimensional.

by the lower inset and the upper insets, respectively. From the
figure, one can also obtain similar conclusions as those gained
from Fig. 4(a).

The reason that the waveshape fidelity J of the cloning
has the significant dependence on the nonlocality degree σ

can be understood as follows. At one limit where σ is small,
the nonlocal Kerr nonlinearities of the system become local
ones, i.e., the nonlinear response functions in Eqs. (5a) and
(5b) are reduced to the form g11,21(
ζ − 
ζ ′) → g(0)

11,21δ(
ζ − 
ζ ′)
(here g(0)

11,21 are constants), which makes (5a) and (5b) become
local nonlinear equations. Because the high-D soliton and
vortex solutions of such equations are highly unstable due to
the transverse instability induced by diffraction, the cloning of
high-D optical solitons and vortices is thus not possible (or the
fidelity is very low). At another limit σ is very large. In this
case the nonlinear terms in Eqs. (5a) and (5b) can be approx-
imated, respectively, by g11(
ζ = 0)P0 u and g21(
ζ = 0)P0 v,
where P0 = ∫∫

d2ζ |u|2 is the power of the probe field 1. As a
result, Eqs. (5a) and (5b) become uncoupled linear equations,
which means that the cloning from one probe field onto the
other one is also not possible. Consequently, only for the
situation where the nonlocality degree σ takes finite values,
the cloning of high-D optical beams is possible and it may
acquire a maximum waveshape fidelity for some particular
values of σ .

IV. MULTITIMES AND MULTICOMPONENTS CLONING
OF HIGH-D OPTICAL BEAMS

A. Multitimes cloning of high-D optical beams

Now we generalize the foregoing approach of single-time
cloning to multitimes cloning based on also the controllability
of the system, which is useful to allow us to acquire multiple
copies by the cloning. As an example, here we consider the
two-times cloning of the HG mode with m = 1 and n = 0,
with the result shown in Fig. 5, which is obtained through a
numerical simulation based on Eqs. (5a) and (5b).
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FIG. 5. Two-times cloning of high-D optical beams. (a) Normal-
ized peak intensity distributions of the probe field 1 (the optical beam
to be cloned; upper row) and probe field 2 (the optical beam cloned;
lower row) as functions of propagation distance s during the stage
of the first-time cloning, implemented in the propagation interval
between s = 0 and 2.0. The inputs of the probe field 1 and probe
field 2 are the Hermite-Gaussian mode (m = 1, n = 0) and Gaussian
mode, respectively. (b) Waveshape fidelity J as a function of s for
the first-time cloning. (c) The same as (a) but for the second-time
cloning, implemented in the propagation interval between s = 2.0
and 4.0. (d) Waveshape fidelity J as a function of s for the second-
time cloning. All quantities in the figure are nondimensional.

Given in Fig. 5(a) are normalized peak intensity distribu-
tions of the probe field 1 (i.e., the optical beam to be cloned;
upper row) and probe field 2 (i.e., the optical beam cloned;
lower row) as functions of nondimensional propagation dis-
tance s during the stage of the first-time cloning, implemented
in the propagation interval between s = 0 and 2.0. The inputs
of the probe field 1 and probe field 2 are, respectively, the
Hermite-Gaussian mode (m = 1, n = 0) and Gaussian mode,
with parameters the same as those used in Fig. 3(a). The panel
(b) of Fig. 5 gives the waveshape fidelity J as a function of s
for the first-time cloning, the value of which is 88% at s = 2.0.

To have a second-time cloning, we switch off the probe
field 2 but keep the probe field 1 propagating on; then by
inputting a new probe field 2 with a Gaussian mode, we can
obtain a new probe field 2 that is the cloning of the probe field
1. Illustrated in Fig. 5(c) are the normalized peak intensities
of the probe field 1 (upper row) and probe field 2 (lower row)
during the stage of the second-time cloning, implemented in
the propagation interval between s = 2.0 and 4.0. The panel
(d) of Fig. 5 shows the waveshape fidelity J as a function of
s for the second-time cloning, which has the value of 78%
at s = 4.0. In a similar way, the cloning with more than two
copies may also be possible subsequently if the times of the
cloning is larger than two.

B. Multicomponents cloning of high-D optical beams

Finally, we further generalize the single-component
cloning to multicomponents cloning by extending the model
given by Fig. 1(a), which allows us to acquire many copies
by the cloning simultaneously. To be specific, we consider

FIG. 6. Two-components cloning of high-D optical beams.
(a) Energy-level diagram and excitation scheme of the inverted �-
type five-level system for realizing the two-components cloning.
(b) Peak-normalized intensities of the probe field 1 (the optical beam
to be cloned; upper row), probe field 2 (the optical beam cloned;
middle row), and probe field 3 (the optical beam cloned; lower row)
for different propagation distance s. The input of the probe field
1 is a Laguerre-Gaussian mode with l = 1 and p = 0. The input
of the both probe field 2 and probe field 3 have the waveshape of
hyperbolic secant mode. All quantities in the right part of the figure
are nondimensional.

an inverted �-type five-level system, with the energy-level
diagram and excitation scheme shown in Fig. 6(a). Here three
weak probe fields with half Rabi frequencies �p1, �p2, and
�p3 couple, respectively, the transitions |1〉 ↔ |4〉, |2〉 ↔
|4〉, and |3〉 ↔ |4〉; the strong control field with half Rabi
frequency �c couples the transition |4〉 ↔ |5〉, with |5〉 a Ryd-
berg state. The nondimensional nonlinear equations governing
the propagation of �p j ( j = 1, 2, 3) read

i
∂u

∂s
+ ∇̃2u +

∫∫
d2ζ ′g11(
ζ − 
ζ ′)|u(
ζ ′, s)|2 u = 0,

(12a)

i
∂v

∂s
+ ∇̃2v +

∫∫
d2ζ ′g21(
ζ − 
ζ ′)|u(
ζ ′, s)|2 v = 0,

(12b)

i
∂w

∂s
+ ∇̃2 w +

∫∫
d2ζ ′g31(
ζ − 
ζ ′)|u(
ζ ′, s)|2 w = 0,

(12c)

where w = �p3/U0 and g31 = 2Ldiff R2
0|U0|2G31 ≈ g21; the

definitions of u, v, g11, and g21 are the same as those given
in Eqs. (5a) and (5b).

Shown in Fig. 6(b) are normalized peak intensity distribu-
tions of the probe field 1 (the optical beam to be cloned; upper
row), probe field 2 (the optical beam cloned; middle row),
and probe field 3 (the optical beam cloned; lower row) for
different propagation distance s. The input of the probe field
1 is a LG mode with l = 1 and p = 0; the input of both the
probe field 2 and probe field 3 have waveshape of hyperbolic
secant mode. The result is obtained by a numerical simulation
based on Eqs. (12a), (12b), and (12c). We see that the probe
field 1 propagates stably; the probe field 2 and probe field
3 change their shapes first and then they acquire the similar
waveshape as that of the probe field 1 after propagation to
some positions. Especially, at s = 2.0 the probe field 2 and
probe field 3 can acquire nearly the same waveshape as that
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of probe field 1, which means that two copies by the cloning
have been realized. Note that the cloning with more than two
copies may also be acquired at the same time if the number of
the probe fields used in the system is larger than 2.

V. SUMMARY

In this paper we have proposed a scheme for realizing the
cloning of high-D optical beams by taking the Rydberg atomic
gas as an effective optical cloning device. We have shown
that strong Rydberg-Rydberg interaction between atoms can
map to two probe laser fields, which may gain giant, nonlo-
cal Kerr nonlinearities through the mechanism of the double
Rydberg-EIT. We have also shown when the double Rydberg-
EIT works in the dispersive regime the system supports stable
high-D optical solitons and vortices, which may be obtained
at extremely low light power. By virtue of the cross-Kerr
nonlinearities, these optical solitons and vortices prepared in
one probe beam can be cloned onto another one with very high
waveshape fidelity. Moreover, the cloning of high-D optical
beams may be actively manipulated by tuning the nonlocality
degree of the Kerr nonlinearities. In addition, we have demon-
strated that multitimes and multicomponents cloning of such
optical beams can be realized, which allows us to acquire
multiple copies of high-D optical beams by exploiting such
a cloning.

The scheme presented above can be generalized to realize
the cloning of high-D optical pulses and optical images. The
high-fidelity and controllable cloning of high-D optical fields
reported in this paper are not only of fundamental interest
for the development of nonlocal nonlinear optics but also
promising for practical applications in all-optical information
processing and transmission, including diffractionless biolog-
ical and medical imaging [33,34].
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APPENDIX A: EXPLICIT EXPRESSION OF THE
OPTICAL BLOCH EQUATION

The dynamics of the atomic motion is governed by the
optical Bloch equation

∂ρ̂

∂t
= − i

h̄
[Ĥ , ρ̂] − � [ρ̂]. (A1)

Here ρ̂ is the DM describing the atomic population and coher-
ence, with the DM elements defined by ραβ ≡ 〈Ŝαβ〉 [46]; �

is the relaxation matrix describing the spontaneous emission
and dephasing.

Based on the Hamiltonian Ĥ given in the main text, we
obtain the explicit expression of the optical Bloch equation
with the following form:

i
∂

∂t
ρ11 + i�21ρ11 − i�13ρ33 + �∗

p1ρ31 − �p1ρ13 = 0,

(A2a)

i
∂

∂t
ρ22 − i�21ρ11 − i�23ρ33 + �∗

p2ρ32 − �p2ρ23 = 0,

(A2b)

i
∂

∂t
ρ33 − i�34ρ44 + i�3ρ33 − �∗

p1ρ31 + �p1ρ13 − �∗
p2ρ32

+�p2ρ23 + �∗
cρ43 − �cρ34 = 0, (A2c)

i
∂

∂t
ρ44 + i�34ρ44 − �∗

cρ43 + �cρ34 = 0, (A2d)

for the diagonal elements, and(
i
∂

∂t
+ d21

)
ρ21 + �∗

p2ρ31 − �p1ρ23 = 0, (A3a)

(
i
∂

∂t
+ d31

)
ρ31 + �∗

cρ41 + �p1(ρ11 − ρ33) + �p2ρ21 = 0,

(A3b)(
i
∂

∂t
+ d32

)
ρ32 + �∗

cρ42 + �p2(ρ22 − ρ33) + �p1ρ12 = 0,

(A3c)(
i
∂

∂t
+ d41

)
ρ41 + �cρ31 − �p1ρ43

−Na

∫
d3r′V (r′ − r)ρ44,41(r′, r, t ) = 0, (A3d)

(
i
∂

∂t
+ d42

)
ρ42 + �cρ32 − �p2ρ43

−Na

∫
d3r′V (r′ − r)ρ44,42(r′, r, t ) = 0, (A3e)

(
i
∂

∂t
+ d43

)
ρ43 − �∗

p1ρ41 − �∗
p2ρ42 + �c(ρ33 − ρ44)

−Na

∫
d3r′V (r′ − r)ρ44,43(r′, r, t ) = 0 (A3f)

for the nondiagonal elements. Here dαβ = �α − �β + iγαβ ;
γαβ = (�α + �β )/2 + γ col

αβ , �α = ∑
α<β �αβ , with �αβ the

spontaneous emission decay rate from |β〉 to |α〉 and γ col
αβ

the dephasing rate reflecting the loss of the phase coherence
between |α〉 and |β〉; �21 is a rate of population exchange
between |1〉 and |2〉; ρ44,4α (r′, r, t ) = 〈Ŝ44(r′, t )Ŝ4α (r, t )〉 are
two-body DM elements; the interaction between two Rydberg
atoms, respectively, at positions r and r′ is described by the
potential Vvdw(r′ − r) = −h̄C6/|r′ − r|6, with C6 the disper-
sion parameter.

APPENDIX B: SOLUTION OF THE MB EQUATIONS

1. Solutions of one-body density-matrix elements

We assume that atoms are initially populated in |1〉 and |2〉.
Since the two probe fields are much weaker than the control
field, we can take �p j (∼ε) as an expansion parameter and
the perturbation expansion ραα = ρ (0)

αα + ερ (1)
αα +ε2ρ (2)

αα + · · ·
(α = 1, 2, 3, 4), and ραβ = ερ

(1)
αβ + ε2ρ

(2)
αβ + · · · (α =

2, 3, 4; β = 1, 2, 3; α > β). Substituting the above
expansions into Eqs. (A2), we obtain a set of linear but
inhomogeneous equations which can be solved order by order
[47].
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a. First-order solutions

At the first order, the solutions of ρ
(1)
31 , ρ

(1)
32 , ρ

(1)
41 , and ρ

(1)
42

are given by

ρ
(1)
31 = d41ρ

(0)
11

|�c|2 − d31d41
�p1 ≡ a(1)

31 �p1, (B1a)

ρ
(1)
41 = −�cρ

(0)
11

|�c|2 − d31d41
�p1 ≡ a(1)

41 �p1, (B1b)

ρ
(1)
32 = d42ρ

(0)
22

|�c|2 − d32d42
�p2 ≡ a(1)

32 �p2, (B1c)

ρ
(1)
42 = −�cρ

(0)
22

|�c|2 − d32d42
�p2 ≡ a(1)

42 �p2, (B1d)

and other ρ
(1)
αβ are zero.

b. Second-order solutions

At the second order, ρ
(2)
33 , ρ

(2)
44 , ρ

(2)
43 , and ρ

(2)
34 can be solved

by the equation

⎡
⎢⎢⎢⎢⎣

i�3 −i�34 �∗
c −�c

0 i�34 −�∗
c �c

�c −�c d43 0

�∗
c −�∗

c 0 d∗
43

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ρ
(2)
33

ρ
(2)
44

ρ
(2)
43

ρ
(2)
34

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

2iIm
(
a(1)

31

)
0

a(1)
41

a(1)
14

⎤
⎥⎥⎥⎥⎥⎦

|�p1|2 +

⎡
⎢⎢⎢⎢⎢⎣

2iIm
(
a(1)

32

)
0

a(1)
42

a(1)
24

⎤
⎥⎥⎥⎥⎥⎦

|�p2|2. (B2)

The solutions for ρ
(2)
33 , ρ

(2)
44 , ρ

(2)
43 , and ρ

(2)
34 read

ρ
(2)
33 = a(2)

33,1|�p1|2 + a(2)
33,2|�p2|2, (B3a)

ρ
(2)
44 = a(2)

44,1|�p1|2 + a(2)
44,2|�p2|2, (B3b)

ρ
(2)
43 = a(2)

43,1|�p1|2 + a(2)
44,2|�p2|2, (B3c)

ρ
(2)
34 = a(2)

34,1|�p1|2 + a(2)
34,2|�p2|2. (B3d)

The solutions of ρ
(2)
11 , ρ

(2)
22 , and ρ

(2)
21 read

ρ
(2)
21 = 1

d21

[
ρ

(1)
23 �p1 − ρ

(1)
31 �∗

p2

]

= 1

d21

[
a(1)

23 − a(1)
31

]
�p1�

∗
p2, (B4a)

ρ
(2)
11 = �13a(2)

33,1 + i
(
a(1)

31 − a(1)
13

)
�21

|�p1|2 + �13a(2)
33,2

�21
|�p2|2

≡ a(2)
11,1|�p1|2 + a(2)

11,2|�p2|2, (B4b)

ρ
(2)
22 = −(

a(2)
11,1 + a(2)

33,1 + a(2)
44,1

)|�p1|2

− (
a(2)

11,2 + a(2)
33,2 + a(2)

44,2

)|�p2|2

≡ a(2)
22,1|�p1|2 + a(2)

22,2|�p2|2. (B4c)

c. Third-order solutions

At the third order, the solutions of ρ
(3)
31 and ρ

(3)
32 read

ρ
(3)
31 = a(3)

31,1|�p1|2�p1 + a(3)
31,2|�p2|2�p1

+Na

∫
d3r′V (r′ − r)a(3)

31,3(r′, r, t )|�p1(r′)|2�p1(r)

+Na

∫
d3r′V (r′ − r)a(3)

31,4(r′, r, t )|�p2(r′)|2�p1(r),

(B5a)

ρ
(3)
32 = a(3)

32,1|�p1|2�p2 + a(3)
32,2|�p2|2�p2

+Na

∫
d3r′V (r′ − r)a(3)

32,3(r′, r, t )|�p2(r′)|2�p1(r)

+Na

∫
d3r′V (r′ − r)a(3)

32,4(r′, r, t )|�p2(r′)|2�p2(r),

(B5b)

with the coefficients given by

a(3)
31,l = �∗

ca(2)
43,l + d41

(
a(2)

11,l − a(2)
33,l − δ2l a

(2)
21

)
|�c|2 − d31d41

, (B6a)

a(3)
32,l = �∗

ca(2)
43,l + d42

(
a(2)

22,l − a(2)
33,l + δ1l a

(2)
12

)
|�c|2 − d32d42

, (B6b)

a(3)
31,l+2 = �∗

ca(3)
44,41,l

|�c|2 − d31d41
, (B6c)

a(3)
32,l+2 = �∗

ca(3)
44,42,l

|�c|2 − d32d42
, (B6d)

where l = 1, 2.

2. Solutions of two-body density-matrix elements

Note that to get the expressions of the third-order solutions
of the one-body DM elements, one must solve the equa-
tions of motion for the two-body MD elements 〈Ŝαβ Ŝμν〉 ≡
ραβ,μν . For example, the equations of two-body DM elements
〈Ŝ44Ŝ41〉 and 〈Ŝ44Ŝ42〉 read(

i
∂

∂t
+ d41 + i�34 − V (r′ − r)

)
〈Ŝ44Ŝ41〉 − �∗

c〈Ŝ43Ŝ41〉

+�c(〈Ŝ34Ŝ41〉 + 〈Ŝ44Ŝ31〉) − �p1〈Ŝ44Ŝ43〉

−Na

∫
d3r′′〈Ŝ44(r′′, t )Ŝ44(r′, t )Ŝ41(r, t )〉V (r′′ − r) = 0,

(B7a)(
i
∂

∂t
+ d42 + i�34 − V (r′ − r)

)
〈Ŝ44Ŝ42〉 − �∗

c〈Ŝ43Ŝ42〉

+�c(〈Ŝ34Ŝ42〉 + 〈Ŝ44Ŝ32〉) − �p2〈Ŝ44Ŝ43〉

−Na

∫
d3r′′〈Ŝ44(r′′, t )Ŝ44(r′, t )Ŝ42(r, t )〉V (r′′ − r) = 0.

(B7b)

From Eqs. (B7), one sees that the equations for the
two-body DM elements involve three-body DM elements;
similarly, the equations for three-body DM elements will
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involve four-body DM elements, etc. As a result, one ob-
tains an infinite hierarchy of equations of motion for the DM
elements of one-body, two-body,. . . , N-body,. . ., equations,
which must be solved simultaneously. Apparently, to make the
problem tractable a truncation approximation for the hierarchy

must be taken. Here we assume that, for the atomic density
considered in the main text, the one- and two-body correla-
tions of the atoms should be fully taken into account but the
three-body DM elements can be factorized in the following
way [48]:

〈Ŝαβ (r′′, t )Ŝμν (r′, t )Ŝγ δ (r, t )〉 = 〈Ŝαβ (r′′, t )〉〈Ŝμν (r′, t )Ŝγ δ (r, t )〉 + 〈Ŝαβ (r′′, t )Ŝμν (r′, t )〉〈Ŝγ δ (r, t )〉
+ 〈Ŝαβ (r′′, t )Ŝγ δ (r, t )〉〈Ŝμν (r′, t )〉 − 2〈Ŝαβ (r′′, t )〉〈Ŝμν (r′, t )〉〈Ŝγ δ (r, t )〉. (B8)

Under such consideration, the equations of motion for the one-body and two-body DM elements can be made to be closed, and
they can be solved by using the above mentioned perturbation expansion [39,40].

a. Second-order solutions

At this order, the equations read
⎡
⎣d31 �∗

c 0
�c d41 + d31 �∗

c
0 2�c 2d41 − V

⎤
⎦

⎡
⎢⎣

ρ
(2)
31,31

ρ
(2)
41,31

ρ
(2)
41,41

⎤
⎥⎦ =

⎡
⎢⎣

−a(1)
31 ρ

(0)
11

−a(1)
41 ρ

(0)
11

0

⎤
⎥⎦�2

p1, (B9)

⎡
⎣d32 �∗

c 0
�c d32 + d42 �∗

c

0 2�c 2d42 − V

⎤
⎦

⎡
⎢⎣

ρ
(2)
32,32

ρ
(2)
42,32

ρ
(2)
42,42

⎤
⎥⎦ =

⎡
⎢⎣

−a(1)
32 ρ

(0)
22

−a(1)
42 ρ

(0)
22

0

⎤
⎥⎦�2

p2, (B10)

⎡
⎢⎣

d41 + d42 − V �c �c 0
�∗

c d41 + d32 0 �c

�∗
c 0 d42 + d31 �c

0 �∗
c �∗

c d32 + d31

⎤
⎥⎦

⎡
⎢⎢⎢⎣

ρ
(2)
42,41

ρ
(2)
41,32

ρ
(2)
42,31

ρ
(2)
32,31

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

−a(1)
41 ρ

(0)
22

−a(1)
42 ρ

(0)
11

−a(1)
32 ρ

(0)
11 − a(1)

31 ρ
(0)
22

⎤
⎥⎥⎥⎦�p1�p2, (B11)

⎡
⎢⎣

d42 + d14 �c −�∗
c 0

�∗
c d32 + d14 0 −�∗

c
−�c 0 d42 + d13 �c

0 −�c �∗
c d32 + d13

⎤
⎥⎦

⎡
⎢⎢⎢⎣

ρ
(2)
42,14

ρ
(2)
32,14

ρ
(2)
42,13

ρ
(2)
32,13

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

−a(1)
14 ρ

(0)
22

a(1)
42 ρ

(0)
11

a(1)
32 ρ

(0)
11 − a(1)

13 ρ
(0)
22

⎤
⎥⎥⎥⎦�∗

p1�p2, (B12)

⎡
⎢⎢⎣

d41 + d14 −�∗
c �c 0

−�c d41 + d13 0 �c

�∗
c 0 d31 + d14 −�∗

c

0 �∗
c −�c d31 + d13

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

ρ
(2)
41,14

ρ
(2)
41,13

ρ
(2)
31,14

ρ
(2)
31,13

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

a(1)
41 ρ

(0)
11

−a(1)
14 ρ

(0)
11

2iIm(a(1)
31 )ρ (0)

11

⎤
⎥⎥⎥⎦|�p1|2, (B13)

⎡
⎢⎣

d42 + d24 −�∗
c �c 0

−�c d42 + d23 0 �c

�∗
c 0 d32 + d24 −�c

0 �∗
c −�c d23 + d32

⎤
⎥⎦

⎡
⎢⎢⎢⎣

ρ
(2)
42,24

ρ
(2)
42,23

ρ
(2)
32,24

ρ
(2)
32,23

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

a(1)
42 ρ

(0)
22

−a(1)
24 ρ

(0)
22

2iIm(a(1)
32 )ρ (0)

22

⎤
⎥⎥⎥⎦|�p2|2. (B14)

b. Third-order solutions

At this order, the number of equations are too many to be listed here. Here we present some of them for obtaining the solutions
of ρ

(3)
44,41 and ρ

(3)
44,42, i.e.,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 −�∗
c �c �c 0 0 0 0

−�c M12 0 0 �c �c 0 0
�∗

c 0 M13 0 −�∗
c 0 �c 0

�∗
c 0 0 M14 0 −�∗

c �c 0
−i�34 �∗

c −�c 0 M15 0 0 �c

0 �∗
c 0 −�c 0 M16 0 �c

0 0 �∗
c �∗

c 0 0 M17 −�∗
c

0 0 0 −i�34 �∗
c �∗

c −�c M18

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
(3)
44,41

ρ
(3)
43,41

ρ
(3)
41,34

ρ
(3)
44,31

ρ
(3)
41,33

ρ
(3)
43,31

ρ
(3)
34,31

ρ
(3)
33,31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R11

R12

R13

R14

R15

R16

R17

R18

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B15)
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where M11 = i�34 + d41 − V , M12 = d43 + d41 − V , M13 = d34 + d41, M14 = d31 + i�34, M15 = i�3 + d41, M16 = d43 + d31,
M17 = d31 + d34, M18 = d31 + i�3,

R11 = 0, R12 = [
a(2)

41,41|�p1|2 + a(2)
42,41|�p2|2

]
�p1,

R13 = [−a(2)
41,14|�p1|2 − a(2)

41,24|�p2|2
]
�p1,

R14 = [−a(2)
44,1ρ

(0)
11 |�p1|2 − a(2)

44,2ρ
(0)
11 |�p2|2

]
�p1,

R15 = [(
a(2)

41,31 − a(2)
41,13

)|�p1|2 + (
a(2)

41,32 − a(2)
41,23

)|�p2|2
]
�p1,

R16 = [(
a(2)

41,31 − a(2)
43,1ρ

(0)
11

)|�p1|2 + (
a(2)

42,31 − a(2)
43,2ρ

(0)
11

)|�p2|2
]
�p1,

R17 = [−(
a(2)

31,14 + a(2)
34,1ρ

(0)
11

)|�p1|2 − (
a(2)

31,24 + a(2)
34,2ρ

(0)
11

)|�p2|2
]
�p1,

R18 = (
a(2)

31,31 − a(2)
31,13 − a(2)

33,1ρ
(0)
11

)|�p1|2�p1 + (
a(2)

32,31 − a(2)
31,23 − a(2)

33,2ρ
(0)
11

)|�p2|2�p1,

and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M21 −�∗
c �c �c 0 0 0 0

−�c M22 0 0 �c �c 0 0
�∗

c 0 M23 0 −�∗
c 0 �c 0

�∗
c 0 0 M24 0 −�∗

c �c 0
−i�34 �∗

c −�c 0 M25 0 0 �c

0 �∗
c 0 −�c 0 M26 0 �c

0 0 �∗
c �∗

c 0 0 M27 −�∗
c

0 0 0 −i�34 �∗
c �∗

c −�c M28

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
(3)
44,42

ρ
(3)
43,42

ρ
(3)
42,34

ρ
(3)
44,32

ρ
(3)
42,33

ρ
(3)
43,32

ρ
(3)
34,32

ρ
(3)
33,32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R21

R22

R23

R24

R25

R26

R27

R28

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B16)

where M21 = d42 + i�34 − V , M22 = d43 + d42 − V , M23 = d34 + d42, M24 = d32 + i�34, M25 = d42 + i�3, M26 = d43 + d32,
M27 = d34 + d32, M28 = d32 + i�3,

R21 = 0, R22 = [
a(2)

42,41|�p1|2 + a(2)
42,42|�p2|2

]
�p2,

R23 = [−a(2)
42,14|�p2|2 − a(2)

42,24|�p2|2
]
�p2,

R24 = [−a(2)
44,1ρ

(0)
22 |�p1|2 − a(2)

44,2ρ
(0)
22 |�p2|2

]
�p2,

R25 = [(
a(2)

42,31 − a(2)
42,13

)|�p1|2 + (
a(2)

42,32 − a(2)
42,23

)|�p2|2
]
�p2,

R26 = [(
a(2)

41,32 − a(2)
43,1ρ

(0)
22

)|�p1|2 + (
a(2)

42,32 − a(2)
43,2ρ

(0)
22

)|�p2|2
]
�p2,

R27 = [−(
a(2)

32,14 + a(2)
34,1ρ

(0)
22

)|�p1|2 − (
a(2)

32,24 + a(2)
34,2ρ

(0)
22

)|�p2|2
]
�p2,

R28 = [(
a(2)

32,31 − a(2)
32,13 − a(2)

33,1ρ
(0)
22

)|�p1|2 + (
a(2)

32,32 − a(2)
32,23 − a(2)

33,2ρ
(0)
22

)|�p2|2
]
�p2.

Solving the above two equations, we obtain

ρ
(3)
44,41 = a(3)

44,41,1|�p1|2�p1 + a(3)
44,41,2|�p2|2�p1, (B17a)

ρ
(3)
44,42 = a(3)

44,42,1|�p1|2�p2 + a(3)
44,42,2|�p2|2�p2, (B17b)

with

a(3)
44,4 j,l = Pjl0 + Pjl1V (r′ − r) + Pjl2V (r′ − r)2

Qjl0 + Qjl1V (r′ − r) + Qjl2V (r′ − r)2 + Qjl3V (r′ − r)3
, (B18)

where Pjln and Qjln ( j, l = 1, 2; n = 0, 1, 2, 3) are constants, depending on the spontaneous emission and dephasing rates,
detunings, half Rabi frequency of the control field, and other system parameters. The explicit expressions of Pjln and Qjln are
very lengthy and hence are omitted here.

With the above solutions, we obtain the nonlinear coupled equations for the motion of �p1 and �p2 up to the third-order
approximation. They are given by

i
∂

∂z2
�p1 + c

2ωp1
∇2

⊥�p1 + κ13
(
a(3)

31,1|�p1|2 + a(3)
31,2|�p2|2

)
�p1

+ κ13Na

∫
d3r′a(3)

31,3V (r′ − r)|�p1(r′)|2�p1(r) + κ13Na

∫
d3r′a(3)

31,4V (r′ − r)|�p2(r′)|2�p1(r) = 0, (B19a)
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i
∂

∂z2
�p2 + c

2ωp2
∇2

⊥�p2 + κ23
(
a(3)

32,1|�p1|2 + a(3)
32,2|�p2|2

)
�p2

+ κ23Na

∫
d3r′a(3)

32,3V (r′ − r)|�p1(r′)|2�p2(r) + κ23Na

∫
d3r′a(3)

32,4V (r′ − r)|�p2(r′)|2�p2(r) = 0. (B19b)

Equations (4a) and (4b) in the main text can be readily obtained from the above nonlinear coupled equations.
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