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Spontaneous emission in nanofibers doped with an ensemble of quantum dots and quantum emitters
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We studied the effect of the spontaneous emission on the photoluminescence (PL) of photonic nanofibers
doped with an ensemble of quantum dots (QDs) and quantum emitters. Quantum emitters can be molecular dyes
or DNA molecules. Bound photonic states of the nanofiber hybrid are calculated using the transfer-matrix method
based on the Maxwell equations. It is shown that the number of bound states in the nanofiber hybrid depends on
the size and shape of the nanofiber along with the concentration of quantum dots and quantum emitters including
their dielectric constants. The bound photon electric field induces dipoles in quantum dots and quantum emitters,
and they interact with each other via the dipole-dipole interaction (DDI). We found that excited excitons decay
spontaneously due to the interaction between excitons and the DDI field. It is found that the decay linewidth is
enhanced when the bound photon energy is close to the exciton energy. On the other hand, we predicted that in
the weak DDI coupling limit and when the bound photon energy is far away from the exciton energy the decay
linewidths are suppressed (quenched). An analytical expression of the photoluminescence is found using the
density-matrix method in the presence of the DDI coupling. We have predicted that in the strong DDI coupling
limit the peak in the photoluminescence spectrum splits into two peaks when the bound photon energy is far
away from the exciton energy. Furthermore, we have shown that when the bound photon energy is close to the
exciton energy, two peaks merge into one peak. We have also compared our theory with PL experiments of a
nanofiber doped with an ensemble of the CdSe QDs and sulforhodamine 101 dye molecules. A good agreement
between theory and experiments is found. Our theory can be used by experimentalists to perform alternative
types of experiments and for fabricating types of nanosensors and nanoswitches.
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I. INTRODUCTION

Recently there is considerable interest to study the optical
properties of nanofibers doped with an ensemble of quantum
dots (QDs) [1–12]. For example, Wang et al. [1] fabricated
poly-phenylenevinylene nanofibers via the electrospinning
method and introduced an ensemble of CdS QDs inside
nanofibers. The QDs were distributed in the fibers evenly
and the surface of fibers was very smooth. They concluded
that this kind of nanohybrid material has tunable fluorescence
properties and will have potential applications for optical and
electric devices. Further, Cheng et al. [2] have studied the
photoluminescence (PL) in the PbSe-QD doped fiber ampli-
fier based on the sodium-aluminum-borosilicate-silicate glass.
They found photoluminescence emission is strong and stable
in the near-infrared region. Zhang et al. [3] found an enhanced
ultraviolet emission from highly dispersed ZnO QDs embed-
ded in poly(vinyl pyrrolidone) electrospun nanofibers.

Additionally, Strong et al. [4] fabricated highly crystalline,
doped polythiophene from the surfaces of CdTe quantum
dots by ligand exchange of 3-thenoic acid followed by an
oxidant-initiated polymerization. This produced a composite
of highly ordered nanofibers, which transferred charge ef-
ficiently between the polythiophene and the quantum dots.
Camposeo et al. [5] examined properties and applications of
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electrospun light-emitting nanofibers, as well as manufactur-
ing techniques. The applications include nanoscale organic
light-emitting diodes and optically pumped lasers, field-effect
transistors, and high-performance optical sensors, among
others.

De San Luis et al. [6] studied hybrid nanofibers contain-
ing CdSe/ZnS quantum dots. They have been produced by
electrospinning of hybrid latexes, synthesized by seeded semi-
batch emulsion polymerization, thereby creating cross-linked
core-shell polystyrene (PS)–QD–Poly (methyl methacrylate)
particles. The hybrid nanofibers are sensitive to selected sol-
vents and are good candidates to produce volatile organic
compound sensors. Additionally, Fahmi et al. [7] examined
the directed self-assembly of one-dimensional hybrid materi-
als based on a poly(propyleneimine) dendrimer template and
CdSe nanoparticles. This can be used to form semiconducting
hybrid nanofibers coated with discrete Au nanoparticles. Such
nanofibers have potential in various applications, such as bio-
logical markers and nanoprobes. Camposeo et al. [8] studied
the fabrication via electrospinning of polymer nanofibers in
order to better control both surface properties and geometry.
They examined the spectroscopy of light emitted by molec-
ular compounds and single quantum dots embedded in these
polymer fibers.

Next, Abitbol et al. [9] fabricated fluorescent cellulose
triacetate fibers by electrospinning solutions of methylene
chloride and methanol which contained CdSe/ZnS QDs.
This resulted in fluorescent fibers that were not significantly
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altered by the nanoparticles, with generally smooth surfaces.
Yan et al. [10] studied a cellulose nanofiber embedded with
cadmium sulfide quantum dots. This nanohybrid exhibits 95%
light transmittance at 550 nm. Chaguetmi et al. [11] developed
a new type of nanostructure for photo-electrochemical water
splitting, based on scheduled CdS-TiO2 nanocomposite films.
TiO2 nanofibers are created using controlled corrosion of
polished Ti sheets and the direct embedding of TiO2-Ti sheets
by CdS quantum dots. A net enhancement of the photocurrent
was observed in the presence of CdS QDs.

Recently, Singh et al. [12] have fabricated nanofibers
embedding an ensemble of CdSe QDs and sulforhodamine
101 (S101) dye molecules, via the self-assembly process of
a polystyreneblock-poly(4-vinylpyridine) (PS-b-P4VP) block
copolymer. The cylindrical domains subsequently were iso-
lated as individual nanofibers via the selective-swelling ap-
proach. The confinement imposed due to the nano-dimension
geometry of the cylindrical nanofibers enabled the QDs and
S101 dyes to interact with each other. They measured the
photoluminescence spectrum of the CdSe QD by embedding
a different concentration of S101 dye molecules. They found
that the PL spectrum split from one peak to two peaks by
increasing the concentration of dye molecules.

In this paper, we studied the effect of the spontaneous
emission on the PL of photonic nanofibers doped with an
ensemble of quantum dots and quantum emitters (QEs). We
call this combined system a nanofiber hybrid (NFH). The
quantum emitters can be molecular dye molecules or DNA
molecules. Bound photons in the nanofiber induce dipoles in
the QDs and QEs. Therefore, QDs and QEs interact with each
other via the dipole-dipole interaction (DDI). An analytical
expression of the PL is obtained by using the density-matrix
method. Recently, there is considerable interest to apply the
density-matrix method in quantum dot nanohybrids [13–23].

In Sec. I, we surveyed the literature for nanofiber hy-
brids. In Sec. II, a theory of the light propagation in the
NFH is developed. To calculate the bound photonic states, we
used the transfer-matrix method of the Maxwell equations. In
Sec. III, a theory of spontaneous decay linewidths due to the
exciton-DDI coupling is developed using the time-dependent
quantum-mechanical perturbation method. The density of
states (DOS) for the bound photon in the NFH is evalu-
ated. Analytical expressions of the decay linewidths are also
obtained. In Sec. IV, an analytical expression of the PL is
derived using the density-matrix method. In Sec. V, we have
performed numerical calculations for the spontaneous decay
linewidths. Next, we have compared our theory with the PL
experiments from Ref. [12]. Finally, we have summarized the
findings of our paper in Sec. VI.

II. THE BOUND PHOTONIC STATES IN NANOFIBER
HYBRIDS

In this section, we calculate the bound photonic states in
the nanofiber hybrid. We consider a nanofiber made of a core
dielectric material and a shell (cladding) dielectric material.
It is called the core-shell nanofiber. The cross-sectional area
of the core is denoted as A and the length of the nanofiber is
L. The typical diameter of the nanofiber lies between 50 and
500 nm. The core of the nanofiber is doped with an ensemble

FIG. 1. A schematic diagram of the nanofiber hybrid is plotted.
The nanofiber is made of a core dielectric material and a shell
(cladding) dielectric material. The core of the nanofiber is doped with
an ensemble of QDs and QEs.

of QDs and QEs which are densely populated in the core-shell
nanofiber. This nanofiber hybrid lies along the z direction. A
schematic diagram of the nanofiber hybrid is shown in Fig. 1.

A probe electromagnetic field with amplitude EP, photon
energy εk , and wave vector k is applied to study the photolu-
minescence and it is expressed as

Eprobe = EPei(k.r−εkt/h̄). (1)

The probe photon field propagates along the length di-
rection (i.e., z direction) of the NFH and is confined in a
perpendicular direction (i.e., x-y directions) in the NFH. Due
to the confinement of the electric field perpendicular to the
nanofiber, the probe photon energies are quantized.

Now, let us calculate the propagation of the electric field
inside the NFH. The electric field inside the core propagate
freely along the z direction and it exponentially decays in the
shell. The dielectric constant of the core is found as

∈c = nQE∈QE + nQD∈QD + ∈b, (2)

where nQE and nQD are the concentration ratios of the QEs
and QDs, respectively. Here εQE and εQD are the dielectric
constants of the QE and QD, respectively. Here εb is the
dielectric constant of the core background material.

The dispersion relation between the wave vector k and
energy εk is written as

εk =
(

h̄c√
(nQE∈QE + nQD∈QD + ∈b)

)
k, (3)

where c is the speed of light in the vacuum. Equation (3) can
be rewritten in the following form:

k2
x + k2

y + k2
z = F 2

c (εk ),

Fc(εk ) = εk

√
(nQE∈QE+nQD∈QD+∈b)

h̄c ,
(4)

where kx,ky, and kz are the components of wave vector k
propagating along x, y, and z directions, respectively.
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Similarly, the dispersion relation for the electric field in the
shell of the nanofiber is written as

q2
x + q2

y + q2
z = F 2

s (εq),
(5)

Fs(εq) = εq
√∈s

h̄c
,

where εs is the dielectric constant of the shell, and εq is the
photon energy for the wave vector q. Here qx and qy are the
components of the decaying wave vector q along x and y di-
rections, respectively, and qz = kz, where kz is the propagating
wave vector along the z direction.

We know that the electric field propagates along with
the core and it exponentially decays in the shell. Therefore,
matching the boundary conditions at the interface between
the core and shell and using the transfer-matrix method based
on the Maxwell equations [24,25], we get the following

bound-state energies in the nanofiber:

kxF 2
s (εk ) sin(kxdx − nπ/2) − qxF 2

c (εk ) cos(kxdx− nπ/2) = 0,

kyF 2
s (εk ) sin(kydy−mπ/2)−qyF 2

c (εk ) cos(kydy−mπ/2) = 0,

(6)

where

qx = [
F 2

c (εk ) − F 2
s (εk ) − k2

x

]1/2
,

qy = [
F 2

c (εk ) − F 2
s (εk ) − k2

y

]1/2
. (7)

Here dx and dy are the diameter of the core along the x
direction and y direction, respectively. Here n and m are the
quantum numbers.

Inserting Eq. (7) into Eq. (6), we get

Fx = 0, Fx = kxF 2
s (εk ) tan(kxdx/2 − nπ/2) − F 2

c (εk )
[
F 2

c (εk ) − F 2
s (εk ) − k2

x

]1/2
,

Fy = 0, Fy = kyF 2
s (εk ) tan(kydy/2 − mπ/2) − F 2

c (εk )
[
F 2

c (εk ) − F 2
s (εk ) − k2

y

]1/2
. (8)

Note that Fx and Fy are the functions of kx and, ky, respec-
tively. Hence, the quantized (bound) photon energies can be
calculated for given quantum numbers n and m by solving
Eq. (8) self-consistently for kx and ky. We denote kx and ky

as kn and km, respectively. Let us denote the bound photon
energy in the x-y direction as εnm. Therefore, εnm is calculated
from Eq. (4) by putting kz = 0 and we get

k2
n + k2

m = F 2
c (εnm, kz = 0) = F 2

c (εnm). (9)

It is important to note that the bound-state energy εnm

depends on the function Fc which in turn depends on the
dielectric constants of the core material, the concentration of
the QDs, and QEs along with their dielectric constants.

Now the wave vector and energy of the electric field prop-
agating inside the NFH are expressed as knm,z = (kn, km, kz)
and energy εnm,z, respectively. The dispersion relation for the
electric field inside the NFH can be found from Eq. (4) by
replacing k by knm,z and εk by εnm,z and it can be expressed as

k2
n + k2

m + k2
z = F 2

c

(
εnm,kz

)
. (10)

Further, we can simplify the expression of the dispersion
relation by substituting Eq. (9) into Eq. (10) and we get

kz = [
F 2

c

(
εnm,kz

) − F 2
c (εnm)

]1/2
. (11)

The above dispersion relation will be used to calculate the
DOS of bound photons propagating inside the nanofiber. We
show in the next section that the spontaneous decay linewidths
of excitons in the QD depend on the DOS of bound photons.

III. FORMULATION OF THE BOUND STATES AND
LINEWIDTHS IN NANOFIBER HYBRIDS

In this section, we investigate the effect of bound states
in the decay linewidths of excitons in the QD. We consider
that the QD has three energy levels and they are denoted as

|1〉, |2〉, and |3〉. These types of QDs are called three-level
quantum systems. The energy difference between |1〉 and |2〉
is expressed as ε21. Similarly, the energy difference between
|2〉 and |3〉 is expressed as ε23. Therefore, the energy differ-
ence between levels |1〉 and |3〉 is found as ε311 = ε21 − ε23.
A schematic diagram of the QD is shown in Fig. 2.

To study the decay linewidth, we need to calculate how
many electric fields are falling on the QD. The probe field
induces an electric dipole in each QE in the ensemble. There-
fore, QEs are interacting with each other via the DDI coupling
and produce the DDI electric field. This field is denoted as the
DDI-QE field (EQE

DDI). Similarly, the probe field also induces
an electric dipole in each QD in the ensemble. Hence, QDs
interact with each other via DDI and produce the DDI field
which is denoted as the DDI-QD field (EQD

DDI). Both DDI fields
are calculated using the DDI theory of Refs. [26–28].

When the probe field EP falls on a QE, it induces a po-
larization PQE, which in turn produces a dipole electric field

FIG. 2. A schematic diagram of a three-level QD is plotted.
Energy levels are denoted as |1〉, |2〉, and |3〉. The probe field and
DDI-QD field are applied in the transition |1〉 ↔ |2〉. The DDI-QE
field is acting in the transitions |2〉 ↔ |3〉.
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EQE. The expression of the electric field is derived in Ref. [26]
and it is written as

EQE = PQE

4π∈br3
s

, (12)

where the expression for PQE is found as

PQE = 4π∈bR3
QEglζQEEP, ζQE = ∈q − ∈c

∈q + 2∈c
, (13)

where the constant gl is called the polarization parameter
and it has values gl = 2 and −1 for PQE ‖ EP and PQE⊥EP

[27,28]. The expression of εc is given by Eq. (2). The constant
RQE is the radius of the QE and rs is the distance between the
center of the QD and the QE.

In the rest of the paper, we have taken PQE ‖ EP. This
means that we will take gl = +2 in our numerical calcula-
tions. Note that we have not used the vector notation for the
PQE and EP in Eq. (13). The reason is that PQE and EP are
either parallel or perpendicular to each other. The polarization
gl controls the direction between PQE and EP. The gl notation
has been used widely in plasmonic research [13–19].

The DDI electric field due to the ensemble of QEs is
calculated in Ref. [26] and found as follows:

EQE
DDI = λd

3

PQE

4π∈br3
s

. (14)

The constant λd is called the DDI constant. Putting the
expression of PQE from Eq. (13) into the above Eq. (14) we
get

EQE
DDI = �

QE
DDIEP, �

QE
DDI = λd R3

QEgl

3r3
s

( ∈QE − ∈c

∈QE + 2∈c

)
, (15)

where �
QE
DDI is called the DDI-QE coupling constant.

Similarly, we can calculate the DDI electric field produced
by QDs as follows:

EQD
DDI = �

QD
DDIEP, �

QD
DDI = λd R3

QDgl

3r3
s

( ∈QD − ∈c

∈QD + 2∈c

)
, (16)

where RQD is the radius of the QD. Here �
QD
DDI is called the

DDI-QD coupling constant.
Now, we calculate the exciton decay linewidths (rates). We

consider that the probe electric field EP with energy εnm,z is
acting between transition |1〉 ↔ |2〉. The PL emission occurs
when an exciton falls from the excited state |2〉 to the ground
state |1〉. Next, we consider the DDI-QD field EQD

DDI is also
acting between transition |2〉 ↔ |1〉. We apply the DDI-QE
field EQE

DDI between transition |2〉 ↔ |3〉. See the schematic
diagram of the QD in Fig. 2.

We calculate two exciton spontaneous decay linewidths.
The first is due to the spontaneous decay of the exciton from
the excited state |2〉 to the ground state |1〉 and it is called
the SP linewidth (�SP). The exciton coupling with the probe
and DDI-QD fields is responsible for this decay linewidth. On
the other hand, the second linewidth is due to the spontaneous
decay of the exciton from the excited state |2〉 to the ground
state |3〉. This decay linewidth is due to the exciton coupling
with the DDI-QE field and it is called the DDI-QE linewidth

(�QE
DDI). The exciton interaction Hamiltonian is written as

H = H0 + HSP + HQE
DDI, (17)

where

H0 =
∑
i=1,3

ε2iσ2i +
∑
nm

∑
kz

εnm,kz p†
nm,kz

pnm,kz
, (18)

HSP =
∑
nm

∑
kz

VSP

(
pnm,kz

σ
†
21 + p†

nm,kz
σ21

)
, (19)

HQE
DDI =

∑
nm

∑
kz

V QE
DDI

(
pnm,kz

σ
†
23 + p†

nm,kz
σ23

)
, (20)

where the operators p†
nm,kz

and pnm,kz
are the photon creation

and annihilation operators, respectively. Here σ2i = |2〉〈i| is
the exciton creation operator for transition |2〉 ↔ |i〉 where
i = 1, 3. Other physical coupling parameters are found as

VSP
(
εnm,kz

) = i

(
μ2

21εnm,kz

2∈0∈bVQD

)1/2(
1 + �

QD
DDI

)1/2
, (21)

V QE
DDI

(
εnm,kz

) = i

(
μ2

23εnm,kz

2∈0∈bVQD

)1/2(



QE
DDI

)1/2
, (22)

where VQD is the volume of the QD. Here H0 is the nonin-
teracting Hamiltonian of the QD and the bound photons in
the nanofiber. The second term HSP is the interaction between
the exciton with the probe and DDI-QD fields. This term is
responsible for the decay of the exciton from |2〉 to |1〉. The
last term HQE

DDI is the interaction between the exciton with the
DDI-QE field and it is responsible for the decay of the exciton
from |2〉 to |3〉.

The SP linewidth and the DDI-QE linewidth are evaluated
by using Fermi’s “golden rule” method of the quantum-
mechanical perturbation theory. It is written as follows:

�i j = 2π
∑
nm

∑
kz

|Vint (εk )|2δ(εnm,kz − εi j
)

(23)

where Vint is the interaction coupling term given in Eqs. (21)
and (22). Let us replace the summation over kz by the integra-
tion by using the method of the DOS. It is written as∑

kz

=
∫

Dnm
(
εnm,kz

)
dεnm,kz (24)

where Dnm is the DOS of the bound photons inside the NFH
and is written as

Dnm
(
εnm,kz

) = L

π

(
dkz

dεnm.kz

)
, (25)

where L is the length of the nanofiber. Inserting Eq. (25) into
Eq. (23) we get the expression of the decay linewidth in terms
of the DOS as follows:

�i j = 2π
∑
nm

∫
dεnm,kz Dnm

(
εnm,kz

)∣∣Vint

(
εnm,kz

)∣∣2
δ
(
εnm,kz− εi j

)
.

(26)

Let us evaluate the DOS appearing in Eq. (25). With the
help of Eq. (11), we evaluated the DOS and found the follow-
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ing expression:

Dnm
(
εnm,kz

) = VNF

π2

ε2
nm,kz

h̄3c3

(
Gc

(
εnm,kz

)
Fc

(
εnm,kz

)
[
F 2

c (εnm,kz ) − F 2
c (εnm)

]1/2

)
,

(27)
where

Gc

(
εnm,kz

) = h̄2c2

Aε2
nm,kz

√∈c

. (28)

Here VNF and A are the volume and cross-sectional area of
the nanofiber, respectively. Note that the DOS depends on the
function Fc which in turn depends on the dielectric constant
of the core material. When the εnm,kz is close to εnm, the
denominator in Eq. (27) becomes small and the DOS becomes
large.

Let us calculate the SP linewidth (�SP) using Eq. (26).
Putting Eqs. (27) and (21) into Eq. (23) and doing extensive
mathematical manipulations, we get the linewidth for the ex-
citon from |2〉 to |1〉 as

�SP = γ0

∣∣1 + �
QD
DDI(ε21)

∣∣∑
nm

{
Gc(ε21)Fc(ε21)[

F 2
c (ε21) − F 2

c (εnm)
]1/2

}
,

(29)

where

γ0 =
(

h̄μ2
21ε

3
21

π∈0∈bh̄4c3

)
. (30)

Here γ0 is the spontaneous decay linewidth when the QD is
in the vacuum.

Similarly, we calculate the DDI-QE linewidth (�QE
DDI) for

the exciton decaying from |2〉 to |3〉. Inserting Eqs. (27) and
(22) into Eq. (23) and doing extensive mathematical manipu-
lations, we found an analytical expression of the linewidth as

�
QE
DDI = γ0

∣∣�QE
DDI(ε23)

∣∣∑
nm

{
Gc(ε23)Fc(ε23)[

F 2
c (ε23) − F 2

c (εnm)
]1/2

}
. (31)

It is interesting to note that both linewidths depend on
physical parameters of the nanofiber such as the size and
shape of the nanofiber along with the concentration of QDs
and QEs and their dielectric constants. See the expression of
Fc in Eq. (4).

We found that both SP and DDI-QE linewidths (�SP, �
QE
DDI)

are enhanced when exciton energies ε21 and ε23 lie near the
εnm. This is because the denominators in Eqs. (26) and (28)
become small. We also predicted that the linewidths are also
enhanced due to the DDI-QD and DDI-QE coupling con-
stants.

Furthermore, we also found that the linewidths are
quenched or depressed when exciton energies ε21 and ε23

lie far away from the exciton energy εnm. In this case, the
denominator of Eqs. (29) and (31) becomes large and hence
linewidths become small (quenched). The quenching occurs
when DDI-QE and DDI-QD coupling constants are weak.

IV. PHOTOLUMINESCENT AND
DENSITY-MATRIX METHOD

In this section, we calculate the photoluminescence using
the density-matrix method. The PL emission occurs when an
exciton falls from the excited state |2〉 to the ground state
|1〉. In Fig. 2, two electric fields are acting between these
two states, namely, EP and EQD

DDI. These two fields induce a
polarization PQD in the QD and it is written as

PQD

(
εnm,kz

) = ∈0∈cχQD

(
εnm,kz

)(
EP + EQD

DDI

)
, (32)

where χQD is the susceptibility of the QD.
It is important to note that in Eq. (32), the electric fields

EP and EQD
DDI are parallel to each other (i.e., EQD

DDI ‖ EP ). For
example, see Eq. (15). In this paper, have taken PQD ‖ EP. For
example, see Eq. (6). Therefore, one can easily take out the
vector notation from Eq. (32).

We can express the polarization of the QD in terms of the
quantum density-matrix operator (ρ) as follows [29,30]:

PQD

(
εnm,kz

) = 2μ21ρ21

(
εnm,kz

)
VQD

, (33)

where μ21 is the matrix elements of the dipole moment
between transition |1〉 ↔ |2〉 and ρ21 is the density-matrix
operator (ρ) between transition |1〉 ↔ |2〉.

Note that in Eq. (33), we have not used the vector notation
for the PQE and μ21 since they are parallel to each other. This
notation has been used widely in plasmonic research [13–19].

By comparing Eqs. (32) and (33), we found the relationship
between the susceptibility and the density-matrix element as
follows:

χQD

(
εnm,kz

) = 2μ21ρ21

(
εnm,kz

)
∈0∈cVQD

(
EP + EQD

DDI

) . (34)

The intensity of the photoluminescence from the QD can
be calculated in terms of the susceptibility as follows:

IPL = εnm,kzVQD

2h̄
Im

{∈0χQD
(
εnm,kz

)}∣∣EP + EQD
DDI

∣∣2
, (35)

where EP and EQD
DDI are acting in the transition |1〉 ↔ |2〉.

Substituting Eq. (34) into Eq. (35), we get the expression of
PL in terms of the density matrix as

IPL =
(μ21εnm,kz

2h̄∈c

)
Im

[
ρ21

(
εnm,kz

)] ∣∣EP + EQD
DDI

∣∣. (36)

The photoluminescence depends on the density-matrix ele-
ments ρ21. The PL has two contributions: the first is due to the
emission of probe field photons and the second contribution is
the surface plasmon polariton (SPP) field photons. This means
we found that the PL intensity is enhanced due to the SPP
field.

We have shown in Fig. 2 that the probe field EP and
the DDI-QD field EQD

DDI are acting between transition |2〉 ↔
|1〉. The DDI-QE field EQE

DDI is acting between transition
|2〉 ↔ |3〉. Using the dipole and rotating wave approxi-
mation [29,30], the interaction Hamiltonian is found as
follows:

Hint = �Pσ21 + �P�
QD
DDIσ21 + �P�

QE
DDIσ23 + H.c. (37)
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Here �P = μ21EP is the Rabi energy and H.c. stands for
the Hermitian conjugate. The first term in the Hamiltonian
is the exciton-probe field interaction due to the transitions
|2〉 ↔ |1〉. The second term is the exciton interaction with the
DDI-QD field due to transitions |2〉 ↔ |1〉. The third term is
the exciton interaction with the DDI-QE field due to transi-
tions |2〉 ↔ |3〉.

Now we evaluate an analytical expression of the density-
matrix element ρ21. With the help of Eq. (37), we solve
the density-matrix equations [29,30] in the steady state.
We consider that the electron population of the ground
state |1〉 is larger than the excited states |2〉 and |3〉.
After extensive mathematical manipulations, we find the fol-
lowing analytical expression of the density-matrix element

ρ21:

ρ21 = −i
(
�P + �P�

QD
DDI

)[
δ31 + i

(
�SP + �

QE
DDI

)/
2
]

(δ21 + i�SP)
[
δ31 + i

(
�SP + �

QE
DDI

)/
2
] + (

�P�
QE
DDI

)2 ,

(38)

where δ21 1 is called the probe detuning and is found as

δ21 = εnm.kz − ε21,

δ23 = εnm.kz − ε23,

δ31 = δ21 − δ23. (39)

Finally, we get the analytical expression of the PL by
combining Eqs. (38) and (36) as

IPL = I0Im

(
−i

[
δ31 + i

(
�SP + �

QE
DDI

)/
2
]

(δ21 + i�SP)
[
δ31 + i

(
�SP + �

QE
DDI

)/
2
] + (

�P�
QE
DDI

)2

) ∣∣�P + �P�
QD
DDI

∣∣2
, (40)

where

I0 = ε21�P

2h̄∈c
. (41)

We found that the analytical expression of the PL depends
on the radiative decay linewidths �SP and �

QE
DDI which in turn

depend on the SPP and DDI couplings along with the physical
parameters of the nanofiber.

From the PL expression in Eq. (40), we predict that the
PL is enhanced due to SPP coupling since it appears in the
numerator. We also show that the PL is quenched due to the
DDI-QE coupling which is located in the denominator.

V. RESULTS AND DISCUSSIONS

In this section, we perform numerical simulation for the
SP linewidth, DDI-QE linewidth, and PL intensity. We also
compare our theory of the photoluminescence with experi-
ments of Ref. [12]. In this reference, authors have fabricated
a core-shell nanofiber where the core is fabricated from P4VP
material and the shell is made from PS material. They have
embedded an ensemble of the CdSe QDs and S101 dye
molecules in the core. They measured the photoluminescence
intensity of the CdSe QD by varying the number of dye
molecules.

The experimental physical parameters for the numerical
simulations are taken as follows. The average radius of the
CdSe QDs and S101 molecule is found as RQD = 1.5 nm,rs =
5.3 nm, and RQE = 0.6 nm, respectively [12,23]. The emis-
sion spectrum of CdSe QDs is centered at λ12 = 541 nm
which is converted to energy units as ε21 = 2.3 eV [12]. The
dielectric constant of the core material P4VP is found as εb =
3.8 and the dielectric constant of the shell material PS is taken
as εs = 2.6. Other parameters are taken as εQE = 3.1 [22],
εQD = 5.9 [21], gl = 2, γd = 1, and the radius of nanofiber
is taken as 400 nm.

Let us first calculate the number of bound states located
in the core-shell nanofiber where the core is fabricated from

P4VP and the shell is made from PS. We use Eq. (8) to
calculate the value of kx and ky for a given quantum number
n and m. We have plotted Fx as a function kx in Fig. 3. The
solid, dashed, and dash-dotted curves are plotted for n = 0,
1, and 2, respectively. Note that the solid curve becomes
zero at kx = 1.96 × 106 m−1. This is the quantized value
of kx = kn for n = 0. The dashed and dash-dotted curves
become zero at kx = kn = 5.89 × 106 m−1 and kx = kn =
9.81 × 106 m−1 for n = 1 and 2, respectively. Similarly, we
can also find the quantized values of ky for m = 0, 1, 2.
They are found as ky = km = 1.96 × 106, 5.89 × 106, and
9.81 × 106 m−1 for m = 0, 1, and 2, respectively.

With the help of the quantized value of kn and km along
with Eq. (9), we can calculate the quantized energy εnm as
ε00 = 1.23 eV, ε01 = ε10 = 2.76 eV, and ε11 = 3.7 eV. Here
we have considered the depth of the photonic quantum well is
equal to 2.3 eV which is the exciton energy of the CdSe QD.

FIG. 3. The function Fx appearing in Eq. (8) is plotted as a
function of the wave-vector ratio (kx/k0 ) where k0 = 10−6 m−1. The
solid, dashed, and dash-dotted curves are plotted for n = 0, 1, and
2, respectively. Note that all three curves changes from negative to
positive values. The crossing points are located at kx/k0 = 1.96, 5.89,
and 9.81 for n = 0, 1, and 2, respectively.
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FIG. 4. The theoretical and experiential results for PL intensity
(arb. units) are plotted as a function of wavelength (nm). The crosses,
open diamonds, open circles, and solid circles correspond to the ratio
of S101: CdSe in amounts 1:1, 2:1, 4:1, and 6:1. The dotted, red solid,
green dotted, and blue solid theoretical curves correspond to samples
1:1, 2:1, 4:1, and 6:1 respectively.

According to quantum mechanics, the energy of the bound
photon state must not be larger than the depth of the quantum
well. Hence, from the above calculations, we have only one
bound state, which is ε00 = 1.23 eV.

Now, we compare our theory with experiential results of
Ref. [12]. The theoretical and experiential results for PL in-
tensity are plotted in Fig. 4 as a function of wavelength for the
different ratios of CdSe QDs (nQD) and S101 dye (nQE). The
ratio is denoted as [nQD: nMNP]. The crosses, open diamonds,
open circles, and solid circles correspond to the ratio of S101:
CdSe in amounts 1:1, 2:1, 4:1, 6:1. [nQD: nMNP] of CdSe
QDs and S101 dye samples as [1: 0], [1: 0.1], [1: 0.3], and
[1: 0.5], respectively. The theoretical PL curves are over-
laid on top of the experimental data. The dotted, dashed,
dash-dotted, and solid theoretical curves correspond to the
concentration ratio [nQD: nQE] as [1: 0], [1: 0.1], [1: 0.3], and
[1: 0.5], respectively. The curve [1: 0] is for CdSe QDs alone.

Note that a good agreement between our theory and exper-
iment is found. We plotted the theoretical curves using the
following parameters: �SP = 0.2, �

QE
DDI = 0.3, �P /γ0 = 0.2,

and the parameter �
QE
DDI varied according to concentration as

0.1, 0.3, 0.6, and 1.1, for the ratios of 1:1, 1:2, 1:4, and 1:6,
respectively. The parameters for the QDs are stated previously
and are the same.

Note that as the concentration of the S101 dye molecules
is increased the one peak of the PL spectrum splits into two
peaks. The physics of splitting can be explained as follows.
In our theory, we have considered that PL emission is due to
the transition |2〉 ↔ |1〉. Therefore, the single peak in the PL
spectrum is due to the transition |2〉 ↔ |1〉. Remember that the
DDI-QE field is due to an ensemble of dye molecules and it
acts between the transition |2〉 ↔ |3〉. When the concentration
of dye molecules increases, the DDI-QE coupling constant
also increases and reaches the strong-coupling limit. There-
fore, when the DDI-QE coupling is in the strong-coupling
limit, two dressed states are created in the system. The transi-
tion |2〉 ↔ |1〉 splits into two dressed states called |2−〉 ↔ |1〉
and |2+〉 ↔ |1〉. Therefore, the PL transition occurs due to
transitions |2−〉 ↔ |1〉 and |2+〉 ↔ |1〉 and the PL spectrum
has two peaks. That is why one peak in the PL spectrum splits
into two peaks.

Next, we perform numerical simulations of the SP
linewidth (�SP), DDI-QE linewidth (�QE

DDI), and PL for a
general NFH. In our calculations, all energies such as Rabi
frequency, exciton frequencies, probe detuning, and decay
linewidth are measured with respect to the decay linewidth
γ0. We have considered that the Rabi frequency is �P /γ0 = 1
and the DDI-QE field energy is in resonance with the exciton
energy ε22 (i.e., δ21 = 0).

We have shown that the PL spectrum depends on the
decay SP linewidths (�SP) and (�QE

DDI). We found that these
decay linewidths play an important role in the splitting of the
PL peak. Let us first study the effect of the bound photon
states εnm on the decay linewidth of �SP. We have plotted
the normalized decay linewidth (�SP/γ0) as a function of the
energy ratio (|ε21/εnm|). The results are plotted in Fig. 5(a).
We have taken L = 400 nm and ε21 = 2.3 eV. The solid,
dashed, and dash-dotted lines correspond to the DDI-QD
coupling �

QD
DDI = 0.1, 0.2, and 0.3, respectively. One can see

that as the energy ratio |ε21/εnm| lies close to |ε21/εnm| = 1,

FIG. 5. (a) The SP linewidth (�SP/γ0) is plotted as a function of the bound energy ratio |ε21/εnm| where εnm is the bound photon state
energy and ε21 is the exciton energy. The solid, dashed, and dash-dotted lines correspond to the DDI-QD coupling �

QD
DDI = 0.1, 0.2, and 0.3,

respectively. (b) The decay linewidth �SP/γ0 is plotted as a function of the bound energy ratio |ε21/εnm| and the DDI-QD coupling (�QD
DDI).
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FIG. 6. (a) The PL (arb. units) is plotted as a function of the probe detuning (δ21/γ0) and the radiative linewidth (�QE
DDI/γ0). (b) The PL is

plotted as a function of the probe detuning (δ21/γ0) and the decay linewidth (�QE
DDI/γ0 ).

there is the enhancement in decay linewidth. On the other
hand, when the energy ratio |ε21/εnm| lies far away from the
|ε21/εnm| = 1, there is the suppression of the decay linewidth.

The enhancement in the spontaneous decay linewidths is
explained as follows. The decay linewidth is inversely propor-
tional to (εnm − ε21) as shown in Eq. (26). When the bound
photon energy εnm lies close to the exciton energy ε21 the de-
nominator becomes small. That is why the decay linewidth is
enhanced when the bound photon energy is close to the exci-
ton energy. Note that the decay linewidth is also enhanced due
to the DDI-QD coupling. This is because that the linewidth is
proportional to the DDI-QD coupling �

QD
DDI [see Eq. (26)].

To make the enhancement of the decay linewidth clearer,
we have also plotted the SP linewidth as a function of
|ε21/εnm|. The decay linewidth (�PS/γ0) is plotted as a func-
tion of the energy ratio (|ε21/εnm|) and the DDI-QD coupling
(�QD

DDI). The results are plotted in Fig. 5(b). Note that the decay
linewidth is enhanced when the bound photon energy is close
to the exciton energy. There is also enhancement due to the
presence of the DDI-QD coupling. The decay linewidth is
depressed when the bound photon energy is far away from
the exciton energy and the DDI-QD coupling is weak. Similar
results are also found for the decay linewidth �

QE
DDI. We con-

clude that the value of the decay linewidth can be controlled
by the properties of the nanofiber and doping of the QDs and
QEs.

Note that in Figs. 5(a) and 5(b), we have plotted the SP
linewidth as a function of |ε21/εnm| rather than |εnm − ε21|.
The reason is that we wanted to plot the SP linewidth for
a general nanofiber. One can also plot the SP linewidth as
a function of |εnm − ε21| and can get similar figures and the
same physics. This is because one can express |εnm − ε21| =
εnm|1 − ε21 / εnm| where εnm is absorbed in the normalization.
One can see that for the first case when |ε21/εnm| = 1 the SP
linewidth has a maximum value. Similarly, in the second case,
when εnm = ε21 the SP linewidth has also a maximum value.
It is noted that in the second case, the |εnm − ε21| axis has a
unit of energy (eV) and the figures are valid for a particular
plasmonic nanofiber. On the other hand, in the first case, the
|ε21/εnm| axis is unitless and the figures are valid for all types
of the plasmonic nanofiber.

Finally, we study the effect of decay linewidths �SP and
�

QE
DDI on the PL spectrum. First, we have studied the effect

of decay linewidths �SP on the PL spectrum in Fig. 6(a).

The PL (arb. units) is plotted as a function of the probe
detuning (δ21/γ0) and the decay linewidth (�QE

DDI/γ0). Note
that �SP changes with the DDI-QD coupling constant which
in turn changes with the distance between the QDs and QEs.
This also changes with the location of bound-state energies
as shown in Fig. 5. The value of the DDI-QE is taken in
the strong-coupling limit (�QE

DDI = 1.5) so that we can get
splitting in the PL spectrum. Other physical parameters are
taken as �

QD
DDI = 0.1 and (�QE

DDI/γ0) = 1. It is interesting to
note that at low values of the decay linewidth (�SP/γ0) the
PL spectrum has two peaks. As the strength of the decay
linewidth increases the two peaks merge into one peak. At
the same time, the intensity of the PL spectrum decreases.
The height of the PL spectrum decreases because the intensity
of the peak is inversely proportional to the decay linewidth
�SP. For example, see Eq. (40). The physics of the merging of
peaks will be explained along with Fig. 6(b).

In Fig. 6(b), we study the effect of the DDI-QE linewidth
�

QE
DDI on the PL spectrum. The PL is plotted as a func-

tion of the probe detuning (δ21/γ0) and the decay linewidth
(�QE

DDI/γ0). Note �
QE
DDI changes with the DDI-QE coupling

constant which in turn changes with the distance between
the QEs and QDs. This also changes with the location of
bound-state energies. The value of the DDI-QE is taken in
the strong-coupling limit (�QE

DDI = 1.5). Other physical pa-
rameters are taken as �

QD
DDI = 0.1 and �SP/γ0 = 1. We found

that when the decay linewidth (�QE
DDI/γ0) is weak, the PL

spectrum has two peaks. As the strength of the decay
linewidth increases the two peaks merge into one peak. In
this case, the intensity of the PL spectrum does not change.
The intensity of the PL spectrum does not change because
the decay linewidth �

QE
DDI appears in both the numerator and

denominator of the PL expression. For example, see Eq. (37).
Hence, they cancel each other and there is no change in the
intensity of the PL spectrum.

The physics of the merging of two peaks into one peak in
Figs. 6(a) and 6(b) can be explained as follows. Two peaks
in the PL spectrum are due to transitions |2−〉 ↔ |1〉 and
|2+〉 ↔ |1〉. We know that the distance between two peaks
is approximately equal to the energy difference between |2+〉
and |21〉, i.e., (ε2+ − ε2− ). The decay linewidths (�SP and
�

QE
DDI) are nothing but the width of the state |2〉. Therefore,

when the linewidth (�SP, �
QE
DDI) of the state |2〉 is almost
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equal to the energy difference (ε2+ − ε2− ), two states marge
to one state, and the splitting disappears. That is why we
get two peaks to merge into one peak. The present theory
can be used to make nanoswitches by using the present pre-
diction of the merging of two-peaks (ON) into one peak
(OFF).

Now, we want to comment on the weak- and strong-
coupling limits between the exciton and the DDI-QE field
interaction. Let us first define the Rabi frequency (energy)
for the DDI-QE field as �

QE
DDI = �P�

QE
DDI. The weak-coupling

limit in the literature is defined as �
QE
DDI < γ0 and on the other

hand the strong-coupling limit is defined as �
QE
DDI > γ0 [29].

The expressions for the density-matrix element (ρ21) and the
PL intensity in Eqs. (38) and (40) are derived for both the
weak- and strong-coupling limits. The expressions for ρ21

and the PL intensity can be obtained in the weak-coupling
limit from Eqs. (38) and (40) by neglecting the �

QE
DDI term

in the denominator. Therefore, in the weak-coupling limit,
the splitting of the PL peak from one peak to two peaks will
disappear. Further, in the derivation of SP linewidth and DDI-
QE linewidth, we have used the quantum perturbation theory
where the exciton coupling with the DDI-QD and DDI-QE
fields is in the weak-coupling limit.

Further, we also comment on the effect of the dissipation
on the SP linewidth, the DDI-QE linewidth, and PL emission.
The effect of dissipation can be included in our theory by
adding a decay linewidth γnm in the photonic quantized energy
εnm as εnm + iγnm. Note that the SP and DDI-QE linewidths
are a function of the DOS. We found that the DOS calcu-
lated in Eq. (27) has a peak at ε21 = εnm. This is because
the number of photons occupying localized states is larger
than that of the other energy states. In the presence of the
dissipation (γnm), the heights of the DOS peaks will decrease.
This in turn will decrease the values of the SP and DDI-QE
linewidths. We have also shown that the expression of PL
intensity depends on the SP and DDI-QE linewidths. Hence

the PL intensity will also decrease due to the dissipation in the
nanofiber.

VI. SUMMARY

The effect of the spontaneous emission on the photolumi-
nescence for the photonic nanofiber doped with an ensemble
of quantum dots and quantum emitters has been studied. The
bound photonic states of the nanofiber are calculated using
the transfer-matrix method. We considered that the excited
excitons decay spontaneously due to the exciton and the DDI
field interaction. Analytical expressions of spontaneous de-
cay linewidths are calculated using the quantum-mechanical
perturbation theory. It is found that the decay linewidth is
enhanced when the bound photon energy is close to the
excited exciton energy. There is also an enhancement in
the decay linewidth due to the DDI coupling. An analyti-
cal expression of the photoluminescence is found using the
density-matrix method in the presence of the DDI coupling.
We have predicted that in the strong DDI coupling the peak
in the photoluminescence spectrum splits into two peaks. The
splitting is due to the creation of the two dressed states. We
have shown that when the bound photon energy is close to
the exciton energy, two peaks merge into one peak. This is
because the spontaneous linewidth is in the same order mag-
nitude as the energy difference between the two dressed states.
We also compared our theory with experiments of a nanofiber
made of the poly-4-vinylpyridine core and polystyrene cell.
The nanofiber is embedded with an ensemble of the CdSe QDs
and S101 dye molecules. A good agreement between theory
and experiments is found.
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