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Nonexponential decay of a collective excitation in an atomic ensemble coupled to
a one-dimensional waveguide
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We study the dynamics of a single excitation coherently shared among an ensemble of atoms and coupled
to a one-dimensional wave guide. The coupling between the matter and the light field gives rise to collective
phenomena such as superradiant states with an enhanced initial decay rate, but also to the coherent exchange
of the excitation between the atoms. We find that the competition between the two phenomena provides a
characteristic dynamics for the decay of the excitations, and remarkably exhibits an algebraic behavior, instead
of the expected standard exponential one, for a large number of atoms. The analysis is first performed for a
chiral waveguide, where the problem can be solved analytically. Remarkably, we demonstrate that a bidirectional
waveguide exhibits the same behavior for large number of atoms and, therefore, it is possible to experimentally
access characteristic properties of a chiral waveguide also within a bidirectional waveguide.
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I. INTRODUCTION

Coupling light to an ensemble of emitters is one of the
paradigmatic models in quantum optics and gives rise to
interesting collective and cooperative effects [1]. The most
prominent example is superradiance [2,3], where ensembles
of many excited emitters emit at higher intensities if they are
excited collectively, rather than independently. Superradiance
and other cooperative effects have been observed in a broad
spectrum of physical systems ranging from ensembles of nu-
clei [4] over cold atoms [5–7], ions [8], solid-state systems
[9,10] to more artificial and hybrid light-matter systems like
superconducting qubits [11,12] or atoms coupled to nanopho-
tonic structures [13]. Intimately connected to the appearance
of superradiant properties of an ensemble is the existence of
subradiant states with a strongly quenched emission. These
subradiant states find potential applications, for example, in
photon storage [14] or quantum computing [15]. However,
interesting phenomena appear even in very weakly excited
systems with only a single excitation coherently shared among
all emitters [16–22]. Due to the collective light-matter cou-
pling, for example, the emission rate from the sample is still
enhanced compared to an independent emission and scales
linearly with the number of emitters. Here, we study the
emission dynamics of a single coherent excitation in a su-
perradiant state from an ensemble of emitters coupled to a
one-dimensional waveguide.

The influence of collective effects is twofold. On one hand,
the coupling of the ensemble to an external light field is
collectively enhanced which can be used to strongly couple a
propagating light pulse to an ensemble of many atoms in order
to drive Rabi oscillations with only a few photons [23]. This
collective coupling also leads to a strongly enhanced emission

rate and the emission becomes highly directional [16,24,25].
On the other hand, coherent interactions mediated by the ex-
change of virtual photons between the emitters were shown to
give rise to a collective Lamb shift [19,26], universal internal
dynamics of the ensemble [27], but also strongly influence
the decay dynamics of single-photon superradiance in three
dimensions [18,20,28]. Moreover, coherent interactions can
be used to create quantum antennas [29], cavities built from
only two atoms [30], or mirrors built from a single layer of
atoms [31–33]. Recently, the efficient coupling of atoms to
nanophotonic structures in low dimensions [34] has enabled
the study of almost perfectly one-dimensional systems that
show infinite-range interactions [35] but also exotic chiral,
coherent light-matter interactions which depend on the polar-
ization of the incoming light [36]. Such waveguides have a
high potential to generate nonclassical states of light [37–39].

In this paper, we consider an ensemble of two-level atoms
coupled to a one-dimensional waveguide, and study the emis-
sion dynamics of a single excitation coherently shared by all
emitters. The approach is based on the master equation for
the atoms describing the coherent interaction by the exchange
of virtual photons as well as the collectively enhanced emis-
sion of photons into the waveguide; the master equation is
rigorously derived by integrating out the electric field. Within
this approach, we can distinguish between a chiral waveguide,
where atoms only couple to photons propagating in forward
direction as well as a normal waveguide, where forward and
backward propagating photons are treated equally. The main
difference between the two cases appears in the coherent
exchange interaction. We derive an analytic solution to the
master equation describing the dynamics of the collective
single excited state in the chiral waveguide, and find that the
probability of having an atomic excitation decays with an

2469-9926/2020/102(6)/063703(15) 063703-1 ©2020 American Physical Society

https://orcid.org/0000-0002-6940-5458
https://orcid.org/0000-0002-6366-1047
https://orcid.org/0000-0001-5993-9758
https://orcid.org/0000-0003-0309-9715
https://orcid.org/0000-0002-7233-6828
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.063703&domain=pdf&date_stamp=2020-12-03
https://doi.org/10.1103/PhysRevA.102.063703


JAN KUMLIN et al. PHYSICAL REVIEW A 102, 063703 (2020)

algebraic power law instead of the conventional exponential
decay. This behavior is explained by the coherent interactions,
which couple the collective bright state to the manifold of dark
states; similar phenomena have been predicted recently for nu-
merical and approximate approaches in three dimensions [25].
Remarkably, we demonstrate that this characteristic algebraic
behavior remains present even for the bidirectional waveguide
in the limit of large particle number and extended sample size.
This observation suggests that some characteristic properties
of chiral waveguides are also accessible experimentally in
bidirectional waveguides.

This paper is organized as follows: We start with a gen-
eral discussion of the coherent exchange interaction and the
collective decay and their relation to the photonic propagator
in Sec. II. We put particular emphasis on one-dimensional
waveguides with both chiral and bidirectional coupling and
discuss their fundamental difference. In order to illustrate the
effect of the coherent exchange on the decay dynamics and
understand the underlying process, we examine the simple
case of only two atoms coupled to the waveguide in Sec. III.
Finally, we generalize the model to an arbitrary number of
particles in Sec. IV where an analytical result for the decay of
a collective excitation is presented and discussed in view of
the understanding gained in the previous section. In addition,
we discuss the influence of backscattering in large and small
samples.

II. MODEL AND RESULTS

A. General approach for the master equation

We consider a system of N noninteracting two-level atoms
at positions r j , where each atom has a ground state |g〉 and an
excited state |e〉, separated by the transition frequency ω0 =
ck. The coupling between the atoms and the electromagnetic
field is described within the rotating frame and applying the
rotating-wave approximation. The Hamiltonian then takes the
form

H = H0 − h̄
√

γ

N∑
j=1

[E−(r j )σ
+
j + E+(r j )σ

−
j ]. (1)

The first term, H0, accounts for the free part of the electromag-
netic field and includes the effect of geometric confinement,
while the second term accounts for the coupling between the
photons and the atoms with strength

√
γ . Here, σ+

j = |e〉〈g| j

and σ−
j = |g〉〈e| j are the raising and lowering operators for

the atomic transition, while E− (E+) denotes the positive
(negative) frequency component of the electromagnetic field
operator; note that the scalar product of the polarization with
the dipole transition moment is included in the definition of
E±.

At any time t , the electric field at position r is determined
by the radiation field from the spontaneous emission of the
atoms and the free field, which account for the quantized field
of the incoming photons, [26,30,36,40–43]

E−(r, t ) = E−
free(r, t ) + √

γ

N∑
j=1

G(r, r j, ω0)σ−
j (t ). (2)

Here, G(r, r j, ω0) is the propagator for the photon field. The
precise form of the propagator is determined by H0 and de-
pends on the dimension and geometry of the problem at hand.
Note that in Eq. (2), the propagator is local in time. This form
is valid if the dispersion relation is well described by a linear
behavior around the resonance frequency of the transition for
all relevant modes. In addition, retardation effects due to the
propagation of photons are neglected. These approximations
are usually well satisfied in quantum optical experiments with
(cold) atoms and will be discussed in more detail in the
next section. With the expression for the quantized electric
field, Eq. (2), it is then straightforward to derive the master
equation describing the atoms alone. Such a derivation has
been performed in the past for the general three-dimensional
setup [26] as well as recently for one-dimensional chiral and
nonchiral waveguides [30,36,40–43].

Introducing the reduced density matrix ρ describing the
atoms alone, the master equation takes the form [26] (see also
Appendix A 1 for a more detailed derivation)

∂tρ(t ) = − i

h̄

⎡
⎣h̄
∑

j,l

J jlσ
+
j σ−

l , ρ(t )

⎤
⎦

+
∑

j,l

� jl

(
σ−

l ρ(t )σ+
j − 1

2
{σ+

j σ−
l , ρ(t )}

)
, (3)

Here, the first term describes the coherent interaction induced
by the exchange of virtual photons, while the last term ac-
counts for the spontaneous emission. The interaction strengths
and decay rates are related to the propagator via

Jjl = −γ
G∗(rl , r j, ω0) + G(r j, rl , ω0)

2
, (4)

� jl = iγ [G∗(rl , r j, ω0) − G(r j, rl , ω0)]. (5)

The term Jj j accounts for a Lamb shift and is usually
dropped as the Lamb shift is already included in the resonance
frequency of a single emitter. In turn, � j j describes the single-
emitter decay rate. Note that the above expressions are general
and do not assume any symmetry of G itself. This becomes
crucial when we consider a one-dimensional chiral waveguide
in which the propagator is not symmetric under exchange of
two atoms.

B. One-dimensional waveguide

For the remainder of this paper, we focus on one-
dimensional waveguides (see Fig. 1). In particular, we are
interested in chiral waveguides, where the atoms are only
coupled to forward-propagating modes, and bidirectional
waveguides, where the atoms couple to both forward- and
backward-propagating modes. In addition, our focus is on
optical setups with transition frequencies ω0 on the or-
der of a few hundred THz and coupling constants γ in
the MHz regime. Since these timescales are well sepa-
rated, the rotating-wave approximation performed in (1) is
justified.

In the following, we outline the derivation of the propaga-
tor of the photon field for a one-dimensional waveguide while
more details can be found in Appendix A 2. First, we focus on
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(a)

(b)

FIG. 1. (a) Two-level atoms coupled to a one-dimensional
waveguide. The waveguide supports (in general) left- and right-
propagating modes and the atoms can emit (absorb) photons into
(from) both modes. (b) Effective system after the elimination of
the waveguide photons. The atoms interact via an (infinite-ranged)
exchange interaction Jjl and have a correlated decay � jl .

the chiral waveguide, where the Hamiltonian for the photons
in the rotating frame of the atoms takes the form

H0 =
∫ k+qc

k−qc

dq

2π
h̄ωqa†

qaq. (6)

Here, ωq = cq − ω0 denotes the dispersion relation for the
photons, which is assumed to be linear around the resonance
frequency ω0 of the atoms. The bosonic operator a†

q (aq)
describes the creation (annihilation) of a photon with mo-
mentum q. We have introduced a cutoff parameter qc, which
accounts for the momentum regime, where the description
of the dispersion relation by a linear spectrum is valid. In
the experimentally relevant regime with Nγ � cqc � ck, the
cutoff can be removed in the derivation of the master equa-
tion (see below). Then, the electric field operator is given
by

E−(x) = i
√

c
∫ k+qc

k−qc

dq

2π
aqeiqx. (7)

This allows us now to derive the propagator of the photon
field in Eq. (2) for the chiral waveguide. We start with the
time evolution of the electric field operator, which is obtained
by formally integrating the Heisenberg equation of motion
ih̄∂t aq = [aq, H]:

aq(t ) = e−iωqt aq(0) + √
γ c
∑

j

∫ t

0
ds e−iqx j e−iωq (t−s)σ−

j (s).

(8)

Plugging this expression into Eq. (7) leads to the input-output
relation

E−(x, t ) = E−
free(x, t ) + i

√
γ
∑

j

∫ t

0
ds

×
∫ ω0+ωc

ω0−ωc

dω

2π
ei ω

c (x−x j )e−i(ω−ω0 )(t−s)σ−
j (s). (9)

The first term in this expression corresponds to the noninter-
acting part of the electric field, while the latter one describes
the interaction with the emitters. Note that we converted the
integral over momentum q into an integral over frequency ω

and that ωc = cqc is a cutoff frequency.
In order to derive the propagator of the photon field (2), we

perform the narrow-bandwidth approximation assuming that
the atomic operators σ−

j vary only slowly on a timescale given
by Nγ and that Nγ � ωc � ω0. The frequency integration
can then be replaced by a δ function at the retarded time t −
(x − x j )/c as long as x � x j such that the electric field takes
the form

E−(x, t ) = E−
free(x, t )

+ i
√

γ
∑

j

θ (x − x j )e
ik(x−x j )σ−

j

(
t − x − x j

c

)
,

(10)

where θ (x) is the Heaviside function with θ (0) = 1
2 and k =

ω0/c.
For typical quantum optical systems as discussed above,

we have Nγ � c/|x − x j |, which allows us to neglect the in-
fluence of retardation within the waveguide, i.e., the timescale
for the propagation of a photon through the waveguide is
short compared to the characteristic dynamics. For a realistic
system with coupling strengths on the order of a few MHz and
atom number of a few thousand to 10 000 atoms, this leads
to an maximum width of the sample on the order of a few
centimeters to millimeters depending on the precise number of
atoms and coupling strengths. This is well beyond the length
scales of micrometers of those systems of interest. Then,
we can approximate σ−

j [t − (x − x j )/c] ≈ σ−
j (t ). Compari-

son with (2) leads to the propagator for a one-dimensional
chiral waveguide, which reads as

Gchiral (x j, xl ) = ieik(x j−xl )θ (x j − xl ). (11)

This propagator is not symmetric under particle exchange, that
is Gchiral (x j, xl ) �= Gchiral (xl , x j ). The coherent exchange terms
and decay rates read as

Jjl = γ

2i
sgn(x j − xl )e

ik(x j−xl ), (12)

� jl = γ eik(x j−xl ), (13)

where the single-atom decay rate is � j j = γ .
If we turn to a bidirectional waveguide, where the atoms

are coupled to modes with positive and negative momenta,
we can perform a similar calculation using the same approx-
imations. This results in the propagator for the bidirectional
waveguide given by

G(x j, xl ) = ieik|x j−xl |, (14)
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which exhibits the symmetry G(x) = G(−x). The correspond-
ing coherent exchange terms and decay rates read as

Jjl = γ sin(k|x j − xl |), (15)

� jl = 2γ cos(k|x j − xl |), (16)

with the single-atom decay rate � j j = 2γ . Note that the
single-atom decay rate is twice as large for the bidirectional
waveguide, as the photon can be emitted into the forward- and
the backward-propagating modes.

III. TWO-ATOM SOLUTION

As an illustrative example that already contains the impor-
tant physics, we review the case of only two atoms, which
has also been studied extensively in previous works [44,45].
Consider the generic master equation for a system of only two
identical atoms at positions x1 and x2 given by

∂tρ = −i[J12σ
+
1 σ−

2 + J∗
12σ

+
2 σ−

1 , ρ]

+ �
[
D[σ−

1 ]ρ + D[σ−
2 ]ρ

+ F12
(
σ−

2 ρσ+
1 − 1

2 {σ+
1 σ−

2 , ρ})
+ F ∗

12

(
σ−

1 ρσ+
2 − 1

2 {σ+
2 σ−

1 , ρ})], (17)

where J12 ∈ C is the coherent coupling between the atoms,
D[σ−]ρ = σ−ρσ+ − 1/2{σ+σ−, ρ} is the Lindblad dissipa-
tor, and � is the single-atom emission rate into the waveguide.
In a chiral waveguide there is only a coupling to the forward-
propagating modes and the single-atom emission rate is � =
γ , whereas for a bidirectional waveguide, the atom can emit
into forward- and backward-propagating modes and the emis-
sion rate is � = 2γ [see Fig. 2(a)].

The dimensionless factor F12 ∈ C is a measure for the
correlated decay of both atoms in terms of �. If F12 = 0, the
atoms decay independently of each other with the single-atom
decay rate �. If F12 is different from zero, the decay rates
are modified in general and in the single-excitation subspace,
there is one superradiant state which decays faster than �

and one subradiant state which decays slower than �. The
superradiant and subradiant states read as

|±〉 = 1√
2

(σ+
1 ± e−iφσ+

2 )|G〉 ≡ 1√
2

S†
±|G〉, (18)

where φ = arg(F12) and |G〉 is the ground state of the atomic
system, where all atoms are in their respective ground state.
The corresponding decay rates are �± = �(1 ± |F12|). Note
that the decay rates depend on the distance between the emit-
ters. While the superradiant and subradiant states provide
an elegant way to describe the decay dynamics of a single
excitation, for actual experiments another type of state is
of importance. Assume that in a one-dimensional setup the
system is excited by means of a plane wave eikx. In the single-
excitation sector the light field couples to the so-called bright
state

|W 〉 = 1√
2

(σ+
1 + e−ik(x1−x2 )σ+

2 )|G〉 ≡ 1√
2

S†
W |G〉. (19)

FIG. 2. Setup for two atoms coupled by a one-dimensional
waveguide. (a) In a chiral setup (left) the atom can only emit into
the forward-propagating mode with rate γ , while in the bidirectional
setup (right) the atoms can emit into forward- and backward-
propagating modes with rate γ for each mode. (b) For a chiral
waveguide, the subradiant and superradiant states correspond to the
bright and dark states, respectively. The bright and dark states are
coupled and the bright state decays with a collectively enhanced de-
cay rate �+ = 2� and the single-atom emission rate � = γ . Initially,
the system is prepared in the bright state. (c) In the bidirectional case,
when the atoms are on average very close to each other compared
to the wavelength, there is no coupling and the bright (dark) state
corresponds to the superradiant (subradiant) state. A system that
is initially prepared in the bright state decays with the collectively
enhanced decay rate 2�, where the single-atom decay rate is � = 2γ .
(d) In the case where the interatomic distance is on average much
greater than the wavelength, the superradiant and subradiant states
are shifted with respect to each other (depending on the distance
between the atoms) and emit with rates �+ and �−, respectively.
Since the bright state is now a superposition of superradiant and
subradiant states, these two states are coupled by the initial condition.

The orthogonal state

|D〉 = 1√
2

(σ+
1 − e−ik(x1−x2 )σ+

2 )|G〉 ≡ 1√
2

S†
D|G〉 (20)

is called the dark state and is decoupled from the incoming
light field. It is important to note that while the bright and dark
states look similar to the superradiant and subradiant states
defined in Eq. (18), they coincide only in very special cases as
we will show in the following.

A. Bidirectional waveguide

First, we focus on the bidirectional waveguide for which
� = 2γ , F12 = cos(k|x1 − x2|), and J12 = �

2 sin(k|x1 − x2|) ∈
R, which can be inferred by comparing Eqs. (15), (16), and
(17). The resulting master equation for this system reads as

∂tρ = −i[J12(S†
+S+ − S†

−S−), ρ]

+ �+D[S+]ρ + �−D[S−]ρ. (21)

Note that the dynamics for the superradiant and subradiant
states completely decouple, and both states are shifted by J12

with respect to each other. This situation is qualitatively simi-
lar to a system of two atoms coupled to the electromagnetic
continuum in free space as the parameters J12 and F12 are
real and depend on the relative distance between the atoms.
The precise form of the coupling parameter and decay rates,
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however, is much more complicated and also depends on the
relative orientation of the two atoms.

The dynamics of the system of two atoms can be calcu-
lated analytically for arbitrary positions of the atoms and by
defining the elements of the density matrix ραβ = 〈α|ρ|β〉.
The populations of the bright state and dark state for a system
initially prepared in the bright state are given by

ρWW (t ) = e−�t

∣∣∣∣cosh

(
�t

2
eik|x1−x2|

)

− cos[k (x1 − x2)] sinh

(
�t

2
eik|x1−x2|

)∣∣∣∣
2

, (22)

ρDD(t ) = e−�t sin2(k|x1 − x2|)
∣∣∣∣sinh

(
�t

2
eik|x1−x2|

)∣∣∣∣
2

. (23)

For short distances, k|x1 − x2| � 1, one can approximate
F12 ≈ 1 and J12 ≈ 0 resulting in �+ = 2� and �− = 0. In
addition, the bright and dark states coincide with the su-
perradiant and subradiant states, respectively [see Fig. 2(c)].
In this scenario, the bright state decays exponentially with
an enhanced decay rate 2� known as single-photon super-
radiance which was already studied by Dicke [2]. The same
holds when we go to the experimentally more relevant case
where the positions of the atoms might fluctuate for different
realizations of the experiment. Assuming that the atoms are
distributed according to a density distribution with charac-
teristic length scale σ , single-photon superradiance is also
present if kσ � 1, that is if the atoms are much closer than
a wavelength. This can be also seen from Eq. (22), which
reduces to ρWW (t ) ≈ e−2�t in these cases.

In the opposite limit, where the extent of the ensemble is
much larger than the wavelength, that is kσ � 1, the behavior
for small times �t � 1 after averaging over the atomic distri-
bution [46] is

ρWW (t ) ≈ 1 − 3
2�t + O((�t )2) ≈ e− 3

2 �t , (24)

ρDD(t ) ≈ 1
8 (�t )2 + O((�t )3). (25)

Thus, the bright state initially does not decay with a col-
lectively enhanced rate 2�, but slightly slower due to the
additional decay channel in the backward direction. The full,
numerical solution for the time evolution of the bright state,
the dark state, and the overall population of the excited
states ρWW + ρDD is shown in Fig. 3 alongside with the time
evolution for the superradiant case. It can be seen that for
longer times �t � 1 the population of the bright state together
with the overall population of the excited states decays much
slower than expected from a superradiant sample due to the
influence of the dipole-dipole interactions.

B. Chiral waveguide

Next, we study a chiral waveguide, where each atom only
couples to the forward-propagating modes of the waveguide
and the emission of each atom is directional with rate � =
γ . The measure of the collective decay is F12 = eik(x1−x2 ) and
carries the phase the photon picks up when propagating from
one atom to the other. The exchange coupling parameter reads
as J12 = �

2i sgn(x1 − x2)eik(x1−x2 ) and is in general complex. As
the correlated decay term, the exchange coupling also carries

2 4 6 8 10
0.0
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0 5 10 15
10�5
10�4
10�3
10�2
10�1

FIG. 3. Time evolution of the population of the bright state
(blue solid line), the dark state (orange dashed line), and the total
population of excited states (green dashed-dotted line) for N = 2
atoms coupled to a bidirectional waveguide in the limit kσ � 1.
The gray dotted line shows an exponential decay with a collectively
enhanced decay rate N� = 2Nγ expected in single-photon superra-
diance which appears for kσ � 1. (Inset) The inset shows the time
evolution on a logarithmic scale. For small times N�t � 1, the decay
can be approximated as 1 − 3

2 N�t ≈ e− 3
2 N�t . For long times N�t �

1, the populations decay much slower compared to an exponential
decay with collectively enhanced decay rate N�. The numerical
calculations were performed for kσ = 1000 and the positions of
the atoms varied according to a Gaussian density distribution with
mean 0 and variance σ 2. The plot shows the average over M = 1000
realizations and convergence with respect to M was checked.

the phase of the photon due to propagation while the sgn term
comes from the chiral coupling.

For the chiral system, the definition of the bright (dark)
state |W 〉 (|D〉) coincides with the definition of the superra-
diant (subradiant) state |+〉 (|−〉) [see also Fig. 2(b)]. As a
matter of fact, neither the precise positions of the atoms nor
their relative distance matter for the physics but only their
ordering with respect to each other. This is due to the cascaded
nature of the system, where the atoms can only emit into
the forward direction, which coincides with the direction of
propagation of the incoming plane wave. This can also be seen
by redefinition of the spin operators to include the propagation
phase, i.e., e−ik(x1−x2 )σ+

2 → σ+
2 . The master equation (17)

for the chiral system expressed in terms of superradiant and
subradiant operators reads as

∂tρ = −i

[
i
�

4
(S†

+S− − S†
−S+), ρ

]
+ �+D[S+]ρ

= −i

[
i
�

4
(S†

W SD − S†
DSW ), ρ

]
+ �+D[SW ]ρ, (26)

where �+ = 2� = 2γ and �− = 0. This means that the su-
perradiant and subradiant states in this case are perfectly
superradiant and subradiant, respectively. In addition, we have
assumed x1 < x2 for simplicity. In contrast to the bidirectional
case, the master equation does not decouple into superradiant
and subradiant states but coherently couples them due to the
chiral coupling (see also Fig. 2). Preparing the system in
the bright state, which is equivalent to the superradiant state,
the bright state can either decay with enhanced rate �+ = 2�
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FIG. 4. Time evolution of the population of the bright state (blue
solid line), the dark state (orange dashed line), and the total pop-
ulation of the excited states (green dashed-dotted line) for N = 2
atoms coupled to a chiral waveguide. The gray dotted line shows
an exponential decay with collectively enhanced decay rate N�.
(Inset) The inset shows a logarithmic plot of the time evolution of the
populations. For N�t � 1, the decay of the bright state population
is slowed down due to the coupling to the dark state.

or couple to the dark (subradiant) state that does not decay at
all. Since the coupling is a coherent process, the system will
decay with �+ in linear order. For later times, the probability
to remain in the bright state will no longer follow an exponen-
tial decay with enhanced decay rate �+ but should first decay
faster due to an additional channel to the dark state with a
subsequent revival due to coupling back from the dark state.
The time evolution for the population of the bright and dark
states of a system initially prepared in the bright state reads as

ρWW (t ) = 1
4 e−�t (�t − 2), (27)

ρDD(t ) = 1
4 e−�t (�t )2 (28)

and is also shown in Fig. 4. As discussed before, for short
times �t � 1, the bright state decays as ρWW (t ) ≈ 1 − 2�t ≈
e−2�t , while it vanishes for �t = 2, will have a revival shortly
after and then decays again. The rapid decrease of the pop-
ulation of the bright state after some initial time must not
be confused with the spontaneous emission of a photon but
rather with the transfer of the excitation into the dark state.
This can also be seen looking at the corresponding population
of the dark state and the probability to find an excitation in
the system, given by ρWW + ρDD. At �t = 2, all populations
that have not yet decayed are transferred to the dark state. For
longer times, the decay is not exponential with a collectively
enhanced decay rate but rather slows down due to the coupling
of the bright, superradiant state to the dark, subradiant one.

IV. N ATOMS COUPLED TO A
ONE-DIMENSIONAL WAVEGUIDE

After having shown that including the coherent exchange
interaction into the dynamics of a two-emitter system can
alter the characteristics of the decay dynamics of a single
collective excitation, we proceed to a more complex situation
where an arbitrary number N of emitters are coupled to a

one-dimensional waveguide. At first glance, it is not obvious
that we can expect similar dynamics as in the case of only
two emitters as we are dealing with many dark states that
are also coupled to each other, leaving the possibility of an
ordinary exponential decay albeit with a modified decay rate.
In the following, we show both numerically and analytically
that this is not the case but instead there are oscillations in the
population of the bright state with an overall algebraic decay.
First, we discuss the case of a chiral coupling, meaning that
the photons emitted from the atoms into the waveguide can
only propagate into one direction, for example, from left to
right. Owing to the chiral coupling, it is possible to derive an
analytical expression for the population of the bright state. In
a second step, we include the emission into the other direction
and show that for an extended sample of atoms, the dynamics
reduces to that of a chiral waveguide.

A. Chiral waveguide

Since for a chiral setup the atoms can only emit into one
direction, say to the right, they form a cascaded open quantum
system [47,48]. The corresponding master equation reads as
[36,41,49]

∂tρ = − i

h̄

⎡
⎣ h̄γ

2i

∑
j,l

sgn(x j − xl )e
ik(x j−xl )σ+

j σ−
l , ρ

⎤
⎦

+ γ
∑

j,l

eik(x j−xl )

(
σ−

l ρσ+
j − 1

2
{σ+

j σ−
l , ρ}

)
, (29)

where sgn(x − y) = ∓1 if x ≶ y and sgn(x − y) = 0 if x = y.
Again, the specific positions xi of the atoms do not influ-

ence the dynamics as the phase factors could be absorbed into
the definition of the operators σ±

i .
Since we are only interested in the dynamics of a single

excitation, the time evolution of the system is well described
by the effective non-Hermitian Hamiltonian

Heff = h̄γ

2i

∑
j,l

[sgn(x j − xl ) + 1]eik(x j−xl )σ+
j σ−

l (30)

which includes both the coherent exchange coupling and the
collective chiral decay. This description is possible since we
do not have any external driving and do not assume initial
coherences between the single-excitation subspace and the
ground state. In what follows, we focus on the modification
of the collectively enhanced decay of the state

|W 〉 = 1√
N

∑
j

eikx j σ+
j |G〉 (31)

due to the chiral coupling, we consider the quantity

PW (t ) = |〈W |e−iHefft/h̄|W 〉|2, (32)

which is identical to the population of the state |W 〉. The time
evolution of the |W 〉 state can be calculated analytically for
the chiral case and the solution reads as (see Appendix B for
more details)

PW (t ) = 1

N2
e−γ t

[
L(1)

N−1(γ t )
]2

, (33)
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FIG. 5. Decay dynamics of a single collective excitation of a sys-
tem of N atoms coupled to a chiral waveguide in the limit N → ∞.
The collective excitation initially decays exponentially with decay
rate κ while for long times the decay is algebraic with (κt )−3/2 which
is shown in the inset. The dashed line shows the long-time behavior.
Note that the dynamics looks qualitatively the same for finite N and
N � 1.

where L(n)
m (x) is the generalized Laguerre polynomial. The

decay dynamics of the state |W 〉 are shown in Fig. 5.
For short times γ t � 1, one expects the coherent exchange

to play no role such that the decay is completely determined
by the collective decay given by Nγ . Indeed, for short times
Nγ t � 1, we find

PW (t � 1/Nγ ) ≈ 1 − Nγ t + O((Nγ t )2) ≈ e−Nγ t . (34)

Equation (33) can be further simplified in the asymptotic limit
N → ∞, and we obtain

PW (t ) = [J1(2
√

κt )]2

κt
, (35)

where Jn(x) is the Bessel function of the first kind and κ =
Nγ with κ fixed for N → ∞. In the limit N → ∞, the initial
decay for short times is given by κ , while for long times κt �
1, we find a characteristic algebraic behavior

PW (κt � 1) = 1

π (κt )3/2
cos2

(
2
√

κt − 3π

4

)
. (36)

Interestingly, there is no exponential decay for long times but
rather an algebraic one with (κt )−3/2. This is also shown in
the inset of Fig. 5. For finite N the algebraic decay is present
on intermediate timescales κt � 1. However, the decay of
individual atoms eventually becomes the dominant contribu-
tion, which happens on timescales κt � N2. This is in stark
contrast to the collectively enhanced exponential decay one
encounters in single-photon superradiance.

The slowing down of the emission from the bright state can
be understood as follows: Also for many atoms, the single-
excitation subspace can be divided into a superradiant state
and subradiant states. The interaction mediated by photon
exchange via the waveguide couples the bright superradiant
state to the other subradiant states. Therefore, these subradiant
states become populated during the time evolution, and the
excitation is less likely to decay if it is “protected” in these

0 20 40 60 80
10�8

10�6

10�4

0.01

1

FIG. 6. The blue (dark gray) line shows the time evolution of
the bright state in the case of a bidirectional coupling and a normal
distribution of the atoms with zero mean and variance σ 2 with kσ =
1000 for N = 100 atoms and averaged over M = 100 realizations.
The gray dashed line shows the corresponding time evolution for the
chiral case for the same number of particles. The light gray curves in
the background show trajectories for single realizations.

subradiant states. This mechanism then provides the slowing
down of the decay dynamics.

We want to point out that in the limit of N → ∞, the
rotating-wave approximation breaks down and neglecting re-
tardation effects is also no longer justified. As a physically
meaningful limit, we require always κ = Nγ � ω0. Typical
experiments with ultracold atoms, for example, involve about
103 to 104 atoms with coupling constant γ in the MHz regime
and optical transition frequencies in the THz regime. The
above condition is thus well satisfied.

Lastly, we note that a similar study with atoms at fixed
positions and slightly asymmetric coupling was performed in
[45].

B. Bidirectional waveguide: Large and small samples

While we have shown above that the dynamics of a
single collective excitation in a one-dimensional chiral waveg-
uide undergoes interesting dynamics, we now turn to the case
where the waveguide is bidirectional but the positions of the
atoms fluctuate with each realization. It turns out that in the
limit where the distribution of the position of the atoms is
smooth compared to the wavelength, one recovers the dynam-
ics of a chiral waveguide. In contrast, the case of an ensemble
that is confined within a wavelength shows single-photon
superradiance with a collectively enhanced exponential decay
of the collective excitation. First, we consider the case where
the atoms are randomly distributed along the waveguide with
a characteristic length scale σ , which is much larger than
the wavelength of the atomic transition, that is kσ � 1. The
time evolution of the bright state for N = 100 atoms can be
determined numerically and is shown in Fig. 6. For concrete-
ness, we use a Gaussian density distribution with width σ

and kσ = 1000, and the result is averaged over 100 realiza-
tions. Interestingly, the dynamics in the bidirectional case are
qualitatively similar to the chiral case after averaging over
the position of the atoms. Even for single realizations of the
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system, the time evolution of the bidirectional case resembles
the dynamics of the chiral system in terms of algebraic decay
and period of the oscillations.

In order to understand this observation, we can go to the
continuum limit for N → ∞, and introduce again the effective
Hamiltonian

Heff = −iγ
∫

dx dy exp(ik|x − y|)�†(x)�(y) (37)

with the field creation and annihilation operators �†(x)
and �(x), respectively. Their commutation relations are
[�(x), �†(y)] = δ(x − y). The time evolution of the state

|ψ (t )〉 = 1√
N

∫
dx ψ (x, t )�†(x)|G〉 (38)

with the initial condition ψ (x, 0) = eikx is then given by the
effective Schrödinger equation

∂tψ (x, t ) = −γ

∫
dy exp(ik|x − y|)ψ (y, t )n(y), (39)

where n(y) is the density distribution of the atoms with a char-
acteristic width σ with

∫
dx n(x) = N . In the limit kσ → ∞

and assuming that the atoms are uniformly distributed in the
interval [0, σ ], this equation can be solved using the Laplace
transform with respect to both t and x. The solution for ψ (x, t )
is given by (for more details, see Appendix C)

ψ (x, t ) = eikxJ0(2
√

κtx/σ ). (40)

The population of the bright state is then given by

PW (t ) =
∣∣∣∣
∫ 1

0
dx J0(2

√
κtx)

∣∣∣∣
2

= [J1(2
√

κt )]2

κt
. (41)

Note that this result is actually independent of the precise
density distribution as long as kσ � 1 and we have only
chosen a uniform distribution to simplify the calculations.
Consequently, in the limit N → ∞ and kσ � 1, the dynamics
of the bright state exactly reduces to the chiral case given by
Eq. (35). The same result has already been found in [28,50],
where the authors studied a similar system in three dimensions
treating the atoms as pointlike emitters and neglecting any
polarization effects by taking only the scalar photon propa-
gator. Further, their decay rate is increased by a factor of 2 as
they consider an initial excitation of forward- and backward-
propagating modes.

The second regime of interest is obtained, if we assume that
the width of the distribution of the positions is much smaller
than the wavelength, i.e., kσ � 1. Then, all atoms are con-
fined within one wavelength. In this limit, also k|x j − xl | � 1
for all j and l . Thus, we might expand the sine and cosine
terms in Eqs. (15) and (16) leading to Jjl ≈ 0 and � jl ≈ 2γ ,
respectively. Clearly, there is no coupling to the dark states
while the bright states decay exponentially with a collectively
enhanced decay rate 2Nγ . The factor of 2 appears because
of the bidirectional coupling to the forward- and backward-
propagating modes. This limit corresponds to the situation
Dicke considered originally where the particles are close to
each other and single-photon superradiance is restored. This
result can also be derived analytically noting that in the limit

kσ � 1, the effective Schrödinger equation (39) reduces to

∂tψ (x, t ) = −κ

∫
dy n(y)ψ (y, t ), (42)

with the same initial condition. As ψ (x, t ) varies only slowly
within the range of σ , the differential equation is solved by
the function ψ (x, t ) = ψ (x, 0)e−κt . Then, the population of
the bright state is given by

PW (t ) =
∣∣∣∣ 1

N

∫
dx n(x)e−κt

∣∣∣∣
2

= e−2κt , (43)

with the collectively enhanced decay rate κ = Nγ .

V. CONCLUSION

In this paper, we have studied the dynamics of a sin-
gle collective excitation of N two-level atoms influenced by
photon-mediated coherent interactions. While one expects a
collectively enhanced spontaneous decay if all the atoms are
close together as predicted by Dicke in his seminal work
[2], we demonstrate within an analytical approach for a one-
dimensional waveguide that the general long-time behavior
is significantly modified due to the coherent exchange of
virtual photons. Especially, for large numbers of particles
this exchange gives rise to a characteristic algebraic behavior
∼1/(κt )3/2. The slowed down decay can be explained by the
additional coupling of the superradiant bright state to sub-
radiant states with different, but slower, decay rates. While
this result is rigorous for a chiral waveguide, we demonstrate
that this behavior also emerges in a bidirectional waveguide
if the atoms are randomly distributed on a length scale larger
than the optical wavelength of the transition. This opens up
the possibility to study the peculiar influence of the virtual
exchange of photons in systems without requiring a strictly
chiral coupling which can be implemented much more eas-
ily. Examples of potential applications include, but are not
limited to, atoms coupled to optical nanofibers or waveguides
[34,51,52], quantum dots coupled to photonic crystal waveg-
uides or nanostructures [53,54], vacancy centers in crystals
[55], superconducting qubits [56–58], and also molecular
chains [59]. Even though we focused our analysis on a purely
one-dimensional system, we expect similar behavior to also
appear in three-dimensional setups in free space where the
atoms are coupled to a single focused light mode. Our ob-
servations are thus relevant for a broad range of systems with
collective excitations as, for example, quantum memories. In
particular, it is of fundamental importance for understand-
ing Rydberg superatoms in free space which have recently
attracted a lot of experimental attention [23], and we expect
that the influence of this coherent exchange interaction is also
relevant for the recent experimental observation of an oscilla-
tory behavior of the decay rate of such Rydberg superatoms
[25,60].
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APPENDIX A: MASTER EQUATION AND PHOTON PROPAGATOR
1. Derivation of the master equation

Here, we give some additional information on how to arrive at Eq. (3) in the main text and will explicitly calculate the
propagator G for the case of a one-dimensional waveguide with both chiral and bidirectional coupling.

The electric field operator at any given point in space and time consists of the incoming field E0(r, t ) and the field due to the
scattering off the emitters (i.e., dipoles). Within the narrow-bandwidth approximation and by neglecting retardation it is

E−(r, t ) = E0(r, t ) + √
γ

N∑
j=1

G(r, r j, ω0)σ−
j (t ), (A1)

where we assume the two-level emitters with transition frequency ω0 to sit at positions r j and the coupling between them and
the light field is

√
γ . We now determine the master equation for the emitter subsystem in terms of the propagator G.

In the dipole and rotating-wave approximations, the interaction between the light field and the emitters is given by

Hint = −h̄
√

γ

N∑
j=1

E+(r j )σ
−
j + σ+

j E−(r j ). (A2)

For an arbitrary operator O that acts only on the subsystem of the emitters, we get the Heisenberg equation of motion

∂t O = i

h̄
[Hint, O] = −i

√
γ

N∑
j=1

E+(r j )[σ
−
j , O] + [σ+

j , O]E−(r j )

= −i
√

γ

N∑
j=1

E+
0 (r j )[σ

−
j , O] + [σ+

j , O]E−
0 (r j ) + iγ

N∑
j,l=1

G∗(r j, rl , ω0)σ+
l [σ−

j , O] + G(r j, rl , ω0)[σ+
j , O]σ−

l .

(A3)

Note that E0 gives the free evolution of the incoming field and does not depend on any emitter operators. It can therefore be
added to H0 as a classical driving field by using the Mollow transformation [61]. Consequently, we will neglect this contribution
in the following.

Using that ∂t 〈O〉 = tr(O∂tρ), we can derive the equation of motion for the reduced density matrix of the emitters by

∂t 〈O(t )〉 = tr(O∂tρ(t ))

= −iγ
N∑

j=1

G∗(r j, rl , ω0)tr(σ+
l [σ−

j , O]ρ(t )) + G(r j, rl , ω0)tr([σ+
j , O]σ−

l ρ(t ))

= −iγ
N∑

j,l=1

G∗(r j, rl , ω0)tr[σ+
l σ−

j Oρ(t ) − σ+
l Oσ−

j ρ(t )] + G(r j, rl , ω0)tr[σ+
j Oσ−

l ρ(t ) − Oσ+
j σ−

l ρ(t )]

= −iγ
N∑

j,l=1

G∗(r j, rl , ω0)tr[O(ρ(t )σ+
l σ−

j − σ−
j ρ(t )σ+

l )] + G(r j, rl , ω0)tr(O[σ−
l ρ(t )σ+

j − σ+
j σ−

l ρ(t )]). (A4)

Since the operator O is arbitrary, we can infer the equation of motion for the density matrix ρ:

∂tρ(t ) = −iγ
N∑

j,l=1

G∗(r j, rl , ω0)[ρ(t )σ+
l σ−

j − σ−
j ρ(t )σ+

l ] + G(r j, rl , ω0)[σ−
l ρ(t )σ+

j − σ+
j σ−

l ρ(t )]

= −iγ
N∑

j,l=1

{
[G(r j, rl , ω0) − G∗(rl , r j, ω0)]σ−

l ρ(t )σ+
j − 1

2
[G(r j, rl , ω0) + G∗(rl , r j, ω0)][σ+

j σ−
l , ρ(t )]

−1

2
[G(r j, rl , ω0) − G∗(rl , r j, ω0)]{σ+

j σ−
l , ρ(t )}

}

= − i

h̄

⎡
⎣h̄

N∑
j,l=1

Jjlσ
+
j σ−

l , ρ

⎤
⎦+

N∑
j,l=1

� jl

(
σ−

l ρ(t )σ+
j − 1

2
{σ+

j σl , ρ(t )}
)

, (A5)
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with the exchange interaction terms and decay rates

Jjl = −γ
G∗(rl , r j, ω0) + G(r j, rl , ω0)

2
, (A6)

� jl = iγ [G∗(rl , r j, ω0) − G(r j, rl , ω0)]. (A7)

2. Photon propagator of a one-dimensional waveguide

a. Chiral waveguide

In order to derive the propagator for the one-dimensional chiral waveguide, we start with the Hamiltonian in the dipole and
rotating-wave approximations and in the rotating frame of the atoms

H = h̄
∫ k+qc

k−qc

dq

2π
ωqa†

qaq − h̄
√

γ

N∑
j=1

E+(x j )σ
−
j + σ+

j E−(x j ), (A8)

where a(†)
q annihilate (create) photons with momentum q having a dispersion relation ωq = cq − ω0, with the resonance

frequency of the atomic transition ω0. Note that we only integrate over the relevant modes of the waveguide, which are centered
around |k| = ω0/c, and, since the waveguide is chiral, we only consider forward-propagating modes with positive momenta. The
last term describes the interaction of the waveguide photons with the emitters with an effective mode coupling

√
γ . The electric

field operator reads as

E−(x) = i
√

c
∫ k+qc

k−qc

dq

2π
aqeiqx. (A9)

The time evolution of the electric field can be calculated using the Heisenberg equation of motion

ȧq(t ) = i

h̄
[H, aq] = −iωqaq(t ) + √

γ c
N∑

j=1

e−iqx j σ−
j (t ). (A10)

This differential equation can be formally solved by integration which leads to

aq(t ) = aq(0)e−iωqt + √
γ c

N∑
j=1

e−iqx j

∫ t

0
ds e−iωq (t−s)σ−

j (s). (A11)

Plugging this expression back into the mode expansion of the electric field, Eq. (A9), gives

E−(x, t ) = i
√

c
∫ k+qc

k−qc

dq

2π
ηqaq(0)e−iωqt+iqx + ic

√
γ

N∑
j=1

∫ k+qc

k−qc

dq

2π
eiq(x−x j )

∫ t

0
ds e−iωq (t−s)σ−

j (s)

= E−
0 (x, t ) + ic

√
γ

N∑
j=1

∫ k+qc

k−qc

dq

2π
eiq(x−x j )

∫ t

0
ds e−iωq (t−s)σ−

j (s), (A12)

where E−
0 describes the noninteracting component of the electric field.

In order to further simplify the expression for the electric field, we change from an integration over the momentum to an
integration over the frequency, where ω = cq and ωc = cqc, such that

ic
√

γ

N∑
j=1

∫ k+qc

k−qc

dq

2π
eiq(x−x j )

∫ t

0
ds e−iωq (t−s)σ−

j (s) = i
√

γ

N∑
j=1

∫ ω0+ωc

ω0−ωc

dω

2π
eiω(x−x j )/c

∫ t

0
ds e−i(ω−ω0 )(t−s)σ−

j (s)

= i
√

γ

N∑
j=1

eiω0(x−x j )/c
∫ t

0
ds

sin[ωc(t − s − (x − x j )/c)]

π [t − s − (x − x j )/c]
σ−

j (s). (A13)

The last expression can be simplified by assuming that the atomic operators σ−
j only slowly vary on a timescale given by Nγ with

Nγ � ωc � ω0. The integral over the time then only contributes significantly when s = t − (x − x j )/c as long as x � x j and we
can approximate the time integral in the last expression in Eq. (A13) as θ (x − x j )σ−

j [t − (x − x j )/c], where θ (x) is the Heaviside

function with θ (x) = 1 if x > 0, θ (x) = 0 if x < 0, and θ (0) = 1
2 . The above approximation is known as narrow-bandwidth

approximation and is closely connected to the Markov approximation [62]. The electric field can then be written as

E−(x, t ) = E−
0 (x, t ) + i

√
γ

N∑
j=1

θ (x − x j )e
ik(x−x j )σ−

j [t − (x − x j )/c]. (A14)
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Note that this expression still includes retardation effects. However, these can be neglected if Nγ � c/|x − x j |, i.e., if the
timescale for the propagation of a photon through the waveguide is much smaller than the timescale on which the atomic
operators evolve. Then, we can approximate σ−

j [t − (x − x j )/c] ≈ σ−
j (t ). Finally, the expression for the electric field reads as

E−(x, t ) = E−
0 (x, t ) + i

√
γ

N∑
j=1

θ (x − x j )e
ik(x−x j )σ−

j (t ) (A15)

and we can identify the propagator as

G(x, x j, ω0) = iθ (x − x j )e
iω0(x−x j )/c. (A16)

b. Bidirectional waveguide

For a bidirectional waveguide, the calculation is very similar to the case discussed above. In contrast to the chiral setup, the
Hamiltonian describing the waveguide photons now reads as

H0 = h̄
∫ k+qc

k−qc

dq

2π
ωqa†

qaq + h̄
∫ −k+qc

−k−qc

dq

2π
ωqa†

qaq (A17)

as we are coupling to both forward- and backward-propagating modes with positive and negative momenta, respectively. The
electric field operator analogously is

E−(x) = i
√

c

(∫ k+qc

k−qc

dq

2π
+
∫ −k+qc

−k−qc

dq

2π

)
eiqxaq. (A18)

Similar to above, we can derive the Heisenberg equation of motion for the photonic operator aq, formally integrate it and
plug it into the expression for the electric field [Eq. (A18)]. Changing from an integration over momenta to an integration over
frequencies, we get for the interaction part

ic
√

γ

N∑
j=1

(∫ k+qc

k−qc

+
∫ −k+qc

−k−qc

)
dq

2π
eiq(x−x j )

∫ t

0
ds e−iωq (t−s)σ−

j (s) = i
√

γ

N∑
j=1

∑
λ=±

∫ ω0+ωc

ω0−ωc

dω

2π
eiλω(x−x j )/c

×
∫ t

0
ds e−i(ω−ω0 )(t−s)σ−

j (s). (A19)

The only difference in the bidirectional case now is that we have in addition to sum over two different modes λ = ±. Along the
same lines as in the chiral case, we get

i
√

γ

N∑
j=1

∑
λ=±

∫ ω0+ωc

ω0−ωc

dω

2π
eiλω(x−x j )/c

∫ t

0
ds e−i(ω−ω0 )(t−s)σ−

j (s) ≈ i
√

γ

N∑
j=1

∑
λ=±

θ (λ(x − x j ))eiλk(x−x j )σ−
j (t ) = i

N∑
j=1

eik|x−x j |σ−
j (t ).

(A20)

Consequently, the propagator for the bidirectional waveguide is

G(x, x j, ω0) = ieiω0|x−x j |/c. (A21)

APPENDIX B: ANALYTICAL SOLUTION FOR PW (t )
FOR N ATOMS

In this Appendix, we present two possible ways to derive
Eq. (33) from the main text. First, we use the method of the
Bethe ansatz used in [63]. As an alternative approach, we
present the derivation using an effective Hamiltonian.

1. Solution using the Bethe ansatz

The decay profile of the bright state [Eq. (33) in the main
text] can be derived from the microscopic theory described
by the Hamiltonian (1) in the main text. This approach gives
an alternative point of view and validates any approximation
(e.g., the Wigner-Weisskopf approximation) in the derivation
of the electrical field propagator [Eq. (2) in the main text].
We assume a linear dispersion relation for the photons. This,

in turn, allows to solve the full Hamiltonian with the Bethe
ansatz, as demonstrated in [63]. The eigenstates with a single
excitation are given by

|λ〉 =
∫

dy√
2π

N∏
j=1

λ − iγ /2 sgn(y − x j )

λ + iγ /2
eiλx

×
(

b†(x) −
√

γ

λ

∑
j

δ(y − x j )σ
+
j

)
|0〉. (B1)

Here, λ may be interpreted as the momentum of the excitation.
We determine the time evolution of the bright state by

decomposing it in the basis of Bethe states. As a first step,
however, we start with the time evolution of a single excited
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atom |ψ j〉 = σ+
j |0〉 and project it onto the excited state |ψl〉:

〈ψl |ψ j (t )〉 =
∫ ∞

−∞
dλ e−iλt 〈ψl |λ〉〈λ|ψ j〉

= −iγ 2L(−1)
l− j (γ t )e−γ t/2. (B2)

The time evolution of the |W 〉 may now be calculated by
summing the individual evolution of each atom in |W 〉 and
projecting back onto the atoms (Patoms):

Patoms|W (t )〉 = Patoms
1√
N

N∑
j=1

U (t )σ j |0〉

= iγ 2

√
N

N∑
j=1

⎡
⎣∑

l� j

L(−1)
l− j (γ t )

⎤
⎦e−γ t/2σ j |0〉

= iγ 2

√
N

N∑
j=1

Lj−1(γ t )e−γ t/2σ j |0〉. (B3)

The result given by Eq. (33) in the main text for the decay of
the |W 〉 state readily follows:

PW (t ) =
[

1

N

N∑
j=1

Lj−1(γ t )

]2

e−γ t (B4)

=
[

1

N
L(1)

N−1(γ t )

]2

e−γ t . (B5)

Analogously, the probability to have any atom excited is the
squared norm of the |W (t )〉 state

〈Patoms(t )〉 = 1

N

N∑
j=1

L2
j−1(γ t )e−γ t

= [LN−1(γ t )LN (γ t ) − L(1)
N−1(γ t )L(−1)

N (γ t )
]
e−γ t .

(B6)

For large N the Laguerre polynomials L(α)
N (x) are well

approximated by Bessel functions

L(α)
N (x) ≈

√
Nα

Jα (2
√

Nx)√
xα

ex/2, (B7)

which are, for large x, approximated by an algebraic decay,
superimposed with a harmonic oscillation

Jα (x) ≈
√

2

πx
cos
(

x − απ

2
− π

4

)
. (B8)

Hence, for many atoms N � 1 and for times γ t > 1 we find
the asymptotic expressions

PW (t ) ≈ 1

π
√

(γ Nt )3
cos2

(
2
√

γ Nt − 3π

4

)
(B9)

and

〈Patoms(t )〉 ≈ 1

π
√

γ Nt
. (B10)

2. Solution using the effective Hamiltonian

In this section, we present the derivation of Eq. (33) from
the main text using the effective (non-Hermitian) Hamiltonian

Heff = h̄γ

2i

∑
j,l

[sgn(x j − xl ) + 1]eik(x j−xl )σ+
j σ−

l . (B11)

Even though the emitter system is described by a master
equation, in the absence of driving and assuming the system is
initially prepared in the bright state |W 〉 = 1√

N

∑
j eikx j σ+

j |G〉,
it is possible to describe the time evolution of |W 〉 with the
effective Hamiltonian above.

In order to simplify the calculations, we absorb all phases
into the operators, that is σ+

j → e−ikx j σ+
j and similarly for

σ−
j . The effective Hamiltonian can then be written as

Heff = h̄γ

2i

∑
j,l

[sgn(x j − xl ) + 1]σ+
j σ−

l . (B12)

Note that this transformation is not useful in the case of a
bidirectional system and reflects the fact that for a chiral
system, only the order of the emitters is important but not their
relative distance. In the following, we will assume that x j < xl

if j < l .
In the basis {| j〉 = σ+

j |G〉, j = 1, . . . , N}, we can repre-
sent the Hamiltonian (B12) as the sum of the N × N identity
matrix I and a nilpotent matrix MN for which (MN )n = 0, n �
N :

Heff = − ih̄γ

2
(I + 2MN ) (B13)

with

MN =

⎛
⎜⎜⎝

0 0 · · · 0
1 0 · · · 0
...

...
. . .

...

1 1 · · · 0

⎞
⎟⎟⎠. (B14)

The time evolution of the bright state is then given by

|ψ (t )〉 = e−iHefft/h̄|W 〉 = e− γ t
2 I

N−1∑
n=0

(−γ t )n

n!
(MN )n|W 〉.

(B15)

The probability to remain in the bright state as a function
of time can be written as

PW (t ) = e−γ t

∣∣∣∣∣
N−1∑
n=0

(−γ t )n

n!
〈W |(MN )n|W 〉

∣∣∣∣∣
2

. (B16)

In the basis given above, |W 〉 is represented by the vector

|W 〉 = 1√
N

⎛
⎝1

...

1

⎞
⎠ (B17)

such that the matrix element 〈W |(MN )n|W 〉 can be calculated
as

〈W |(MN )n|W 〉=
∑

j1< j2<···< jn+1

1

N
= 1

N

N (N − 1) . . . (N − n)

(n + 1)!

= 1

N

(
N

n + 1

)
= 1

N

(
N

N − (n + 1)

)
. (B18)

063703-12



NONEXPONENTIAL DECAY OF A COLLECTIVE … PHYSICAL REVIEW A 102, 063703 (2020)

Finally, the time evolution of the occupation of the bright
state reads as

PW (t ) = |〈W |e−iHefft/h̄|W 〉|2

=
∣∣∣∣∣
N−1∑
n=0

(−γ t )n

n!

1

N

(
N

N − (n + 1)

)∣∣∣∣∣
2

e−γ t

=
(

1

N
L(1)

N−1(γ t )

)2

e−γ t , (B19)

where L(α)
n (x) is the generalized Laguerre polynomial. This

is exactly the same result as obtained using the Bethe ansatz
above.

APPENDIX C: CONTINUUM LIMIT IN THE
BIDIRECTIONAL CASE

Here, we show that the time evolution of the bright state in
the bidirectional waveguide reduces to the time evolution in
the chiral case in the limit where N → ∞ and kσ → ∞. In
contrast to the numerical calculations mentioned in the main
text, we assume the atoms to be uniformly distributed in an
interval [0, σ ] along the waveguide such that the analytical
calculations simplify. The final result, however, does not de-
pend on the details of the distribution as long as kσ � 1.

In the limit N → ∞ and σ finite, we can go over to
the continuum limit by keeping κ = Nγ fixed. The effective
Hamiltonian in this case reads as

H = −iγ
∫

dx dy exp(ik|x − y|)�†(x)�(y) (C1)

with the field creation and annihilation operators �†(x) and
�(x), respectively. They have the commutation relations
[�(x), �†(y)] = δ(x − y). The initial bright state is given by

|W 〉 = 1√
N

∫
dx eikx�†(x)|G〉. (C2)

In order to calculate the time evolution for the state

|ψ (t )〉 = 1√
N

∫
dx ψ (x, t )�†(x)|G〉, (C3)

we have to solve the effective Schrödinger equation

i∂tψ (x, t ) = −i
κ

σ

∫ σ

0
dy exp(ik|x − y|)ψ (y, t ). (C4)

In the following, we rescale all lengths by σ and introduce the
dimensionless quantity q = kσ . Further, we rescale all times
by the collective rate κ . Then, the dimensionless Schrödinger
equation reads as

∂tψ (x, t ) = −
∫ 1

0
dy exp(iq|x − y|)ψ (y, t ) (C5)

with the initial condition ψ (x, 0) = eikx.
In order to solve this differential equation, we first apply a

Laplace transform from the variable t to the variable s:

s ψ̂ (x, s) − ψ (x, 0) = −
∫ 1

0
dy eiq|x−y|ψ̂ (x, s)

= −
∫ x

0
dy eiq(x−y)ψ̂ (x, s)

−
∫ 1

x
dy e−iq(x−y)ψ̂ (x, s)

= −
∫ x

0
dy eiq(x−y)ψ̂ (y, s)

+
∫ x

0
dy e−iq(x−y)ψ̂ (y, s)

−
∫ 1

0
dy e−iq(x−y)ψ̂ (y, s). (C6)

As we want to get rid of fast oscillating terms in the end,
we make the ansatz ψ̂ (x, s) = eiqxφ̂(x, s), where φ̂(x, s) is
assumed to be a slowly varying function of x. It then follows

s φ̂(x, s) − 1 = −
∫ x

0
dy φ̂(y, s) +

∫ x

0
dy e−2iq(x−y)φ̂(y, s)

− e−2iqx
∫ 1

0
dy e2iqyφ̂(y, s). (C7)

The last integral in this expression vanishes in the limit q →
∞ and we can drop it in the following. Next, we apply a
Laplace transform from the variable x to u which leads to

s ˆ̂φ(u, s) − 1

u
= −

ˆ̂φ(u, s)

u
+

ˆ̂φ(u, s)

u + 2iq
, (C8)

where we have made use of the convolution theorem for the
Laplace transform. The integral equation is then reduced to an
algebraic one whose solution reads as

ˆ̂φ(u, s) = u + 2iq

u(u + 2iq)
(
s + 1

u − 1
) . (C9)

Now, we can take the limit q → ∞ and are left with

ˆ̂φ(u, s) ≈ 1

su + 1
. (C10)

The inverse Laplace transform of this expression back to the
variables x and t is given by

φ(x, t ) = J0(2
√

xt ) (C11)

with the Bessel function of the first kind J0(x). Thus, the full
solution for the wave function reads as

ψ (x, t ) = eiqxJ0(2
√

xt ). (C12)

The time evolution of the bright state is thus given by

PW (t ) =
∣∣∣∣
∫ 1

0
dx J0(2

√
xt )

∣∣∣∣
2

=
∣∣∣∣J1(2

√
t )√

t

∣∣∣∣
2

= [J1(2
√

κt )]2

κt
,

(C13)

where J1(x) is the Bessel function of the first kind and we
reintroduced dimensioned variables. This is the same result as
in the chiral case in the limit N → ∞.

The probability of finding an excitation in the system at
time t is given by

P(t ) =
∫ 1

0
dx [J0(2

√
xt )]2 = J0(2

√
κt )2 + J1(2

√
κt )2,

(C14)

where again we have reintroduced dimensioned variables in
the last line.
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[37] S. Mahmoodian, M. Čepulkovskis, S. Das, P. Lodahl, K.
Hammerer, and A. S. Sørensen, Phys. Rev. Lett. 121, 143601
(2018).

[38] B. Olmos, G. Buonaiuto, P. Schneeweiss, and I. Lesanovsky,
Phys. Rev. A 102, 043711 (2020).

[39] O. A. Iversen and T. Pohl, arXiv:2006.03408.
[40] T. Shi, D. E. Chang, and J. I. Cirac, Phys. Rev. A 92, 053834

(2015).
[41] H. Pichler, T. Ramos, A. J. Daley, and P. Zoller, Phys. Rev. A

91, 042116 (2015).
[42] J. Ruostekoski and J. Javanainen, Phys. Rev. Lett. 117, 143602

(2016).
[43] F. Le Kien and A. Rauschenbeutel, Phys. Rev. A 95, 023838

(2017).
[44] P. R. Berman, Phys. Rev. A 101, 013830 (2020).
[45] H. H. Jen, M.-S. Chang, G.-D. Lin, and Y.-C. Chen, Phys. Rev.

A 101, 023830 (2020).
[46] Note that in the limit kσ → ∞, the precise form of the distribu-

tion does not matter for the final result. Different distributions
only give rise to different corrections for finite kσ . A Gaussian
distribution, for example, leads to exponential corrections in
kσ , while a uniform distribution (with width σ ) gives rise to
corrections ∼ 1/(kσ )2.

[47] C. W. Gardiner, Phys. Rev. Lett. 70, 2269 (1993).
[48] H. J. Carmichael, Phys. Rev. Lett. 70, 2273 (1993).
[49] K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D.

Lukin, Phys. Rev. Lett. 105, 220501 (2010).
[50] R. Röhlsberger, Fortschr. Phys. 61, 360 (2013).
[51] J. Petersen, J. Volz, and A. Rauschenbeutel, Science 346, 67

(2014).
[52] J. D. Hood, A. Goban, A. Asenjo-Garcia, M. Lu, S.-P. Yu, D. E.

Chang, and H. J. Kimble, Proc. Natl. Acad. Sci. U. S. A. 113,
10507 (2016).

[53] P. Lodahl, A. Floris van Driel, I. S. Nikolaev, A. Irman, K.
Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature (London)
430, 654 (2004).

[54] P. Lodahl, S. Mahmoodian, and S. Stobbe, Rev. Mod. Phys. 87,
347 (2015).

[55] A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J.
Borregaard, M. K. Bhaskar, C. T. Nguyen, J. L. Pacheco, H. A.
Atikian, C. Meuwly, R. M. Camacho, F. Jelezko, E. Bielejec,
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