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Vector-spherical-harmonics representation of vector complex source beams carrying vortices
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Vectorial solutions of Maxwell’s equations describing highly focused and variously polarized vector complex
source vortex beams are investigated. An analytical representation of these beams in the vector-spherical basis of
electromagnetic multipoles is presented. In particular, three different families of optical vector vortex beams are
studied in detail. Whereas the vortical solutions derived within spherical symmetry can be represented only
by electric (magnetic) multipoles, solutions derived within cylindrical and Cartesian symmetry also exhibit
magnetic (electric) multipole components. We utilize the representation of the studied beams in vector-spherical
harmonics to investigate their interaction with a cluster of nanoparticles.
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I. INTRODUCTION

Nanoparticles are at the focus of active research in
nanosciences. The first description of light interaction with a
particle started with Mie theory [1]. In contrast to plane-wave
illumination, the rising interest in highly focused vectorial
light beams is mainly concerned with their polarization dis-
tribution, which strongly influences the size and shape of
the focal spot of the beam [2,3]. Recent publications [4–7]
investigate interaction between these beams and structures
having subwavelength dimensions. The knowledge of inter-
action results can be applied for a nanointerferometric beam
reconstruction of radially and azimuthally polarized beams
[8], and was even demonstrated on reconstruction of Mobius
strips [9] and multitwist ribbons [10] polarization distribution
beams. These works have clearly demonstrated that the optical
response is strongly dependent on both the particle location
relative to the beam in the focus and the polarization state of
the beam. Results show noticeable difference from the results
retrieved solely from classical Mie theory.

To tackle this problem, the theoretical description of the
tightly focused beams is needed. One can start from exact
analytical solutions of the scalar Helmholtz equation �u(r) +
k2u(r) = 0 (see Refs. [11,12]) using the monochromatic com-
plex source beam (CSB) model, described by the solution of
the equation u(r) [13,14] and extend it towards full vectorial
solutions of Maxwell’s equations [15–18]. This approach can
be adapted to construct highly focused vectorial beams within
spherical, cylindrical, and Cartesian symmetries from scalar
complex source vortices [19], which are a good approxima-
tion [16] both for experimentally realizable beams and their
numerical approximations that use integrals of Richards and
Wolf [20]. We note that optical vortices derived within Carte-
sian symmetry exhibit properties analogous to circularly and
linearly polarized highly focused vortex beams. Vortical CSB

*Sergejus.Orlovas@ftmc.lt

solutions derived within cylindrical and spherical symmetry
have intriguing properties [19].

Optical vortices are spiral phase ramps exp(imφ) around a
point, where the phase of the beam is undetermined (singular)
and its amplitude vanishes as ρ|m| [21,22]. Here, (ρ, φ) are
polar coordinates. The order l = |m| of the phase singularity
(also of the root of the radial dependence of the basis func-
tions) multiplied by its sign α is referred to as the topological
charge m of the vortex. Phase singularities (vortices) can be
generated experimentally by a variety of different techniques
utilizing, for instance, a spiral plate [23], mode converters
[24], phase masks [25], or an axicon [26]. Optical vortices
are widely known for their applications in optical tweezers
[27] and optical spanners [28], which enable the manipulation
of nanoparticles [29], biological cells [30], or bacteria [31].
An addition of a small coherent background splits an initially
multiple charged vortex into |m| single-charged vortices [32].
It was demonstrated that in the near field the superposition
of two coaxial Bessel-Gauss (BG) singular beams creates a
light pattern with complicated vortical structures which due to
diffraction dynamically evolves into rather simple structures
[33,34].

Complexified optical vortices are very common in pho-
tonics and can be found in many of its branches. For
example, as Siegman [11] noticed, Laguerre-Gaussian modes
are complexly displaced. The dependence of field distribution
on propagation distance z has a form z ± iz0, where z0 is
the Rayleigh (diffraction) length z0 = kw2

0/2 of Laguerre-
Gaussian beams [11] and k is the wave vector with w0 being
the beam width.

To simplify the analysis of interaction between the light
field and nano-object, an introduction of vector-spherical har-
monics (VSH), electromagnetic multipoles [12], is required.
When both an object and an incoming beam are properly
described using VSHs, the interaction of nano-object with the
light is theoretically solvable [35–37], therefore, it is prefer-
able to decompose incoming light field into multipoles to ease
the analysis and reduce complexity. Moreover, the multipole
approach also provides an efficient method for calculating the
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field in the focal region of a lens [38] and allows tailoring of
multipolar Mie scattering with helicity and angular momen-
tum [39]. It was also shown that the the interaction of a beam
with larger objects, which are conveniently described by a T
matrix [40], can be readily described with the multipole de-
composition of the incident beam. This approach has enabled
simulation of nonspherically shaped particles [6] or various
clusters of them [41,42]. Most importantly, a flexible control
of the multipoles in the incident beam has enabled selective
excitation of single resonances in particles [36]. Therefore,
for the description of the interaction between an object and
a highly focused structured light, a knowledge of expansion
coefficients is required.

The underlying spherical symmetry of the complex source
beams, which are obtained by a complex displacement in
respect to their propagation axis [13,43], ensures that they can
be easily expanded into nondisplaced scalar multipoles [44]
or can be used as basis functions [45]. This allows analytical
expansion of highly focused radially, azimuthally, and lin-
early polarized beams into vector-spherical harmonics (VSH),
therefore, analytical study of their interaction with a polar-
izer is possible [46]. Those analytical results have enabled
a better understanding of transverse spin in the scattering of
focused radially and azimuthally polarized vector beams [47].
Moreover, the complex displacement of the coordinates [48]
in the VSHs results in an interesting set of eigenfunctions
[49,50], that enables analysis of Fano resonances in photonic
molecules [51] and generation of an optical ball bearing facil-
itated by coupling between handedness of polarization of light
and helicity of its phase [52].

In this paper we will follow the investigation path de-
scribed earlier for scattering analysis of novel vector vortex
beams, which were introduced recently in a CSB description
[19], by three spherical nanometer-sized spheres. We will
analytically decompose the three different families of focused
vector beams in the vector-spherical basis and show scattered
electromagnetic field by subwavelength dimension spheres.

II. EXPANSION OF HIGHLY FOCUSED VECTOR VORTEX
BEAMS INTO VSH

A. Expansion of scalar complex source vortex beams

Scalar CSB solutions are defined as [13]{
Rg u(r)
u(r)

}
=

{
jν (ks)

h(1)
ν (ks)

}
Pμ

ν (cos �) exp (iμφ), (1)

with jν and hν being spherical Bessel functions of the first
and third kind, Pμ

ν is the associated Legendre polynomial,
which we define as in [40], and ν, μ are integer numbers, and
the complex angle � is defined by s(r) sin � = (x2 + y2)1/2.
Here, the first line corresponds to the regular solution (suffix
“Rg”) and the second line to the irregular one. The complex
distance s is defined as s(r) = [x2 + y2 + (z − iz0)2]

1/2
in

Cartesian or as s(r) = [r2 − 2irz0 cos θ − z2
0]1/2 in spherical

coordinates [r = (r, θ, φ)], where z0 = kw2
0/2 is the Rayleigh

length and w0 is the beam width [11]. We note that the
complex distance s(r) leads to the appearance of the Gouy
phase and physically introduces beam to the diffraction via
its dependance on diffraction length z0 [11]. To guarantee

a constant power flow in the forward direction we make
the “beam” choice with a branch cut (Im[s(r)] � 0) [13,16],
where the irregular solution also includes a ring of sources at
x2 + y2 = z2

0 (for a more detailed discussion of the different
solutions, see [16]). We remind here that m is the topological
charge of the Laguerre-Gaussian (LG) vortex, l = |m| is the
magnitude, and α = ±1 is the sign of the topological charge
(or the sign of the phase singularity [22]). The CSB solution
(1) represents a LG vortex only in one particular case, when
μ = m and ν = l (see Ref. [19]). For positive m we can use
Pm

m = (−1)m(2m − 1)!! sinm � in Eq. (1) and obtain{
Rg u(r)

u(r)

}
=U0

{
jl (ks)

h(1)
l (ks)

}(
R sin θ

s

)l

eiαlφ

=U0gl (ks)

(
R sin θ

s

)l

eimφ, (2)

which is an expression for a scalar complex source vortex
(CSV). Here, gl is either a regular (nonsingular) spherical
Bessel function of the first kind jl , or an irregular (singular)
function of the third kind h(1)

l . The normalization constant U0

ensures that the on-axis value of the beam is unity for l = 0
and also makes on-axis expressions easier to handle. Mostly
important, due to the normalization constant U0 the electric
field is measured from now on in dimensionless units. We
define it as

U0 = (−ikz0)l

gl (−ikz0)
. (3)

The expression for negative m can be obtained via P−m
l =

(−1)m(l − m)!/(l + m)!Pm
l .

We start with the expansion of the scalar CSV (1) into
scalar multipoles [12], which are the eigenfunctions of the
scalar wave equation in spherical coordinates and can be
obtained from Eq. (1) by setting the complex displacement
z0 = 0:

uμν (r) = gν (kr)Pμ
ν (cos θ ) exp (iμφ). (4)

The expansion is given by

u(r) =
∞∑

n=l

anumn(r), (5)

where only basis functions with the same azimuthal index m
have to be taken into account and an = 0 if n < l . The expan-
sion coefficients in the source-free region are determined via
the addition theorem for scalar multipoles [53,54]. Here, the
expansion coefficients are

an = U0(−1)m

√
(2m)!(n − m)

(n + m)!

∑
p

(−1)pgp(kz0i)(2p + 1)

×
(

m n p
m −m 0

)(
m n p
0 0 0

)
, (6)

where Wigner-3 j symbols appear twice in the sums and n +
m � p � |n − m| (see [53,54]). Unfortunately, calculation of
the expansion coefficients using Eq. (6) involves a summation
that depends on the increasing number of terms n, therefore, it
is unpractical. We were unable to find in the literature an addi-
tion theorem for spherical Bessel functions for orders higher
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than zero, therefore, we have developed it for our particular
displacement. We will now briefly discuss steps leading to it.

We note that the second Wigner 3 j requires m + n + p
to be an even number, therefore, index p changes by multi-
ples of two. On the other hand, we note that gν (x)/xμ can
be expressed as a similarly behaving sum via the following
recursion:

gν (x)

xμ
= 1

2ν + 1

gν+1(x) + gν−1(x)

xμ−1
,

gν (x)

xμ
= (2ν − 1)gν+2 + 2(2ν + 1)gν + (2ν + 3)gν−2

(2ν − 1)(2ν + 1)(2ν + 3)xμ−2
,

. . .

gν (x)

xμ
=

∑
ν+μ�p�|ν−μ|

bpgp(x), (7)

and the sum ν + μ + p is always an even number as in Eq. (6).
Unfortunately, the derivation is too lengthy to print, so for
the sake of brevity we omit it here. We have identified the
coefficients bp as a combination of gamma functions and
compared them with those from (6). It turns out that expansion
coefficients an can be readily expressed as

an = U0(2n + 1)(2l − 1)!!
gn(ikz0)

(ikz0)l
, m � 0

an = U0(2n + 1)
1

2l l!

(n + l )!

(n − l )!

gn(ikz0)

(ikz0)l
, m � 0 (8)

where double factorial (2l − 1)!! = 2−l (2l )!/l! was intro-
duced and −1!! = 1. To obtain the irregular (regular) solution
we replace function gp by hp ( jp). For the rest of the paper
we mainly consider the regular solution u(r). The irregular
solution will be briefly discussed where necessary. The first
(n = l) expansion coefficient is always a constant number
al = (2l + 1)!! due to the normalization constant U0 [see
Eq. (3)].

B. Expansion of vectorial vortex beams within spherical
symmetry

From the scalar solution u(r) we construct dimensionless
azimuthally U(s)

M and radially U(s)
N polarized vector complex

source beams as in [16,19]

U(s)
M (r) = ∇u(r) × r, U(s)

N (r) = 1

k
∇ × UM (r). (9)

They represent the electric and magnetic fields of a vector
beam with spherical symmetry (see [19]). The so-called “vor-
tex cores” [19] of U(s)

M and U(s)
N reveal a complex structure,

which can be compactly expressed in cylindrical coordinates
(ρ, φ, z) as

U(s)
M = U0ρ

m−1eiαmφeikz[eρziαm

− eφ (mz − ikρ2θ ) − eziαmρ],

U(s)
N = U0

k
ρm−1eiαmφeikz{eρ[m(m + 1) + ikzm + k2ρ2]

+ iαmeφ (m + 1 + ikz) + ezikρ(m + 2)}. (10)

Here, eρ , eφ , ez are unitary direction vectors. We note that the
beam U(s)

N looks similar to the so-called “flower,” discussed

in Ref. [55]. Experimental realization of these CSVs can
be understood looking at the far-field structure, which has a
compact representation in spherical coordinates (eθ and eφ are
spherical unit vectors) [19]

U(s)
M = sinm−1 θeiαmφ[iαmgmeθ − (m cos θgm

− ikz0 sin2 θgm+1)eφ],

U(s)
N = sinm−1 θeiαmφ[(−m cos θgm+1

+ ikz0 sin2 θgm+2)eθ − imαgm+1eφ]. (11)

The family of the orthogonal VSHs Mμν , Nμν , defined in
Ref. [40] are obtained from the scalar spherical multipoles (4)
after applying the same operators as in Eq. (9). Further, the
substitution of the sum (5), which represents a scalar CSV,
into Eq. (9) results in the following expansions of radially
and azimuthally polarized vortex beams into VSHs, which we
write as

U(s)
M =

∞∑
n=l

A(s)
n M̃mn, U(s)

N =
∞∑

n=l

A(s)
n Ñmn, (12)

where M̃mn = γmnMmn and Ñmn = γmnNmn are normalized
VSHs, defined in Ref. [40]. The γmn are the standard nor-
malization constants (see [40]), and the normalized expansion
coefficients thus are A(s)

n = an/γmn. For zero complex dis-
placement z0 = 0, Eqs. (9) reduce to the vector-spherical
harmonics (VSH) Mml and Nml (see [56]). We note here that
complexly displaced VSHs were studied by Moore et al. [49].
However, the spherical nabla and the displacement operators
do not commute, therefore, Eqs. (9) represent a different
family of beams. Indeed, a complex displacement of an elec-
tric (magnetic) multipole in the z direction will result in the
expansion where not only electric (magnetic) but also mag-
netic (electric) multipoles will appear. In contrast to that, we
observe in the expansion (12) that only electric (magnetic)
multipoles are present.

The dependence of the expansion coefficients A(s)
n on the

collimation distance kz0 and the multipole order n is shown in
Fig. 1. As it was pointed out, the very first expansion coeffi-
cient A(s)

l does not depend on kz0 due to our definition of the
normalization constant and the coefficient can be expressed
as A(s)

l = (2l + 1)!!/γll . As the beam becomes unfocused, the
maximal contribution is shifted from multipole with n = l into
a higher multipole. Here we note that the differences in the
expansion coefficients between regular and irregular complex
source beams appear only at values of the collimation distance
kz0 < n. The natural cause for this divergent behavior is the
presence of virtual sources in the irregular beam [19].

C. Expansion of cylindrically symmetric vectorial complex
source vortices

The dimensionless CSB vortices with cylindrical symme-
try U(c)

M and U(c)
N are defined by [19]

U(c)
M (r) = ∇u(r) × ez

k
, U(c)

N (r) = 1

k
∇ × U(c)

M (r), (13)

where ez = er cos θ − eθ sin θ , here er is a unit vector of the
spherical coordinates. They represent the electric and mag-
netic fields of a vector vortex within cylindrical symmetry.
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(a)

(b)

FIG. 1. (a) Dependence of the different expansion coefficients
|A(s)

mn| on the multipole order for regular solutions for different kz0.
(b) Dependence of the different expansion coefficients |A(s)

mn| on the
collimation distance kz0 for regular and irregular solutions. The mul-
tipole order n is shown in the graph. The topological charge m = 1.

Solution U(c)
M (U(c)

N ) represents a transverse with respect to
the vector ez electric (magnetic) electromagnetic field. The
“vortex cores” of U(c)

M and U(c)
N are given by

U(c)
M = U0iαmρm−1eiαmφeikz(eρ + iαeφ ),

U(c)
N = U0imρm−1eiαmφeikz(eρ + iαeφ ). (14)

Once again we see a rather complex structure: the beam U(c)
M

has a pattern similar to the flower and the beam U(c)
N resembles

a web (see Ref. [55]). Experimentally, such CSVs can be
realized by creation of the following spatial spectra (far field)
[19]:

U(c)
M = − kU0 sinm+1 θeiαmφgm+1eφ,

U(c)
N kU0 sinm+1 θeiαmφgm+2eθ . (15)

Next, we need to decompose the vector function k−1Lmn × ez,
where Lmn is a nonsolenoidal VSH [12]. Next, we take advan-
tage of the fact that the functions Nmn have a nonzero radial
component at the origin r → 0. The decomposition into Mmn

is performed on the other hand at infinity r → ∞. The com-
plicated integration is omitted here and the final expression is
given as

Lmn × ez

k
= im

n(n + 1)
Nm,n + n + m

n(2n + 1)
Mm,n−1

+ n + 1 − m

(n + 1)(2n + 1)
Mm,n+1. (16)

We note that an electric multipole Nm,n appears in the ex-
pression in order to ensure the transversality of the resulting

electric field in respect to the ez (see [19] for a more detailed
discussion on that).

The decomposition contains only terms with azimuthal
index m, so the highly focused vortices are expressed by the
sum

U(c)
M =

∞∑
n=1

A(c)
n M̃mn + B(c)

n Ñmn,

U(c)
N =

∞∑
n=1

B(c)
n M̃mn + A(c)

n Ñmn, (17)

where

γmnA(c)
n =

[
an+1(n + m + 1)

(n + 1)(2n + 3)
+ an−1(n − m)

n(2n − 1)

]
,

γmnB(c)
n = iman

n(n + 1)
. (18)

We note that the electric (magnetic) multipole disappears in
the solution U(c)

M (U(c)
N ), if the topological charge m of the

vortex is zero. Moreover, it can be demonstrated that the
expansion coefficient A(c)

n becomes proportional to the ex-
pansion coefficient A(s)

n from the previous section (see [46]).
This is a direct consequence of the fact that radially and az-
imuthally polarized beams with no topological charges can be
derived within both spherical and cylindrical symmetry (see
[16]).

The dependence of the multipole amplitudes A(c)
n and B(c)

n
on the multipole order for different values of kz0 is presented
in Fig. 2. The dependence of the amplitudes of the first five
multipole components A(c)

mn and B(c)
mn on the collimation dis-

tance kz0 are depicted in Figs. 2(c) and 2(d). We note here
that for n > l expansion coefficient A(c)

mn may become zero
[Figs. 2(b) and 2(d)] because coefficients an+1 and an−1 have
different signs. Thus, for known l and n exists a complex
displacement kz0 for which the multipole with indices m and
n is not present [Fig. 2(d)].

For kz0 > n the expansion coefficients of the irregular
solution do not differ significantly from that of the regular
solution and the multipole with highest amplitude is always
n → ∞ due to the presence of virtual sources in the irregular
beam (see [15]). An example of intensity distributions for
the cylindrically symmetric beams U(c)

M , U(c)
N is available in

Ref. [19].

D. Expansion of circularly polarized vortex beams

Dimensionless circularly polarized beams are defined as
[19]

U(β )
M (r) = ∇u(r) × eβ

k
, U(β )

N (r) = 1

k
∇ × U(β )

M (r), (19)

where eβ = ex + iβey here β = ±1 is the the handedness.
Cartesian unit vectors are ex and ey. Two pairs of left- and
right-handed circularly polarized vector vortices are possible.
The vortex cores of circularly polarized vortices are [19] given
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(a)

(b)

(c)

(d)

FIG. 2. Dependence of the different expansion coefficients |A(c)
mn|

(a) and |B(c)
mn| (b) on the multipole order for regular solutions for

different kz0. Dependence of the different expansion coefficients
|A(s)

mn| (c) and |B(c)
mn| (d) on the collimation distance kz0 for regular

and irregular solutions. The multipole order n is shown in the graph.
The topological charge m = 1.

by

U(β )
M = U0eikz[eββk(x + iαy)m + ezim(β − α)(x + iαy)m−1],

U(β )
N = U0k−1eikz[eαm(m − 1)(1 − αβ )(x + iαy)m−2

+ eβk2(x + iαy)m + ezikm(1 − αβ )(x + iαy)m−1].

(20)

We note that the beam U(β )
M looks similar to the so-called

spider webs and flowers, discussed in Ref. [55]. In overall, the
first circularly polarized vortex solution U(β )

M contains, in the
near field, two vortices in its core: one is circularly polarized
of the charge l and the second one longitudinally polarized
of the charge l − α. The second vortex solution U(β )

N contains
two or three vortices depending on the signs of α and β. The
far fields are given by [19]

U(β )
M =U0k sinm θei(αm+β )φ (eθ iβ − eφ cos θ )gm+1,

U(β )
N = − U0k sinm θei(αm+β )φ (eθ cos θ + eφ iβ )gm+2. (21)

First, we decompose k−1Lmn × e+, where Lmn is a non-
solenoidal VSH [12]. The final expression is

Lmn × e+
k

=
∞∑

ν=1

iδν,n

ν(ν + 1)
Nm+1,ν

−
[

δν,n+1

ν(2ν − 1)
− δν,n−1

(ν + 1)2ν + 3

]
Mm+1,ν .

(22)

The decomposition contains only terms with m + 1, so the
circularly polarized beam can be expressed by the sum

U(+)
M =

∞∑
n=1

A(+)
n M̃m+1,n + B(+)

n Ñm+1,n,

U(+)
N =

∞∑
n=1

A(+)
n Ñm+1,n + B(+)

n M̃m+1,n, (23)

where

γm+1,nA(+)
n =

[
an−1

n(2n − 1)
− an+1

(n + 1)(2n + 3)

]
,

γm+1,nB(+)
n = ian

n(n + 1)
. (24)

The beams U(+)
M and U(+)

N are represented at the origin
r = 0 by circularly polarized electric and magnetic multi-
poles, whose azimuthal orders are by one order higher than the
topological charge under consideration. The typical intensity
and field patterns for one particular case are presented in
Ref. [19].

The second pair of the beams U(−)
M and U(−)

N is expanded in
the same fashion. The decomposition of the function Lmn ×
e− into VSHs can be written as

Lmn × e−
k

=
∞∑

ν=1

iδν,n(ν + m)(ν − m + 1)

ν(ν + 1)
Nm−1,ν

− δν,n−1(ν + m)(ν + m + 1)

(ν + 1)(2ν + 3)
Mm−1,ν

+ δν,n+1(ν − m)(ν − m + 1)

ν(2ν − 1)
Mm−1,ν (25)
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FIG. 3. Modulus of the total field for transverse electric U(s)
M

(a) and transverse magnetic U(s)
N (b) CSV scattered off the cluster

of three gold spheres. The radii of spheres are Rsp = 200 nm, the
wavelength is λ = 500 nm, the angle of the cluster is θ = 5π/6 and
kz0 = 5. The white arrows depict the direction of the electric field E.

and the circularly polarized beams U(−)
M and U(−)

N are

U(−)
M =

∞∑
n=1

A(−)
n M̃m−1,n + B(−)

n Ñm−1,n,

U(−)
N =

∞∑
n=1

A(−)
n Ñm−1,n + B(−)

n M̃m−1,n, (26)

where

γm−1,nA(−)
n =

[
an−1(ν − m)(ν − m + 1)

n(2n − 1)

− an+1(ν + m)(ν + m + 1)

(n + 1)(2n + 3)

]
,

γm−1,nB(−)
n = ian(ν + m)(ν − m + 1)

n(n + 1)
. (27)

A variety of linear combinations can be constructed from
the “pure” electric and magnetic linearly polarized beams:
a tightly focused “mixed” circularly polarized vortex or a
linearly polarized vortex [19]. The comparison of the first
four expansion coefficients A(β )

n , B(−)
beta reveals a a bell-shaped

dependency on multipole order n. For the irregular solution
expansion coefficients do not differ significantly as long as for

FIG. 4. Modulus of the absolute error metric � between the
total fields calculated using analytical expansion and finite-difference
scheme for the cases of transverse electric U(s)

M (a) and transverse
magnetic U(s)

N (b) CSV scattered off the cluster of three gold spheres.
The radii of spheres are Rsp = 200 nm, the wavelength is λ = 500
nm, the angle of the cluster is θ = 5π/6 and kz0 = 5.

kz0 > n, however, virtual sources cause an artificial increase
in the expansion coefficients of very high multipoles.

III. APPLICATION TO MIE SCATTERING

In this section we use an analytical Mie-type theory
for highly focused CSVs which interacts with a cluster of
nanospheres situated in the origin. We start with a brief
presentation of the basic idea of multiple scattering method
(MSM) [57,58]. Suppose we have a cluster of N nonover-
lapping spherical particles. We freely choose the global
coordinates in which we denote the position of each particle
as r( j) and r( jl ), a vector pointing from particle with index j to
the particle with index l . The scattered field E( j)

sca (r( j) ) of each
particle ( j) can be written as

E( j)
s (r( j) ) =

∑
mn

P( j)
mn M̃(3)

mn(r( j) ) + Q( j)
mnÑ(3)

mn(r( j) ); (28)

this equation is valid for r ( j) > Rsp and index (3) denotes
irregular VSHs (see [40]). When coefficients P( j), Q( j) of the
scattered field for particles with index j are known, then the
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total electric field is given by

Etot (r) = Ei(r) +
∑

j

E( j)
s (r( j) ). (29)

The light scattered by a nanoparticle can be expressed as a
sum of the irregular VSHs and conveniently written as a vector
Es = TEi, where we introduce the concept of the T matrix
[40], which relates the vector representations of scattered and
incident fields. Coefficients P( j), Q( j) of the scattered field
E( j)

s are related to coefficients A( j), B( j) of the incident field
Ei(r) by T matrix as (P( j), Q( j) )T = T( j)(A( j), B( j) )T . Here
T( j) is a transfer matrix of an individual particle with index j
and (A( j), B( j) ) are expansion coefficients of the incident field
Ei(r) in the local coordinate frame of the particle with index j.
In this formalism the electric field incident on a particle with
index j is a superposition of the incoming beam Ei and the
scattered field from other particles E(l )

s :

E( j)
i (r) = Einc(r) +

∑
l �= j

E(l )
s (r). (30)

This leads us to the following equation for the unknowns
P( j), Q( j):(

P( j)

Q( j)

)
= T( j)

⎡⎣D(1)
( j,O)

(
A
B

)
+

∑
l �= j

D(2)
( j,l )

(
P( j)

Q( j)

)⎤⎦. (31)

Here, D(1)
( j,l ), D(2)

( j,l ) denote first and second kind displacement
operators for VSH coefficients, respectively (see more on def-
inition in Refs. [8,57–59]). (A, B) are expansion coefficients
of the incident field Ei(r) in the coordinate frame of the beam.
After determining unknowns from (31) we can determine not
only electric and magnetic fields outside and inside particles
but calculate such parameters as transmission, reflection also,
with the use of the methodology described in the Appendices
of Refs. [8,59].

We build a trimer nanocluster from homogeneous gold
spheres with a radius Rsp = 200 nm and a complex refractive
index nsp = 0.9726 + 1.8501i [60] embedded in a homoge-
neous nonabsorbing medium with refractive index nm = 1
at the wavelength of 500 nm. We arrange particles in the
cluster so that the angle θ between two arms is θ = 5π/6
and the particles have a small gap of 10 nm between them.

We have chosen these parameters to ensure a rich multipolar
response of the nanocluster [37,42] and to showcase different
interactions with various vector complex sourced vortices. On
the other hand, our wish is to avoid strong resonances, as
they might require high numbers of multipoles for the code to
converge (see Refs. [61,62]). Another motivation behind our
choice were recent presentations of chirality in planar cluster
structures [41,42,63]. So, the cluster under investigation is
slightly chiral [42]. We have used the value of the complex
displacement kz0 = 5 for all the beams in the study; they also
had the same initial topological charge m = 1. We have used
in our calculations up to 20 expansion coefficients. It was
more than enough for this case.

First, we examine the distribution of a total electric field
when the cluster was placed in the center of the spherically
symmetric beams U(s)

M , U(s)
N . We plot the modulus of the di-

mensionless total electric field in the transverse plane [see
Figs. 3(a) and 3(b)]. The transverse electric solution U(s)

M has
no radial components of the electric field; it contains magnetic
multipoles and two (first one and third one) particles in the
cluster are excited efficiently. One might note excitation of the
electric dipoles’ multipoles on the surface of two marginally
excited particles, while none on the central unexcited particle.
The second beam U(s)

N contains electric multipoles and the
central particle in the cluster interacts with the field more
strongly than other two [see Fig. 3(b)].

In order to prove a validity and test accuracy of the MSM
implementation, we have implemented a finite-difference
scheme (based on FDTD++, see Ref. [64]), which calculates
Mie-type scattering of CSVs from multiple spheres. First,
we have tested the developed tool with known theoretical
solutions and other available tools from Ref. [65] and have
found no meaningful differences. Additionally, we had tested
it under the same conditions using a commercial software
from Ansys/Lumerical [42]. We have considered two error
metrics: an absolute and a relative one. Unfortunately, as
the electric field approaches near zero values, values of the
relative error approach infinity. For this reason we consider
here the dimensionless absolute error metric � to evaluate
the difference between the results retrieved from MSM im-
plementation and numerical tool:

� =
√(∣∣E (1)

x

∣∣ − ∣∣E (2)
x

∣∣)2 + (∣∣E (1)
y

∣∣ − ∣∣E (2)
y

∣∣)2 + (∣∣E (1)
z

∣∣ − ∣∣E (2)
z

∣∣)2
, (32)

where E(1) = (E (1)
x , E (1)

y , E (1)
z ) is the electric field calculated

using analytical expansion together with MSM method and
E(2) = (E (2)

x , E (2)
y , E (2)

z ) is the electric field obtained using
the finite-difference scheme. The resulting error measure is
plotted in Figs. 4(a) and 4(b). We note that a slight difference
is present (it has an order of 10−11). The main cause for
the difference to appear is the number of multipoles used
in expansions of fields (N = 20). The increase of the mul-
tipoles drastically reduces the error measure in the expense
of longer computation times. Obviously, there are two causes

of introduction of the errors: first is the expansion of the
incident beam into multipoles using VSH’s, larger number
of multipoles reduces the difference between the exact beam
distribution and the decomposed one. Second is the way of
scattered field description in Eq. (31), the response of the clus-
ter has much richer multipolar response than a single particle.
In the FDTD schemes, errors can occur due to many causes
coming from grid selection, boundary conditions, calculation
methods, etc.; here, the largest value of � at the interparticle
region, because it is the most sensitive, is due to the local field
enhancements [61,62]. Overall, the presented implementation
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FIG. 5. Modulus of the total field for transverse electric U(c)
M

(a) and transverse magnetic U(c)
N (b) CSV scattered off the cluster

of three gold spheres. The radii of spheres are Rsp = 200 nm, the
wavelength is λ = 500 nm, the angle of the cluster is θ = 5π/6 and
kz0 = 5. The white arrows depict the direction of the electric field E.

has successfully converged and describes the physical situa-
tion on the acceptable level of accuracy.

We have also investigated electric field distribution when
the same trimer cluster is placed in the center of cylindrically
symmetric beams U(c)

M , U(c)
N [see Figs. 5(a) and 5(b)]. The

transverse electric solution U(c)
M has no z components of the

electric field [19]; this automatically leads to an appearance
of a electric dipole [see Eq. (17)] and therefore the central
particle is also excited. The central particle of the cluster
placed in the the beam U(c)

N is excited mostly [see Fig. 5(b)].
As the result of scattering the transversality of the electric
field is perturbed. Due to the presence of the longitudinally
polarized magnetic dipole, particles adjacent to the central one
are also slightly excited.

Lastly, circularly polarized complex source vortices are
investigated. We consider two different handednesses for
magnetic-type modes U(β )

M [see Figs. 6(a) and 6(b)]. These
modes represent tightly focused circularly polarized vortices,
which were already studied in a similar situation elsewhere
(see Refs. [41,42,63]). A comparison with other beams reveals
that the cluster is excited stronger than in the previous case.
The incident field is barely seen in the background. This
cluster is slightly chiral, so one can observe slightly higher

FIG. 6. Modulus of the total field for transverse electric U(β )
M

CSB scattered off the cluster of three gold spheres. The radii of
spheres are Rsp = 200 nm, the wavelength is λ = 500 nm, the angle
of the cluster is θ = 5π/6 and kz0 = 5, the handedness is β = 1
(a) and β = −1 (b). The white arrows depict the direction of the
electric field E.

response to the vortex U(+)
M than to the beam with negative

handedness β = −1.

IV. CONCLUSION

In conclusion, we have exploited the regular and irregular
scalar CSV model to develop an analytical expansion of var-
iously polarized vector CSVs into VSHs. We have presented
closed-form compact analytical expansion of vector vortices
within spherical, cylindrical, and Cartesian symmetries. The
differences between regular and irregular vector beams di-
minish, when beam waist and collimation distance remains
large. However, when the beam waist reaches the size of the
collimation distance, higher-order multipoles dominate in the
expansion of irregular highly focused complex source beams
carrying vortices, therefore, the model does not describe any-
more the physical situation properly.

Different types of complexifed vector vortices are de-
scribed by electromagnetic multipoles having various indices
m, n. The spherically symmetric vector vortices have only
either magnetic (U(s)

M ) or electric (U(s)
N ) multipoles in their

expansions. The cylindrically symmetric vector vortices con-
tain both electric and magnetic type multipoles. Changes in
the collimation distance nontrivially influence expansion co-
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efficients A(c) and it might even vanish. In both symmetries,
the topological charge of the vortex m coincides with the
azimuthal index of the VSH. For circularly polarized vortices,
the topological charge enters azimuthal dependency as m + β,
so the multipolar structure is different because of the presence
of the spin angular momentum. This situation is known as the
conversion of the spin angular momentum into orbital.

The Mie scattering of the vector complex source vortices
on a small golden trimer was investigated in detail. We report
on differences in the multipolar excitation of the nanotrimer
under investigation for three different types of vector complex
source beams, namely, spherically symmetric, cylindrically
symmetric, and circularly polarized. We demonstrate that
magnetic and electric type beams excite different individual

nanoparticles in the cluster. In our opinion, a different multi-
polar structure of vectorial CSVs enables a selective excitation
of rather high-order Mie multipoles [36,37] and therefore is
essential for studies of such properties as birefringence [42]
and chirality [41,63] in clustered structures.
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Commun. 209, 155 (2002).

[34] S. Orlov, K. Regelskis, V. Smilgevicius, and A. Stabinis, J. Opt.
A: Pure Appl. Opt. 6, S255 (2004).

[35] V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko,
V. S. Gerasimov, and I. L. Isaev, Phys. Rev. B 70, 054202
(2004).

[36] P. Wozniak, P. Banzer, and G. Leuchs, Laser Photonics Rev. 9,
231 (2015).

[37] T. Das, P. P. Iyer, R. A. DeCrescent, and J. A. Schuller, Phys.
Rev. B 92, 241110(R) (2015)

[38] T. X. Hoang, X. Chen, and C J. R. Sheppard, J. Opt. Soc. Am.
A 29, 32 (2012).

[39] X. Zambrana-Puyalto, X. Vidal, P. Wozniak, P. Banzer,
and G. Molina-Terriza, ACS Photonics 5, 2936
(2018)

[40] L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electro-
magnetic Waves (Wiley, New York, 2000).

[41] P. Banzer, P. Wozniak, U. Mick, I. De Leon, and R. W. Boyd,
Nat. Commun. 7, 13117 (2016)
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