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Stimulated rotational Raman scattering of arbitrarily polarized broadband light
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Laser plasma instabilities are problematic for inertial confinement fusion because they can spoil illumination
uniformity, reduce laser-target coupling, and create unwanted fast electrons. Recent experiments and simulations
have shown that self-seeded stimulated rotational Raman scattering (SRRS) in air might achieve enough spectral
broadening to mitigate these instabilities with only moderate unwanted broadening of the focal spot. The
theoretical model for the simulations included chaotic broadband and spatially multimode light, but was a
scalar formulation suitable for only linear polarization, where the SRRS gains and spectral broadening are
limited by Stokes–anti-Stokes coupling. This paper derives a tensor formulation of SRRS theory suitable
for modeling spectral broadening of arbitrarily polarized spatially and temporally incoherent light; it then
describes the algorithms used to simulate the theory and provides some preliminary results that compare linear
and elliptical polarizations. It begins with a paraxial wave equation for an arbitrarily polarized optical field
envelope, which is phase modulated by a term proportional to a Raman driven molecular polarizability tensor.
Treating the air molecules as rigid rotators, it uses a quantum treatment to derive a driven harmonic oscillator
equation for that polarizability, then expresses these vector and tensor equations in terms of the field’s right-
and left-handed circular polarization components to derive the final coupled equations for arbitrary polarization.
The formulation includes possible ac Stark shift contributions, but shows that they are negligible for intensities
below 10 GW/cm2. It then describes the algorithms used in the simulation code and the numerical model of
the chaotic light, whose initial spectral bandwidth is broad enough to self-seed the SRRS. In this algorithm, the
SRRS process accurately conserves the total energy at each axial plane along the propagation path. Finally, it
compares simulations of power spectra and far-field profiles for elliptical vs linear polarization, which show that
elliptically polarized light produces significantly more broadening of both profiles than linear polarization. For
linear polarization, the SRRS process reduces the incident coherence time from 0.54 to 0.27 ps; for elliptical
polarization, it reduces to 0.19 ps. The theory and simulation algorithms presented here provide a framework for
evaluating techniques that combine beams of alternating circular polarizations with different spectra and angular
divergences to improve SRRS spectral broadening without excessive focal spot broadening.
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I. INTRODUCTION

Large optical bandwidths have been predicted for some
time to mitigate the laser-plasma instability (LPI) that can
spoil illumination uniformity, reduce laser-target coupling,
and create unwanted fast electrons in inertial confinement
fusion (ICF) experiments [1]. LPI occurs mainly in the corona
plasma at near or below quarter critical densities and in-
cludes the cross-beam energy transfer (CBET) instability
[2] driven by stimulated Brillouin scattering, plus the two-
plasmon decay (TPD) and stimulated Raman scattering (SRS)
instabilities [3] driven by Langmuir waves. Recent simula-
tions suggest that ≈8 THz, which is equivalent to ≈0.125-ps
coherence time, is required to quench the CBET instability
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[4], while earlier simulations estimate similar requirements
for TPD [5] and SRS [6].

These bandwidths are well beyond the intrinsic capabilities
of current ICF drivers [7], with the possible exception of the
193-nm argon fluoride excimer laser [8], which is still under
development. One must therefore examine the spectral broad-
ening capabilities of nonlinear optical processes, such as stim-
ulated rotational Raman scattering (SRRS) [9,10], self-phase
modulation (SPM) [11], or parametric amplification [12] in
the propagation paths between the laser and focusing optics.
Efficient SPM is possible for krypton fluoride (KrF) light in
xenon because of a large negative nonlinear refractive index
enhanced by a two-photon near-resonance at 248 nm. This has
the added advantage of removing self-focusing issues, but the
effective spectral width is likely to be limited to <6 THz by
the 11.9-THz detuning of the two-photon resonance. Paramet-
ric amplification may allow bandwidths up to 10 THz from
351-nm glass systems, but is still under early development.
This paper will concentrate on the SRRS approach.
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SRRS occurs naturally when the laser output beams excite
rotational quantum states of air molecules along their prop-
agation paths to the target chamber [13,14], resulting in the
generation of Stokes and anti-Stokes sidebands in the spectra
and possible degradation of the beam quality. With sufficient
uncontrolled growth, this process can spoil an implosion by
broadening the final focal profile, and reducing the focusable
drive energy that impacts the target [15–17]. It can grow from
ambient fluctuations or can be seeded by laser light either
from within the spectrum of a broadband primary beam or
from a copropagating secondary beam. Its growth rate de-
pends on the composition of the transport media, the path
length, the intensity, and the coherence properties of the beam
[18–21]. SRRS is normally regarded as detrimental to ICF
laser systems and is suppressed on very large lasers such as
the National Ignition Facility by using tubes filled with an
atomic gas (such as argon) to transport the beams to the target
chamber [22].

Reference [10] reported new experimental and theoretical
results on the Nike KrF laser suggesting that properly seeded
SRRS can significantly broaden the spectral bandwidth with-
out excessive broadening of the focal spot. Specifically we
reported spectral broadening by SRRS generated in the long
air paths required for Nike’s angularly multiplexed beams
[23]. While SRRS is not a constraint on normal Nike operation
due to the low beam intensities, significant SRRS was gen-
erated by lengthening the air paths and using shorter higher
intensity pulses. It can be a self-seeded process if the spectrum
of the primary beam is sufficiently broad or it can be seeded
by weaker copropagating beams.

Nike uses a beam smoothing technique called echelon-free
induced spatial incoherence (ISI), which produces a focal
spot with a time-averaged uniformity within 1% and a typical
diameter of ≈100× diffraction limit (XDL) [24–27]. This spot
size results from the �θISI ∼ 100 XDL angular divergence of
the spatially incoherent light in the laser’s near field, so it
should remain relatively insensitive to additional divergence
from SRRS as long as it remains much smaller than �θISI.
In our recent experiments, which used ≈25−30 XDL beams,
the measured and simulated focal profiles for beams experi-
encing significant SRRS growth were found to have moderate
changes, mainly in their outer skirts [10].

So far, Nike experiments have used only linearly polarized
light, which we have adequately modeled by a scalar paraxial
wave equation for the optical field and a scalar driven har-
monic oscillator equation for the Raman excitation [10]. The
main limitation of this is a parametric SRRS gain suppression
mechanism that has been observed by earlier authors [28–30]
with linearly polarized light in gases. Linear polarization al-
lows a Raman Stokes–anti-Stokes (SAS) coupling term that
creates a parasitic redistribution of Stokes energy into the anti-
Stokes wave; this allows both waves to grow together linearly,
but not exponentially. Normal exponential Stokes growth is
achieved only when the divergence angle between the Stokes
and anti-Stokes waves is large enough to introduce a phase
mismatch that suppresses the SAS coupling. The efficiency of
SRRS spectral broadening is therefore largest for those wave
pairs likely to contribute the most to focal spot broadening.

To avoid this issue and increase flexibility, we have gen-
eralized the SRRS theory to a full tensor formulation that

allows light of arbitrary polarization. Although the simula-
tions shown here model only the Nike laser, this formulation
can also model glass lasers with spatially coherent input
beams [9,12], where filamentation may be an issue. (The
SRRS gain coefficient and nonlinear refractive index are
somewhat lower at 351 nm, so one could use higher inten-
sities.) Following earlier work by Palastro [31] on self-phase
modulation of ultrashort pulses in air, we derive the full tensor
working equations for the SRRS excitation directly from the
molecular rigid rotator (RR) model. These results can also be
derived from a quasi-three-level (Q3L) Raman model based
on a generalization of Penano’s scalar formulation [32], but
the intermediate states make the derivation more complicated
[33,34]. The two approaches complement one another; the
Q3L model emphasizes the quantum nature of the Raman
process and would be required if any intermediate state is
nearly resonant with the light [35], while the RR model is
more intuitive, introduces the key polarizability anisotropy pa-
rameter at the outset, and avoids dealing with the intermediate
states of the Q3L model.

In Sec. II, we apply the RR model to derive a pair of
coupled vector and tensor equations for an arbitrarily polar-
ized optical amplitude E phase-modulated by a Raman-driven
molecular polarizability tensor 〈α〉. We then expand these
equations explicitly in terms of the right- and left-handed
circular polarization components of E and related components
of 〈α〉. This formulation includes ac Stark shift contributions,
but concludes that they are negligible under conditions of
interest here. Section III describes the algorithms used in the
simulation code and the numerical model of the incident ISI
light. This algorithm accurately conserves the total energy
at each axial plane along the propagation path. Section IV
compares SRRS simulations with linear and elliptical incident
polarization, showing that elliptical polarization produces
significantly more broadening of both spectral and far-field
profiles than linear polarization. Section V confirms that the
ac Stark shifts are much smaller than the pressure-broadened
Raman linewidths at intensities below 10 GW/cm2, while
Sec. VI summarizes our results and proposes future work.

II. COUPLED SRRS EQUATIONS

A. Paraxial wave equation and RR molecular model

The formulation begins with the full electromagnetic wave
equation for the total optical field E driven by a nonlinear po-
larization P SRS whose frequency sidebands include numerous
≈ THz rotational Raman transitions in N2 and O2. Unlike the
usual treatments of Raman scattering [36,37], this formulation
envelopes E and P SRS to only a single temporal-spatial car-
rier frequency ω0 = 2πc/λ0 and k0 = n0ω0/c located at the
respective centers of the incident temporal and spatial spectra,
as follows:

E(x, t ) = Re[E(x, t ) exp(ik0z − iω0t )],

PSRS(x, t ) = Re[PSRS(x, t ) exp(ik0z − iω0t )].

Here x ≡ (x⊥, z), z is the axial propagation dis-
tance, x⊥ ≡ (x, y) are the transverse coordinates, and
E(x, t ) and PSRS(x, t ) are transverse-polarized slowly-
varying complex amplitudes. These amplitudes carry all
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FIG. 1. Spherical coordinate system with molecular axis along r̂
and k0 along ẑ.

the information about the Raman processes, so the Stokes
and anti-Stokes shifts appear, respectively, as equal negative
and positive frequency components. Because we are dealing
with rotational transitions and paraxial conditions, the spatial
and spectral bandwidths remain negligible compared to the
carrier frequencies. Substituting these expansions into the
wave equation and applying the paraxial and slowly varying
envelope approximations, we obtain [32](

∂z + 1

2ik0
∇2

⊥ + i
1

2
β∂2

τ

)
E = i

ω0

2n0c
4πPSRS + ik0nI

2|E|2E,

(1)

where ∇2
⊥ ≡ ∂2

x + ∂2
y , τ ≡ t − z/vg = t − z(∂ωk)0 is the re-

tarded time, β = (∂2
ωk)0 is the group velocity dispersion

(GVD), nI
2 is the near-instantaneous electronic part of the

nonlinear refractive index [38], PSRS(x, τ ) = N〈pSRS(x, τ )〉
is the nonlinear polarization found by ensemble averag-
ing the SRRS-induced molecular dipole moment amplitudes
pSRS(x, τ ) over all orientations, and N is the molecular den-
sity. For brevity, we will display (x, τ ) labels only if needed
for clarity and temporarily set aside the nI

2|E|2 terms to focus
on PSRS.

The treatment of PSRS is based on Palastro’s rigid rotator
model [31], but extends the analysis to the full SRRS case
where each j → j + 2 rotational transition has a well-defined
linewidth. It also uses the conventional spherical coordinate
system shown in Fig. 1, where the polar axis ẑ lies along the
laser propagation direction k̂0, rather than one polarization di-
rection. This simplifies the derivation and leads directly to the
spherical harmonic rotational wave functions; it also allows a
simple derivation of the ac Stark shift terms [39–41], which
can be an issue at intensities significantly above 10 GW/cm2.

In Fig. 1, the molecular axis x̂‖ ≡ r̂ lies along the polar
angle θ , so the orthogonal axes are x̂⊥1 ≡ θ̂ and x̂⊥2 ≡ φ̂.
From the axial α‖ and transverse α⊥ polarizabilities and
the identity r̂r̂ + θ̂θ̂ + φ̂φ̂ = Ī, we write the total induced

polarization Ptot = N〈ptot〉 in the general form

Ptot/N = 〈α‖r̂r̂ + α⊥θ̂θ̂ + α⊥φ̂φ̂〉 · E

= α⊥E + �α〈r̂r̂〉 · E, (2)

where the 〈〉 brackets denote an ensemble average over all
molecular orientations and �α ≡ α‖ − α⊥ is the polarizabil-
ity anisotropy. The first term accounts for ≈2/3 of the linear
refraction, while the second accounts for both linear and
SRRS contributions. To separate these, we rewrite the dyadic
variable r̂r̂ as r̂r̂ = r̂0r̂0 + (r̂r̂ − r̂0r̂0), where r̂0r̂0 is the
zeroth-order linear term with the Cartesian components

⎡
⎣ sin2 θ cos2 φ sin2 θ cos φ sin φ sin θ cos θ cos φ

sin2 θ sin φ cos φ sin2 θ sin2 φ sin θ cos θ sin φ

cos θ sin θ cos φ cos θ sin θ sin φ cos2 θ

⎤
⎦,

which immediately give the ensemble-average value

〈r̂0r̂0〉 = 1

4π

∮
r̂0r̂0d� = 1

3
Ī.

The total induced polarization Ptot = Plin + PSRS follows
from (2) and

Plin(x, τ ) = χlinE(x, τ ),

PSRS(x, τ ) = χ̄(x, τ ) · E(x, τ ),

where the respective linear and SRRS susceptibilities are

χlin = Nαlin = N
(

2
3α⊥ + 1

3α‖
)
, (3a)

χ̄(x, τ ) = N〈α(x, τ )〉
= N�α〈r̂r̂ − r̂0r̂0〉 = N�α

(〈r̂r̂〉 − 1
3 Ī

)
, (3b)

and the SRRS molecular polarizability tensor has the
quadrupole form

α(x, τ ) ≡ �α(r̂r̂ − r̂0r̂0) → �α
(
r̂r̂ − 1

3 Ī
)
. (4)

The linear susceptibility Nαlin, which initially appeared on the
right-hand side of the full wave equation, has been incorpo-
rated into n0(ω0) = 1 + 2πχlin and the factors vg and β on
the left-hand side of Eq. (1); hence PSRS = χ̄ · E = N〈α〉 · E
and Eq. (1) becomes(

∂z + 1

2ik0
∇2

⊥ + i
1

2
β∂2

τ

)
E = i2π

ω0

n0c
N〈α〉 · E. (5)

B. Quantum treatment of RR molecular Raman response

To treat the polarizability tensor (4) quantum mechanically,
we define α = �α(r̂r̂ − 1

3 Ī) as a quadrupole operator and for
simplicity restrict the wave function |ψ (x, τ )〉 to comprise
only one pair of degenerate molecular rotational levels | j, m〉
and |J, M〉, with J = j + 2, as allowed by the quadrupole
selection rules; the corresponding energy difference is then
h̄ω j = hcB(4 j + 6) [42]. This restriction will be lifted near
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the end of the derivation by summing the results over all
thermally occupied rotational level pairs of the N2 and O2

components of air. The ensemble averaged polarizability 〈α〉
in Eq. (4) thus temporarily reduces to

〈α〉 j = 〈〈ψ ((x, τ ))|α|ψ ((x, τ ))〉〉
= �α

[〈〈ψ (x, τ )|r̂r̂|ψ (x, τ )〉〉 − 1
3 Ī

]
, (6a)

where the j subscript is a reminder of the restriction and
the outer 〈 〉 brackets denote an ensemble average over
all thermally distributed initial states. Applying the density
operator definition ρ ≡ 〈|ψ〉〈ψ |〉, the completeness identity∑

j′,m′ | j′, m′〉〈 j′, m′| = 1 (where j′, m′ → j, m or J, M), and
ρ j′′,m′′; j′,m′ ≡ 〈 j′′, m′′|ρ| j′, m′〉, we obtain

〈α〉 j = �α
∑
j′,m′

∑
j′′,m′′

ρ j′′,m′′; j′,m′ (x, τ )

×
(

〈 j′, m′|r̂r̂| j′′, m′′〉 − 1

3
Ī
)

. (6b)

The j′′ = j′ terms ρ j′,m′′; j′,m′ have zeroth-order values
ρ0

j′,m′; j′,m′δm′′,m′ that are the m′th state’s share of the degenerate
thermally distributed j′th level populations N̂ j′ [42]:

n̂ j′ ≡ ρ0
j′,m′; j′,m′ = N̂j′/(2 j′ + 1), j′ → j, J, (7a)

N̂j′ = M j′ (2 j′ + 1)

Zj′
exp

[
−hcB j′( j′ + 1)

kBT

]
, (7b)

where Zj′ follows from the normalization condition
∑

j′ N̂j′ =
1 and M j′ is the multiplicity determined by the combined
atomic and molecular nuclear spins. In nitrogen, M j′ = 6 for
even j′ and M j′ = 3 for odd j′; in oxygen, M j′ = 0 for even
j′ and M j′ = 1 for odd j′.

For strongly driven molecules or very low pressures, Ra-
man processes can redistribute the populations of all the
molecular | j′, m′〉 states [14,34], including those excluded
by the simple two-level model used here. In principle, the
model can be generalized to include these redistributions, but
it is difficult to carry out because it also requires collisional

mixing rates that are not accurately known. Fortunately, these
populations remain nearly unperturbed by SRRS processes at
atmospheric pressure, the broad bandwidths, and <10 J/cm2

fluences found in our collimated beam experiments [10]. This
result is confirmed by simple energy balance arguments in the
discussions that follow Eqs. (24) and (25). The j′′ = j′ terms
thus satisfy ρ j′,m′′; j′,m′ � δm′′,m′ n̂ j′ and∑

j′,m′,m′′
ρ j′,m′′; j′,m′ 〈 j′, m′′|r̂r̂| j′, m′〉

�
∑
j′,m′

n̂ j′ 〈 j′, m′|r̂r̂| j′, m′〉 = 〈〈ψ0|r̂r̂|ψ0〉〉 = 1

3
Ī, (8)

which cancels the second term in expression (6b) to give

〈α〉 j = {α} j + {α}∗j (9)

where the complex polarizability tensor is

{α} j ≡
∑
m,M

ρJ,M; j,m(x, τ )〈 j, m|α|J, M〉

=
∑
m,M

[ρ j,m;J,M (x, τ )〈J, M|α| j, m〉]∗. (10)

The time dependence of {α} j follows from the density
matrix equations

(∂τ + iω j + γ j )ρJ,M; j,m(x, τ ) = 1

ih̄
〈J, M|[V, ρ]| j, m〉,

where γ j = 1
2�ω j is the collisional phase relaxation rate, �ω j

is the corresponding full width at half maximum (FWHM)
linewidth, and

V (x, τ ) = −1

2

∫ +π

−π

E(x, t ) · α · E(x, t )
d (ω0t )

2π

� −1

4
E∗(x, τ ) · α · E(x, τ )

is the interaction Hamiltonian, excluding second harmonic
terms. (Note that E · α · E∗ = E∗ · α · E is real because α =
α†.) Again applying the completeness identity and recalling
that ρ j′,m′′; j′,m′ � δm′′,m′ n̂ j′ , we obtain

(
∂τ + iω j + 1

2
�ω j

)
ρJ,M; j,m = 1

ih̄

∑
m′ (〈J, M|V | j, m′〉ρ j,m′; j,m + 〈J, M|V |J, m′〉ρJ,m′; j,m)

− 1

ih̄

∑
m′ (ρJ,M; j,m′ 〈 j, m′|V | j, m〉 + ρJ,M;J,m′ 〈J, m′|V | j, m〉)

� +i
1

4
h̄−1�n̂ jE∗ · 〈J, M|α| j, m〉 · E + i

∑
μ

(
δω

μ
j,mρJ,M; j,m+μ − δω

μ∗
J,MρJ,M+μ; j,m

)
, (11)

where

�n̂ j ≡ n̂ j − n̂J = N̂j

2 j + 1
− N̂j+2

2 j + 5
(12)

is the effective population difference and

δω
μ

j′,m′ ≡ h̄−1〈 j′, m′ + μ|V | j′, m′〉
= − 1

4 h̄−1E∗ · 〈 j′, m′ + μ|α| j′, m′〉 · E (13)

are generalized ac Stark shifts, which can be complex if
μ �= 0.

We will show below that, at atmospheric pressures and the
few hundred MW/cm2 intensities used in our Nike collimated
beam experiments, |δωμ

j′,m′ | � �ω j and can thus be ignored.
At intensities >10 GW/cm2, they could detune discrete spec-
tral lines, but are not an issue for a continuum spectrum as
long as they remain small compared to its width.
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Expressions (10) and (11) then reduce to(
∂τ + iω j + 1

2
�ω j

)
{α} j

=
∑
m,M

〈 j, m|α|J, M〉
(

∂τ + iω j + 1

2
�ω j

)
ρJ,M; j,m

� i�n̂ j

4h̄

∑
m,M

〈 j, m|α|J, M〉E∗ · 〈J, M|α| j, m〉 · E. (14)

Adding and subtracting (14) and its complex conjugate and
recalling Eq. (9), we obtain(

∂τ + 1

2
�ω j

)
〈α〉 j + iω j ({α} j − {α}∗j ) = 0, (15a)

(
∂τ + 1

2
�ω j

)
({α} j − {α}∗j ) + iω j〈α〉 j

= i�n̂ j

2h̄

∑
m,M

〈 j, m|α|J, M〉E∗ · 〈J, M|α| j, m〉 · E. (15b)

Applying the operator (∂τ + 1
2�ω j ) to (15a) and substituting

the result into (15b), we finally obtain the tensor driven har-
monic oscillator equation(

∂2
τ + �ω j∂τ + ω2

j + 1

4
�ω2

j

)
〈α〉 j

= ω j�n̂ j

2h̄

∑
m,M

〈 j, m|α|J, M〉E∗ · 〈J, M|α| j, m〉 · E. (16)

(At normal atmospheric pressures, ω2
j + 1

4�ω2
j � ω2

j .)

C. Expansion into circularly polarized components

To express the tensor equations (5) (with 〈α〉 → 〈α〉 j) and
(16) in a more useful form, we expand all transverse vectors
such as E and r̂ into two opposite circularly polarized compo-
nents, e.g.,

E =ε̂∗
+1E+1 + ε̂∗

−1E−1, E±1 = ε̂±1 · E, (17)

where ε̂±1 is the transverse part of the orthonormal spherical
basis set [43]:

ε̂+1 ≡ − x̂ + iŷ√
2

, ε̂−1 ≡ x̂ − iŷ√
2

= − ε̂∗
+1, (18a)

x̂ = ε̂−1 − ε̂+1√
2

, ŷ = i
ε̂−1 + ε̂+1√

2
, (18b)

where (x̂, ŷ) are the usual transverse unit vectors and ε̂0 ≡
ẑ lies along the laser propagation direction. These relations
satisfy the identities ε̂±1 · ε̂∗

±1 = −ε̂±1 · ε̂∓1 = 1, ε̂±1 · ε̂∗
∓1 =

−ε̂±1 · ε̂±1 = 0, and ε̂∗
+1ε̂+1 + ε̂∗

−1ε̂−1= Î⊥.
Wave equation (5) with 〈α〉 → 〈α〉 j then expands to(

∂z + 1

2ik0
∇2

⊥ + i
1

2
β∂2

τ

)
E±1(x, τ )

= iQ j
0(x, τ )E±1(x, τ ) + iQ j

±2(x, τ )E∓1(x, τ ), (19)

where we define the rotational excitation components

Q j
0(x, τ ) ≡ KN ε̂±1 · 〈α〉 j · ε̂∗

±1 = [
Q j

0(x, τ )
]∗

, (20a)

Q j
±2(x, τ ) ≡ KN ε̂±1 · 〈α〉 j · ε̂∗

∓1 = [
Q j

∓2(x, τ )
]∗

, (20b)

and K ≡ 2πω0/(n0c). Applying Eq. (A7) of Appendix A and
recalling the identities ε̂±1 · ε̂∗

±1 = 1 and ε̂±1 · ε̂∗
∓1 = 0, we

then expand the driven oscillator equation (16) to(
∂2
τ + �ω j∂τ + ω2

j

)
Q j

0(x, τ ) = 1

12
g jω j�ω j

n0c

8π
|E(x, τ )|2,

(21a)(
∂2
τ + �ω j∂τ + ω2

j

)
Q j

±2(x, τ )

= 1

2
g jω j�ω j

n0c

8π
E∗

∓1(x, τ )E±1(x, τ ), (21b)

where

gj ≡ 64π4N�α2

5n2
0cλ0h�ω j

( j + 1)( j + 2)

2 j + 3
�n̂ j (22)

is the convective steady-state resonant power gain coefficient
for opposite polarizations.

We now generalize the formulation to include all the ther-
mally occupied j levels and all diatomic species σ (e.g.,
σ ≡ N2 and O2 in air), thus replacing 〈α〉 j → 〈α〉σ j and
generalizing Eqs. (20a) and (20b) to

Qσ j
0 (x, τ ) ≡ KNσ ε̂±1 · 〈α〉σ j · ε̂∗

±1 = [
Qσ j

0 (x, τ )
]∗

, (23a)

Qσ j
±2(x, τ ) ≡ KNσ ε̂±1 · 〈α〉σ j · ε̂∗

∓1 = [
Qσ j

∓2(x, τ )
]∗

. (23b)

We also sum over the excitation terms in Eq. (19), reinstate
the instantaneous electronic nonlinear refractive index nI

2, and
insert a linear attenuation term κ to model O2 absorption:(

∂z + 1

2
κ + 1

2ik0
∇2

⊥ + i
1

2
β∂2

τ

)
E±1(x, τ )

= i
[
Q0(x, τ ) + k0nI

2|E(x, τ )|2]E±1(x, τ )

+ iQ±2(x, τ )E∓1(x, τ ), (24a)

Qμ(x, τ )

≡
∑
σ, j

Qσ j
μ (x, τ ) , μ → 0,±2. (24b)

Finally, Eqs. (21), (22), and (12) generalize to(
∂2
τ + �ωσ j∂τ + ω2

σ j

)
Qσ j

0 (x, τ )

= 1

12
ωσ j�ωσ jgσ j

n0c

8π
|E(x, τ )|2, (25a)(

∂2
τ + �ωσ j∂τ + ω2

σ j

)
Qσ j

±2(x, τ )

= 1

2
ωσ j�ωσ jgσ j

n0c

8π
E∗

∓1(x, τ )E±1(x, τ ), (25b)

gσ j = 64π4Nσ �α2
σ

5n2
0cλ0h�ωσ j

( j + 1)( j + 2)

2 j + 3

(
N̂σ, j

2 j + 1
− N̂σ, j+2

2 j + 5

)
.

(25c)

Expressions (25) are the generalized equivalents of Eq. (4) in
Ref. [31] and include not only the Raman Stokes and anti-
Stokes frequency shifts, but also other frequency components
that account for the Raman-induced noninstantaneous portion
of the self-phase modulation. Note that two opposite circular
polarizations drive the molecular excitation Qσ j

±2 six times

harder than Qσ j
0 from two circular polarizations of the same

sign [42].
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Equations (24) and (25) provide a physically intuitive
SRRS formulation because E±1 is composed of photon
annihilation operators that transfer ±1 units of angular mo-
mentum from the light to each molecule, while E∗

±1 is
composed of photon creation operators that transfer ±1 units
from the molecule back to the light. Excitation Qσ j

0 thus rep-
resents zero net angular momentum transfer �m = 0 to the
molecules, in agreement with the |E|2 term in (25a), while
excitation Qσ j

±2 represents a net angular momentum transfer
�m = ±2, in agreement with the E∗

∓1E±1 term in (25b). In
the right-hand side of Eq. (24), the coefficient of the E±1 term
is the �m = 0 excitation Q0, while the coefficient of the E∓1

term must be Q±2 to provide the �m = ±2 required to drive
the opposite circular polarization.

We can now confirm that gσ j is indeed the steady-state
convective power gain or loss coefficient under the ideal
condition where monochromatic beams of opposite circular
polarizations interact. To do this, apply Eqs. (24) and (25)
to the case where a +1 polarized beam EP

+1 (ωP = 0) drives
a −1 polarized beam ES/A

− (ωS/A = ∓ωσ j), which is either
Stokes ES

− (ωS = −ωσ j) or anti-Stokes EA
− (ωA = +ωσ j), in

resonance with the j → j + 2 transition of the σ th species.
Without the attenuation, diffraction, or GVD terms, the rele-
vant part of (24a) reduces to ∂zE

S/A
−1 = i(Qσ j

−2)
ωS/A

EP
+1 and the

steady-state solution of (25b) reduces to

−iωS/A
(
Qσ j

−2

)
ωS/A

= 1

2
ωσ, jgσ j

n0c

8π
EP∗

+1ES/A
−1 ,

which gives ∂zI
S/A
−1 = ±gσ j IP

+1IS/A
−1 for the beam intensities

I±1 ≡ (n0c/8π )|E±1|2.
Using energy balance arguments, we now confirm that

the j-level population redistributions remain negligible under
the operating conditions of interest. The population differ-
ence �n j,m ≡ ρ j,m; j,m − ρ j+2,m−2; j+2,m−2 decreases because
the SRS process excites weak j → j + 2 transitions. Its re-
duction rate is ∂τ�n j,m = −(∂τWj )M/Nh̄ω j , where (∂τWj )M
is the power per unit volume transferred to the molecules
when h̄ω0 energy pump photons ∝ IP

+1 convert to h̄(ω0 − ω j )
energy Stokes photons ∝ IS

−1; thus (∂τWj )M = ∂zIS
−1ω j/ω0

and ∂τ�n j,m = −gσ j IP
+1IS

−1/Nσ h̄ω0. This assumes only two
discrete spectral lines separated by the resonant frequency
ν j , but remains a good approximation when those lines are
replaced by narrow spectral channels of width �νP ≈ �νS ≈
�ν j � ν j . Under the operating conditions of interest, how-
ever, IP

+1 and IS
−1 form a continuous spectrum of total width

�νT broader than ν j . Approximately (�νT − ν j )/�ν j ∼
�νT /�ν j of these channel pairs contribute to the Raman
process, but the intensities IP

+1 and IS
−1 within each pair would

scale down by the factor ≈ �ν j/�νT , thus giving the net
scaling |∂τ�n j,m| ∝ �ν j/�νT . Recalling expression (22), we
then estimate

|∂τ�n j,m|
�n̂ j

∼ 32π3�α2
σ

5h2c2�νT

( j + 1)( j + 2)

2 j + 3
IP
+1IS

−1,

where �n̂ j is the thermal population difference and �ασ is
given in Table I. For a typical bandwidth �νT ≈ 5 THz, the
strong j = 8 → 10 N2 transition gives |∂τ�n8,m|/�n̂ j ∼ 5 ×
105IP

+1IS
−1, where the intensities are expressed in GW/cm2.

TABLE I. Parameters used for the simulations.

Power attenuation coefficient κ 7.5 × 10−6 cm−1

GVD of air at 248.4 nm β 1.2 × 10−6 ps2/cm
Instantaneous part of n2 2.6 × 10−10 cm2/GW
N2 frequency coefficient BN2 2.001 cm−1

O2 frequency coefficient βO2 1.438 cm−1

N2 polarizability anisotropy �αN2 1.08 × 10−24 cm3

O2 polarizability anisotropy �αO2 1.74 × 10−24 cm3

Width of transverse window 20 cm
Width of spatial frequency window 6.4 cm−1

Width of temporal window 2500 ps
Incident spectral width (FWHM) 1.1 THz
Frequency window width 26.2 THz

The perturbed population difference integrated over the typ-
ical level relaxation and transient buildup times ≈100 ps
seen in the simulations then satisfies |�n8,m| < 10−3�n̂ j for
average intensities of 1 GW/cm2. Finally, |�n8,m| will be
even smaller when other j → j + 2 transitions are included
because the j = 8 level will be partially replenished by the
j = 6 → 8 transition and the j = 10 level will be partially
depleted by the j = 10 → 12 transition.

The Cartesian and circular polarization components are
related via Eqs. (17) and (18):

E+ = −Ex + iEy√
2

, E− = Ex − iEy√
2

, (26a)

Ex = E− − E+√
2

, Ey = −i
E− + E+√

2
. (26b)

The Cartesian components can be found most easily by apply-
ing (26a) to obtain E± at the entrance plane, solving Eqs. (24)
and (25), then applying (26b) to recover Ex and Ey at the exit
plane. Alternatively, one can use (26a) and (26b) to transform
(24) and (25) directly into Cartesian coordinates; (24) then
gives (without the nonlinear refraction term)(

∂z + 1

2
κ + 1

2ik0
∇2

⊥ + i
1

2
β∂2

τ

)
Ex

= i(Q0 − Q‖)Ex + iQ⊥Ey, (27a)(
∂z + 1

2
κ + 1

2ik0
∇2

⊥ + i
1

2
β∂2

τ

)
Ey

= i(Q0 − Q‖)Ey − iQ⊥Ex, (27b)

where

Q‖ ≡ Q+2 + Q∗
+2

2
, (28a)

Q⊥ ≡ i
Q+2 − Q∗

+2

2
, (28b)

and Eqs. (25) give for the corresponding Qσ j
‖ and Qσ j

⊥ compo-
nents (

∂2
τ + �ωσ, j∂τ + ω2

σ, j

)
Qσ j

‖

= −1

4
ωσ j�ωσ jgσ j

n0c

8π
(|Ex|2 − |Ey|2), (29a)
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(
∂2
τ + �ωσ, j∂τ + ω2

σ, j

)
Qσ j

⊥

= +1

4
ωσ j�ωσ jgσ j

n0c

8π
(E∗

x Ey + E∗
y Ex ). (29b)

These equations are not as transparent as (24) and (25) be-
cause Cartesian coordinates are not the natural basis set for
describing angular momentum transfers to the molecules, but
they do show that depolarization can arise from the main
�m = 2 terms in linearly polarized incident light Ex if an or-
thogonally polarized seed beam Ey is also present. If Ey → 0,
then Eq. (29b) gives Qσ, j

⊥ → 0 and (27b) does not allow Ey to
grow; hence Eq. (27a) reduces to a scalar equation(

∂z + 1

2
κ + 1

2ik0
∇2

⊥ + i
1

2
β∂2

τ

)
Ex = i(Q0 − Q‖)Ex, (30)

which maintains linear polarization. Combining Eqs. (25a)
and (29a), we obtain(

∂2
τ + �ωσ j∂τ + ω2

σ j

)(
Qσ j

0 − Qσ j
‖

)
= 1

2
ωσ j�ωσ j

2

3
gσ j

n0c

8π
|Ex|2, (31)

whose steady-state temporal growth rate is 2/3 that of
Eq. (25b) for opposite polarizations [42].

Expressions (30) and (31) are equivalent to the equations
used in our earlier SRRS simulations [10]. Reference [10]
shows that unlike the above example where circularly polar-
ized Stokes and anti-Stokes waves respond independently to a
pump beam of opposite circular polarization, these equations
predict a Raman SAS coupling term that allows a parasitic
redistribution of energy and parametric suppression of expo-
nential growth.

III. SRRS SIMULATION CODE

The computational strategy is similar to that used in
Ref. [10]; it first specifies the complete space-time behavior
of the incident field E(x⊥, 0, τ ) at the entrance plane z = 0,
then solves Eqs. (25) and (24) to propagate E(x⊥, z, τ ) to the
exit plane zM , using split-step techniques. Following the same
procedure as in Ref. [10], we begin by Fourier transforming
Eq. (25) to the ω frequency domain with spectral intensities
(|E|2)ω and (E∗

∓1E±1)
ω

, solving directly for the spectral ex-

citations Q̃σ, j
0 (ω) and Q̃σ, j

±2 (ω), then transforming back and
using (24b) to obtain Q0(x⊥, 0, τ ) and Q±2(x⊥, 0, τ ). We
then substitute these into Eq. (24a) to calculate the fields
E±(x⊥,�z, τ ) at the first interior grid plane �z, using a split-
step algorithm that effectively lumps the contributions on the
right-hand side into thin windows spaced by �z. This step
begins with the exact analytic solutions of the reduced coupled
equations{

∂z − i
[
Q0(x⊥, 0) + k0nI

2|E(x⊥, 0)|2]}E ′
±1(x⊥, z)

= iQ±2(x⊥, 0)E ′
∓1(x⊥, z)

to find the intermediate fields E ′
±1(x⊥,�z, τ ); the second step

includes the propagation terms on the left-hand side of (24a)
by Fourier transforming to the (k⊥, ω) frequency domain and
applying the linear space-time propagator:

Ẽ±(k⊥,�z, ω)

= Ẽ ′
±(k⊥,�z, ω) exp

[
(−κ − i|k⊥|2/k0 + iβω2) 1

2�z
]
.

We then transform back to E±(x⊥, z, τ ) and repeat this proce-
dure at each new z plane. In the κ → 0 limit, this algorithm
conserves energy at each z step.

To model the chaotic ISI input amplitude E(x⊥, 0, τ ), we
begin with an (Nx, Ny, Nτ ) array of independent Gaussian-
distributed complex random numbers of equal rms value, then
filter them in the (k⊥, ω) frequency domain using the incident
beam’s measured spectrum and a Gauss fit to its far-field
profile. We then transform to the (x⊥, τ ) domain and filter the
result using the measured incident pulse shape and apodized
near-field profile. In these simulations, we typically choose
Nx = Ny = 64 or 128 and Nτ = 655 36 or 131 072. The width
of the far-field profile is specified by the FWHM angular
width �θ = |�k⊥|/k0 of the ISI field angle spectrum; in these
simulations, �θ = 8 or 15 XDL, which corresponds to about
13 or 25 μrad with our 15 × 15 cm2 FWHM collimated Nike
beams. It is clear from our earlier spectral data that the long
tails on the input spectrum can easily self-seed the SRRS
process. This, plus the fact that the chaotic ISI light keeps the
SRRS process in a perpetual low gain transient regime, elim-
inates the necessity of including a high divergence random
noise source term in our SRRS model [17,20].

Spectral broadening reduces the optical coherence time tc,
which scales as the inverse bandwidth; in these simulations,
we estimate tc by [10]

tc =
∫

|Ẽ(ν)|4dν,

∫
|Ẽ(ν)|2dν ≡ 1,

where |Ẽ(ν)|2 is the normalized spectral intensity. This ex-
pression is strictly valid only for purely chaotic light, but it
still provides a useful estimate for our SRRS-broadened light.
We benchmarked the code for pure linearly polarized light
against its earlier version based on the same scalar Eqs. (30)
and (31) used in Ref. [10]. The simulations showed excellent
agreement, with depolarization effects below numerical noise
levels.

IV. ELLIPTICAL VS LINEAR POLARIZATION
SIMULATIONS

Table I lists the parameters used in the simulations, which
were carried out in three dimensions with 248-nm ISI beams
of 8 XDL angular divergence on a 96 × 96 transverse grid.
The incident pulse shape, spectrum, and other parameters
are the same as those used in our earlier paper [10], but the
transverse grid was reduced from 256 × 256 and the angular
divergence reduced from 30 XDL because of memory limi-
tations. The incident energy was 16.45 J in a flat-top 15-cm
square beam and the propagation path was 102 m with 30
planes separated by 3.4 m. Because this algorithm conserves
energy, the only net loss is due to the linear attenuation
coefficient κ . The simulations compare SRRS broadening ca-
pabilities of elliptically polarized vs x-polarized light, where
the results agree with those calculated from our scalar for-
mulation described in Ref. [10]. They deal entirely with ISI
beams that are temporally and spatially broadband, where the
SRRS response never reaches steady state, but remains in a
perpetual transient state with lower convective gains.
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FIG. 2. ISI temporal pulse shapes and spatial profiles. (a) Inci-
dent intensity (averaged over the aperture) vs time. (b) Near-field
intensity profile lineouts (time averaged over 100 ps around the pulse
peak) of x-polarized light at the incident and exit planes, showing
finer scale spatial structure and 7.6% linear energy attenuation.

Typical ISI temporal pulse shapes and spatial profiles are
shown in Fig. 2. Figure 2(a) shows the simulated ISI input
(z = 0) pulse shapes, which are averaged over the aperture,
and Fig. 2(b) compares the near-field intensity profiles of
x-polarized light at the incident and exit (zM = 102 m) planes,
which are time averaged around the pulse peak. Elliptically
polarized light produces similar results. For both polariza-
tions, the pulse shape remains nearly constant along the entire
propagation path, except for a ≈7.6% linear attenuation, and
the flat-top near-field spatial profiles remain similar at the
input and exit planes. The main difference is that the exit
plane profiles clearly show the finer structure associated with
the higher spatial frequencies due to the SRRS and a small
amount of beam walk-off and diffraction around the edges.
The nonlinear refractive processes (Raman and electronic)
studied here primarily affect the temporal spectra and trans-
verse spatial spectra (i.e., angular divergence and associated
far-field broadening).

These simulations show no evidence of the intense near-
field filamentation associated with spatially coherent beams
[44,45], despite the ≈5-GW average beam power being ≈50
times higher than the ≈100-MW critical power for self-
focusing. Unlike the spatially coherent case, the important
parameter for ISI light is the effective power within a single
coherence zone, whose width is approximately the [aperture
width]/XDL; the effective power in our 8 XDL ISI beam is
then (1/82) × 5 GW � 80 MW, which is below the critical
power. This filamentation suppression in ISI beams was also
predicted by earlier three-dimensional (3D) simulations [46].

Figure 3 compares the aperture-averaged, time-integrated
input (z = 0) and output (z = zM) power spectra for the case
where the input beam polarization is either linear or elliptical
with right-hand–left-hand circular components in a 4:1 energy
ratio, which was chosen to minimize tc. The incident spectrum
is nearly symmetric with a ≈1.1-THz FWHM bandwidth and

FIG. 3. Comparison of aperture-averaged, time-integrated (and
boxcar averaged over 0.1 THz) power spectra at the entrance and
exit planes for linear and elliptical polarizations.

calculated coherence time of tc = 0.54 ps. For the linearly
polarized case, the output spectrum remains approximately
symmetric in its center portion, but exhibits weak sidelobes,
especially on the Stokes side; this approximately doubles the
effective spectral width and reduces the output coherence time
to 0.27 ps. The spreading is primarily due to Raman-induced
four-wave mixing, with pump-Stokes conversions creating the
small imbalance in favor of the Stokes components. This
result is consistent with the parametric suppression mecha-
nism [10,28–30], which is expected for linear polarization; the
simulations showed a negligible y-polarized component at the
output. For the elliptically polarized case, the output spectrum
shows a prominent Stokes-shifted sidelobe corresponding pri-
marily to the N2 j = 6 → 8, 8 → 10, and 10 → 12 SRRS
transitions; this, in addition to the four-wave mixing process,
further reduces the output coherence time to 0.19 ps. These
transitions, which are transient with growth times ≈100 ps,
are allowed because the opposite but unequal circular com-
ponents avoid a net linear polarization that would lead to
parametric suppression. The average intensity times length
integral 〈I〉 × zM is 1490 GW/cm, which is nearly identical
to the 1499-GW/cm value calculated in the linearly polarized
case.

For the ISI beams modeled here, the broadening occurs in
the transverse spatial frequency spectra as well as the tem-
poral spectra. Figure 4 compares lineouts of the input and
output transverse spectra, which are averaged over times near
the pulse peak, for the case where the input beam polariza-
tion is either linear or elliptical. The incident spectrum was
modeled by the ISI model described above with an az-
imuthally symmetric Gaussian envelope of 8 XDL FWHM.
For the linearly polarized case, the spectral broadening gives a
Strehl ratio ≈0.5, while the elliptically polarized case reduces
it to ≈0.25. These spectra are equivalent to the corresponding
far-field intensity profiles. Far-field broadening is a potential
issue because it can affect beam focusability, but it should be
less important for the ≈100 XDL far-field profiles required in
laser-fusion applications than for these 8 XDL beams.
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FIG. 4. Comparison of transverse spatial frequency power spec-
tra lineouts (time averaged over 100 ps around the pulse peak) at the
input and output for x linear polarization and elliptical polarization.

V. EVALUATION OF THE AC STARK SHIFTS

We now evaluate the ac Stark shifts (13)

δω
μ

j′,m′ = − 1
4 h̄−1E∗ · 〈 j′, m′ + μ|α| j′, m′〉 · E = δω

μ∗
j′,m′

(13)

for j′ → j or J , which are nonlinear coefficients of matrix
elements such as ρJ,M; j,m+μ and ρJ,M+μ; j,m in (11). Unlike
the derivation of Eq. (16), one can no longer simplify the
treatment by directly summing these terms over m and M
because the indices also appear in the matrix elements. Here
we focus on j′ → j and just compare the magnitudes of δω

μ
j,m

to the oscillator linewidth �ω j and resonant frequency ω j ; a
more rigorous formulation that fully includes (13) in (11) must
be reserved for a later paper. Recalling Eqs. (A5) and (17), we
immediately expand the frequency shifts δν

μ
j,m = δω

μ
j,m/2π to

δν
μ
j,m = �α√

24h
C j,0

j,0;2,0

(
δμ,0

√
1/6C j,m

j,m;2,0|E|2

+ δμ,+2C
j,m+2
j,m;2,+2E∗

+1E−1 + δμ,−2C
j,m−2
j,m;2,−2E∗

−1E+1
)
,

(32)

where the Clebsch-Gordan coefficients for μ → 0 and ±2 are
calculated in Appendix B.

For μ = 0, Eq. (B4) gives the usual Stark shift [39]

chδν0
j,m

�αIav

= 107 2π

3

3m2 − j( j + 1)

(2 j + 3)(2 j − 1)
, (33)

where Iav is in units of W/cm2. This result was experimen-
tally confirmed by Refs. [40,41]. In Eqs. (11), these terms
contribute a net frequency shift δν0(m, M ) ≡ δν0

j,m − δν0
J,M ,

where J = j + 2 and M can be m and m ± 2. Figure 5
plots this result for the N2 j = 8 line, using �αN2 = 1.08 ×
10−24 cm3 from Table I and intensity Iav → 1 GW/cm2.

For μ = ±2, Eq. (B5) gives

δν±2
j,m = −∣∣δν±2

j,m

∣∣
max2E∗

±1E∓1/|E|2, (34a)

FIG. 5. Stark shifts (in GHz) vs m index of j = 8 to J = 10
transitions in N2 at 1 GW/cm2. Asterisks: −δν0 for M = m, Squares:
−δν0 for M = m + 2 (blue), and M = m − 2 (red). Diamonds:
|δνμ

j,m| for μ = +2 (blue) and μ = −2 (red).

where

ch
∣∣δν±2

j,m

∣∣
max/(�αIav )

= 107π

√
( j ∓ m)( j ∓ m − 1)( j ± m + 2)( j ± m + 1)

(2 j + 3)(2 j − 1)
.

(34b)

These can be regarded as generalized ac Stark shifts, but are
actually cross-m transition coefficients. Equation (26a) gives
2E∗

±1E∓1 = |Ey|2 − |Ex|2 ± i(E∗
x Ey + ExE∗

y ), whose absolute
value satisfies

2|E∗
±1E∓1|/|E|2

=
√

|Ey|4 + |Ex|4 + E∗2
x E2

y + E2
x E∗2

y /|E|2 � 1,

with E∗
±1E∓1 → 0 for pure circular polarization E−1 or

E+1 → 0. Figure 5 also plots |δν±2
j,m|

max
for the N2 j = 8

line, using the same parameters as the δν0(m, M ) plots, and
clearly shows that even at intensities up to 10 GW/cm2 all
of these ac Stark shifts remain negligible compared to the
�ν10,8 � 3 GHz linewidth.

VI. SUMMARY AND FUTURE WORK

We have generalized the SRRS theory to a full tensor
formulation in order to examine the advantages of elliptical
polarization over the linearly polarized beams used earlier and
to explore the possibility of exploiting the higher SRRS gain
allowed by combining mixed circular polarizations. In addi-
tion, we performed 3D simulations comparing the spectral
broadening capabilities of linear vs elliptical polarizations on
low divergence (≈8 XDL) Nike beams. Linear polarization,
which limits the SRRS gain by parametric Stokes suppression,
produced moderate broadening with little Stokes shift and
reduced tc from 0.54 to 0.27 ps, while elliptical polarization,
which avoids that limitation, produced a prominent ≈2-Thz
Stokes-shifted sidelobe and reduced tc to 0.19 ps. This coher-
ence time is still larger than the estimated ≈0.12 ps needed

063530-9



R. H. LEHMBERG et al. PHYSICAL REVIEW A 102, 063530 (2020)

to suppress CBET and other laser-plasma instabilities, but the
path length, pulse shape, and ≈0.15-GW/cm2 peak envelope
intensity used here were chosen only to compare with our
earlier results [10]. One can achieve shorter coherence times
by just using higher intensities and adjustments in the timing
of the two circular polarizations. In addition, the more gen-
eral formulation presented here will enable us to explore the
possibility of combining incident beams of alternating circular
polarizations with different spectra and angular divergences to
simultaneously reduce both the coherence times and the focal
spot broadening.

In future work, we will apply the code to model additional
experiments at the Naval Research Laboratory and other fa-
cilities with a primary emphasis on how to achieve adequate

spectral broadening and short coherence times without ex-
cessive far-field broadening and beam quality degradation.
Experiments at other facilities include earlier observation of
multiple SRRS Stokes orders at the Lawrence Livermore Na-
tional Laboratory [9] and the ongoing effort to achieve broader
bandwidths in the FLUX parametric amplifier system at the
University of Rochester Laboratory for Laser Energetics [12].
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APPENDIX A

This Appendix expands the tensor equations (5) (with 〈α〉 → 〈α〉 j) and (16) into the two opposite circularly polarized
components of the field amplitudes E using the ε̂±1 basis defined by expressions (17) and (18). To express the transverse part of
the α operator in Eq. (6a) in the ε̂±1 basis, we first expand it into x̂ and ŷ [39],

α

�α
=

∑
n̂=x̂,ŷ

∑
n̂′=x̂,ŷ

n̂n̂ ·
(

r̂r̂ − 1

3
Ī
)

· n̂′n̂′

= x̂x̂
[

1

2
sin2 θ (1 + cos 2φ) − 1

3

]
+ ŷŷ

[
1

2
sin2 θ (1 − cos 2φ) − 1

3

]
+ (x̂ŷ + ŷx̂)

1

2
sin2 θ sin 2φ,

then transform x̂ and ŷ to the ε̂±1 basis to obtain the key quadrupole operator theorem:

α

�α
= +1

2
(ε̂−1 − ε̂+1)(ε̂−1 − ε̂+1)

[
1

2
sin2 θ (1 + cos 2φ) − 1

3

]

− 1

2
(ε̂−1 + ε̂+1)(ε̂−1 + ε̂+1)

[
1

2
sin2 θ (1 − cos 2φ) − 1

3

]

+ i

4
[(ε̂−1 − ε̂+1)(ε̂−1 + ε̂+1) + (ε̂−1 + ε̂+1)(ε̂−1 − ε̂+1)] sin2 θ sin 2φ

= −
√

8π

15

[√
1

6
Y 0

2 (θ )Î⊥ + Y +2
2 (θ, φ)ε̂∗

+1ε̂−1 + Y −2
2 (θ, φ)ε̂∗

−1ε̂+1

]
, (A1)

where

Y 0
2 (θ ) ≡

√
5

16π
(3 cos2 θ − 1), (A2a)

Y ±2
2 (θ, φ) ≡

√
15

32π
sin2 θ exp(±2iφ) (A2b)

are the respective orthonormal L = 2 spherical harmonic eigenfunctions |2, 0〉 and |2,±2〉. The rotational matrix elements of
Y μ

L (θ, φ) are then real and satisfy the identity [47]

〈 j′, m′|Y μ
L | j, m〉 =

∮ (
Y m′

j′
)∗

Y μ
L Y m

j d� =
√

(2L + 1)(2 j + 1)

4π (2 j′ + 1)
C j′,0

j,0;L,0C j′,m′
j,m;L,μ, (A3)

where L → 2; μ → 0,±2; and the real matrix elements of interest

C j′,m′(=m+μ)
j,m;2,μ ≡ 〈 j, m; 2, μ|| j′, m′〉δm′,m+μ

=
√

2 j′ + 1

2 j + 1
C j,−m(=−m′+μ)

j′,−m′;2,μ (A4)

are the Clebsch-Gordan (CG) coefficients. Expression (A3) is just the spherical harmonic version of the Wigner-Eckart theorem
[47].
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To derive the working SRRS equations, substitute these results into (A1):

〈 j, m| α

�α
|J, M〉 = −

√
2(2J + 1)

3(2 j + 1)
C j,0

J,0;2,0

(√
1/6C j,m=M

J,M;2,0Î⊥ + C j,m=M+2
J,M;2,+2 ε̂∗

+1ε̂−1 + C j,m=M−2
J,M;2,−2 ε̂∗

−1ε̂+1
)
, (A5)

where 〈J, M|α/�α| j, m〉 is found by interchanging j, m � J, M. Substituting this into Eq. (16) and applying (17), we obtain(
∂2
τ + �ω j∂τ + ω2

j

)〈α〉 j

(�α2/h̄)ω j�n̂ j
=

∑
m,M

〈 j, m| α

�α
|J, M〉E∗ · 〈J, M| α

�α
| j, m〉 · E

= 1

3
C j,0

J,0;2,0CJ,0
j,0;2,0

∑
m,M

(√
1

6
C j,m=M

J,M;2,0Î⊥ + C j,m=M+2
J,M;2,+2 ε̂∗

+1ε̂−1 + C j,m=M−2
J,M;2,−2 ε̂∗

−1ε̂+1

)

×
(√

1

6
CJ,M=m

j,m;2,0 |E|2 + CJ,M=m+2
j,m;2,+2 E∗

+1E−1 + CJ,M=m−2
j,m;2,−2 E∗

−1E+1

)
. (A6)

The product of the two brackets gives the terms C j,0
J,0;2,0C

j,m
J,M;2,νCJ,0

j,0;2,0CJ,M
j,m;2,μ, where μ and ν can be 0 or ±2. Using (A2) and

(A3), we can rewrite this as

C j,0
J,0;2,0C

j,m
J,M;2,νCJ,0

j,0;2,0CJ,M
j,m;2,μ = 4π

5
〈J, M|Y −ν

2 | j, m〉〈J, M|Y +μ
2 | j, m〉 = 4π

5
〈2, ν|Y −M

J | j, m〉〈2,−μ|Y −M
J | j, m〉

= (2 j + 1)(2J + 1)

52

(
C2,0

j,0;J,0

)2
C2,+ν

j,m;J,−MC2,−μ
j,m;J,−M .

We then combine the completeness identity∑
m,M

C2,+ν
j,m;J,MC2,−μ

j,m;J,M =
∑
m,M

〈2,+ν|| j, m; J, M〉〈 j, m; J, M||2,−μ〉 = 〈2,+ν||2,−μ〉 = δν,−μ

with Eq. (B2), which is calculated in Appendix B, to obtain the CG identity∑
m,M

C j,0
J,0;2,0C

j,m
J,M;2,νCJ,0

j,0;2,0CJ,M
j,m;2,μ = (2 j + 1)(2J + 1)

52

(
C2,0

j,0;J,0

)2
δν,−μ = 3( j + 2)( j + 1)

10(2 j + 3)
δν,−μ.

Finally, we apply this identity to (A6) to obtain the driven oscillator equation

(
∂2
τ + �ω j∂τ + ω2

j

)〈α〉 j = ( j + 1)( j + 2)ω j�α2�n̂ j

10(2 j + 3)h̄

(|E|2Î⊥/6 + E∗
−1E+1ε̂

∗
+1ε̂−1 + E∗

+1E−1ε̂
∗
−1ε̂+1

)
. (A7)

APPENDIX B

This Appendix derives the required Clebsch-Gordan coefficients for J → j + 2 or j from the Racah formula [48]:

CJ,m+μ
j,m;2,μ =

√
(2J + 1)(J + j − 2)!(J − j + 2)!( j + 2 − J )!

( j + 2 + J + 1)!
RJ,m+μ

j,m;2,μSJ,m+μ
j,m;2,μ, (B1)

where

RJ,m+μ
j,m;2,μ ≡

√
(J + m + μ)!(J − m − μ)!( j − m)!( j + m)!(2 − μ)!(2 + μ)!,

SJ,m+μ
j,m;2,μ ≡

∑
k

(−1)k

k!( j + 2 − J − k)!( j − m − k)!(2 + μ − k)!(J − 2 + m + k)!(J − j − μ + k)!
,

k are integers �0, and all terms with negative factorials are excluded.
Example 1. Choose J → j + 2 and m = μ → 0 to obtain S j+2,0

j,0;2,0 = 1/(2 j!)2 and

CJ,0
j,0;2,0 → C j+2,0

j,0;2,0 =
√

3( j + 2)( j + 1)

2(2 j + 3)(2 j + 1)
.

We relate this to C2,0
j,0; j+2,0 by recalling Eq. (A3) and noting that 〈J, 0|Y 0

2 | j, 0〉 = 〈2, 0|Y 0
J | j, 0〉:

(
C2,0

j,0; j+2,0

)2 = 5

2 j + 5

(
C j+2,0

j,0;2,0

)2 = 15( j + 2)( j + 1)

2(2 j + 5)(2 j + 3)(2 j + 1)
. (B2)
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Example 2. Choose J → j and μ → 0 or ±2 to obtain

S j,m+μ

j,m;2,μ =
2∑

k=0

(−1)k

k!(2 − k)!( j − m − k)!(2 + μ − k)!( j − 2 + m + k)!(−μ + k)!

= 6mμ − 4 j − 12 jmμ − 4 j2 + 12m2 − 2 jμ2 + 4 j2μ2

2( j − m)!( j + m)!(2 + μ)!(2 − μ)!
,

C j,m+μ

j,m;2,μ =
√

(2 j + 1)(2 j − 2)!(2)!(2)!

(2 j + 3)!

√
( j + m + μ)!( j − m − μ)!( j − m)!( j + m)!(2 − μ)!(2 + μ)!S j,m+μ

j,m;2,μ

=
√

( j + m + μ)!( j − m − μ)!

j(2 j + 3)( j + 1)(2 j − 1)( j − m)!( j + m)!(2 + μ)!(2 − μ)!

[
3mμ − 2 j − 6 jmμ − 2 j2 + 6m2 − jμ2 + 2 j2μ2],

which reduces to

C j,0
j,0;2,0 = −

√
j( j + 1)

(2 j + 3)(2 j − 1)
.

These combine to give

C j,0
j,0;2,0C j,m+μ

j,m;2,μ = −
√

( j + m + μ)!( j − m − μ)!

( j − m)!( j + m)!(2 + μ)!(2 − μ)!

3mμ − 2 j − 6 jmμ − 2 j2 + 6m2 − jμ2 + 2 j2μ2

(2 j + 3)(2 j − 1)
. (B3)

For μ → 0 and ±2, Eq. (32) then gives

−δν0
j,m = �α

6h

3m2 − j( j + 1)

(2 j + 3)(2 j − 1)
|E|2, (B4)

−δν±2
j,m = �α

2h

√
( j ∓ m)( j ∓ m − 1)( j ± m + 2)( j ± m + 1)

(2 j + 3)(2 j − 1)
E∗

±1E∓1. (B5)
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