
PHYSICAL REVIEW A 102, 063525 (2020)

Transient perturbative nonlinear responses of plasmonic materials
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Recent investigations on optical nonlinearities of plasmonic materials suggest their responses may be even
beyond the usual perturbative description. To better understand these surprisingly strong responses, we develop
here a simple but general approach to describe the nonlinear optical response of plasmonic materials up to nth
perturbation order. We apply the approach to understand spectral broadening occurring in resonant metasurfaces
and investigate the enhancement of multiharmonic generation from multiply resonant metasurfaces, predicting
an over 1×106-fold enhancement of higher harmonics.
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I. INTRODUCTION

Photonic metamaterials, i.e., artificial materials that en-
able subwavelength length scale control of light, play a key
role in modern nanophotonics [1,2]. Besides the study of
the linear optical responses of metamaterials, a growing in-
terest has emerged in the recent years to understand also
their nonlinear responses [3–7], as they are essential in many
different applications including frequency conversion, high-
and multiharmonic generation (MHG), ultrashort pulse gen-
eration, and frequency combs [8,9]. Spectral broadening and
supercontinuum generation (SCG) are particularly interest-
ing nonlinear phenomena that are utilized to make spectrally
broad and coherent light sources [10], which have found
numerous applications for example in gas sensing [11], gen-
eration of few-cycle pulses [12,13], optical metrology [14],
spectroscopy [15,16], and optical coherence tomography [17].
Consequently, these two nonlinear phenomena are of consid-
erable scientific and technological interest.

Spectral broadening and SCG occur ubiquitously in solids,
liquids, and gases [18–23]. Unfortunately, the intrinsic ma-
terial nonlinearities giving rise to these phenomena are very
weak, making it necessary to use strong excitation pulses from
amplified laser systems with peak intensities of the order of
1014 W/cm2 to exploit those nonlinear effects. Nonlinear op-
tical fibers, for example, provide a relatively flexible platform
that can be also utilized with moderate peak intensities [10].
However, their big disadvantage is the requirement for long
interaction lengths, which makes them incompatible with the
small footprint typical of nanophotonic devices.

Integrated photonic supercontinuum sources, on the other
hand, are characterized by small footprint and compatibility
with mass production, representing an ideal platform for the
realization of on-chip SCG [14,24]. The recent demonstra-
tions of SCG from plasmonic nanoparticles and metasurfaces,
in particular, have raised the interest to further investigate their
properties, in particular the out-of-equilibrium dynamics of
conduction electrons occurring in such systems, as they are
responsible for both SCG and spectral broadening [25–27].

Many of the experiments have been performed using only
moderate peak intensities (1010–1011 W/cm2), prompting the
investigation of the possible origins of the responses, because
conventional theory predicts the necessity to use order-of-
magnitude higher intensities to realize efficient SCG from
such thin materials [27].

Moreover, because the complex dynamics of conduction
electrons in plasmonic materials dictate their optical proper-
ties [25], it seems natural to assume that the same dynamics
are pivotal also in SCG occurring in such systems. To this
aim, the hydrodynamic model has recently reemerged as a
powerful tool to understand the conduction electron dynamics
[28–30], and has also been used to propose that nonlocal
and nonperturbative effects occurring in plasmonic materials
could play a major role in the surprisingly strong SCG [27,30].
However, it is not yet clear whether other effects could also
participate in the process.

In this paper, we investigate the transient nonlinear re-
sponses of plasmonic systems motivated by the fact that
modern experiments are often performed using ultrashort laser
pulses. We extend the simple anharmonic oscillator model,
commonly used to describe nonlinear responses, by taking
into account the transient response of the system and by
generalizing the treatment to include up to n perturbation
orders. We show that considerable spectral broadening of ul-
trashort pulses may take place in resonant plasmonic systems,
such as in metasurfaces. We also predict that dramatic six
to seven order-of-magnitude enhancement of higher-harmonic
processes up to sixth harmonic could occur in plasmonic
structures exhibiting multiple resonances.

Our paper is organized as follows: In Sec. II we use the
Green’s-function approach to extend the usual anharmonic
oscillator model to include the transient dynamics up to nth
perturbation order. In Sec. III we discuss how accounting for
the transient response of the system could result in a signifi-
cant broadening of the incident ultrafast pulse. We also discuss
how the transient contributions into the light-matter interac-
tion could result in a significant enhancement of the MHG
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process in multiresonant plasmonic structures. In Sec. IV, we
draw the conclusions.

II. THEORY

We start our analysis by considering the classical anhar-
monic oscillator model and seek to describe the time-varying
displacement of the conduction electron x̃(t ). We assume the
electron to be forced into motion by an incident field

Ẽ (t ) = 1√
2π

∫
�ω

E (ω′)e−iω′t dω′, (1)

where the Fourier integral extends over the incident pulse
frequencies �ω centered at the fundamental frequency ω. We
further assume Ẽ to be strong enough, so that the electron
oscillation becomes noticeably anharmonic, while we take
Ẽ to be weak enough to allow describing the anharmonic
motion perturbatively. In this case, the forced oscillation of
the electron displacement can be described using the classical
anharmonic oscillator model [31]

¨̃x + 2γ ˙̃x + ω2
0 x̃ + ax̃2 = −eẼ (t )/m, (2)

where γ is the damping constant, ω0 is the resonance fre-
quency of the oscillator, e is the electric charge, m is the
effective mass of the electron, and a is a parameter describing
the anharmonicity of the oscillator. The tilde and overdot nota-
tions denote time-varying quantities and their time derivatives,
respectively. We also note that the above anharmonic oscil-
lator model applies for noncentrosymmetric materials where
quadratic nonlinearities are allowed [31]. Generalization of
the treatment to centrosymmetric materials is straightforward
but long, given therefore as the Appendix. Although no ana-
lytical solutions of Eq. (2) are available, in the case of weak
nonlinearities (ax̃ � ω2

0), an approximate perturbative solu-
tion of form

x̃(t ) = x̃1(t ) + x̃2(t ) + x̃3(t ) + · · · + x̃n(t ) (3)

is commonly solved up to the first few orders in terms of its
steady-state solution [31]. Here, we extend the conventional
treatment to include the transient response of the oscillator and
by finding a general solution taking into account perturbative
corrections up to nth order. This allows us to calculate the per-
turbative behavior of the anharmonic oscillator for arbitrary
input profiles Ẽ (t ).

Substituting the ansatz above into Eq. (2) and equating the
terms of the same perturbative order, we get the following set
of coupled differential equations, for the various perturbation
orders:

¨̃x1 + 2γ ˙̃x1 + ω2
0 x̃1 = −eẼ (t )/m, (4a)

¨̃x2 + 2γ ˙̃x2 + ω2
0 x̃2 = −ax̃2

1, (4b)

¨̃x3 + 2γ ˙̃x3 + ω2
0 x̃3 = −2ax̃1x̃2, (4c)

...

¨̃xn + 2γ ˙̃xn + ω2
0 x̃n = −a

∑
|α|=2

(
2
α

)
x̃α. (4d)

The right-hand side of the nth equation follows from the
multinomial theorem, and takes use of the multi-indices α =

(α1, α2, . . . , αn) and x̃α = x̃α1
1 x̃α2

2 . . . x̃αn
n . Note that x̃3 can be

seen to arise from cascaded nonlinear processes, where light
generated by the second-order correction term (x̃2) gives rise
to higher-order terms via process of sum-frequency genera-
tion. Similarly, the higher-order terms can be seen to arise
from cascaded processes of lower order.

The complete linear response, i.e., the solution of Eq. (4a),
can be written as a convolution of the Green’s function G̃ of
the unperturbed oscillator and the incident field Ẽ [32]:

x̃1(t ) = − e

m

∫ ∞

−∞
G̃(t − t ′)Ẽ (t ′) dt ′ = − e

m
G̃ � Ẽ . (5)

In the last equality we have introduced � as a shorthand to
indicate the convolution operation. The time-domain Green’s
function of an underdamped oscillator is [32]

G̃(t ) = e−γ t

ωtr
sin (ωtrt )�(t ), (6)

where ωtr =
√

ω2
0 − γ 2 is the natural frequency of the oscil-

lator and �(t ) is the step function imposed due to causality
of the system. Note that Eq. (5) contains an important result:
while the motion of an electron described by Eq. (5) will,
at equilibrium, oscillate following the driving field Ẽ (t ), on
a timescale of the order of τ = γ −1, the electron oscillates
also at its natural frequency ωtr, rather than only following the
impinging field. If this transient timescale, which for bulk gold
and silver, for example, is around 10 and 30 fs, respectively
[33], is comparable with the characteristic timescale of the
driving pulse, efficient coupling between the transient and
driven electron dynamics will take place.

The solution for the second- and third-order correction
terms x̃2 and x̃3 can then be found by solving Eqs. (4b) and
(4c) with the aid of the first-order solution. To do that, it is
convenient to work in the frequency domain, where the con-
volution can be regarded as a simple multiplication, allowing
us to rewrite Eq. (5) as

x̂1(ω) = − e

m
Ĝ(ω)Ê (ω), (7)

where the hat notation indicates that the variable is described
in the frequency domain. The frequency-domain Green’s
function of the underdamped oscillator Ĝ(ω) is explicitly
given as

Ĝ(ω) = A0

ωtr

(
1

γ + i(ω − ωtr )
− 1

γ + i(ω + ωtr )

)
, (8)

where the scaling of the spectral amplitude A0 is dictated by
the investigated structure. Using Eq. (7) and the result above,
the solutions of Eqs. (4b)–(4d) can be then written in the
following compact form:

x̂2(ω) = −a Ĝ(ω)[x̂1(ω) � x̂1(ω)], (9a)

x̂3(ω) = −2a Ĝ(ω)[x̂1(ω) � x̂2(ω)], (9b)
...

x̂n(ω) = −a Ĝ(ω)
∑
|α|=2

(
2
α

)
x̂α (ω). (9c)
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Here, the nth-order solution is concisely written using
multi-index notation x̂α = x̂α1

1 � x̂α2
2 � ... � x̂αn

n . Note that be-
cause convolution in the frequency domain results in a sum
between the various frequencies involved in the process,
x̂2(ω) contains terms that oscillate, in addition to the ex-
pected frequency 2ω, also at frequencies 2ωtr, and ω + ωtr,
corresponding, respectively, to the second-harmonic genera-
tion centered at the transient frequency, and sum-frequency
generation involving the driving frequency and the transient
frequency. Similarly, x̂3(ω) will contain terms oscillating,
in addition to the expected 3ω, also at 3ωtr, 2ω + ωtr, and
2ωtr + ω.

Equations (9a)–(9c) are the main result of our paper, and
allow us a convenient way to find the general solution for the
driven anharmonic oscillator system governed by Eq. (2) up to
the nth perturbative order. This general solution includes the
possible transient contributions to the overall response, which
may be important either when the driving fields are very short
pulses (≈fs) or when the system exhibits dynamics occurring
at similar/longer time scales.

Taking into account the transient dynamics of the con-
duction electrons in plasmonic systems gives rise to the
generation of new frequencies and modulation of existing
frequency components associated with the incident pulse. In-
terestingly, we see that the characteristic transient frequency
of the system ωtr dictates the occurrence of the nonlinear
processes allowing means to engineer them. For example, one
could control the spectral broadening of an incident pulse by
designing a system where the center frequency of the incident
pulse and the transient frequency ωtr coincide, where the
strongest spectral broadening is expected to occur near ωtr.
This spectral broadening mechanism is interesting because
the frequency components retain their phase coherence poten-
tially being useful also for ultrashort pulse generation [8,34].

III. RESULTS AND DISCUSSION

To validate our findings, we first calculate the emission
spectrum of a metasurface consisting of identical plasmonic
gold nanoparticles, by using the perturbative solution to
Eq. (3) as found above. The nanoparticles are taken to ex-
hibit a localized plasmon resonance, peaking near 1.54 eV
and associated with the relaxation time τ = 10 fs similar to
bulk gold [33]. The nonlinear coefficient a was taken to be
20 m−1 s−2, resulting in calculated SHG efficiencies that agree
with earlier experiments on gold nanoparticle arrays [35].

We start our analysis by taking an incident pulse with a
Gaussian temporal profile with a full width at half maximum
of 100 fs, centered at λ = 805 nm (1.54 eV), and investigate
the spectral broadening of the incident field upon interaction.
The peak intensity of the incident pulse is assumed to be
20 TW/cm2, which can be readily achieved using a beam
from an amplified system, such as a 1-kHz amplifier with
15-mW average power, focused to a spot with a radius of
20 μm. A representative calculated emission spectrum ob-
tained from the metasurface defined above is shown in Fig. 1,
where the spectral broadening of the incident pump field (red
solid curve) is clearly visible. The calculations were repeated
while varying the number of included perturbative terms
n = 5, 10, and 15. For each calculation, the validity of the

FIG. 1. Calculated emission spectrum showing spectral broaden-
ing as a function of included perturbation terms n. The input pump
(red curve) is centered at 805 nm (1.54 eV), and a single material
resonance (τ = 10 fs) is taken to coincide with the pump wavelength.
The blue curve acts as a guide to the eye and visualizes the spectral
profile of the Green’s function associated with the metasurface.

perturbation expansion was carefully checked by calculating
the amplitude of ax̃. In all cases, ax̃ < 3.4×1012 s−2 � ω2

0,
validating the perturbative approach. Surprisingly high per-
turbative terms (n > 10) were found to still visibly affect the
predicted spectral broadening. This demonstrates the power
of the introduced approach, which allows these contribu-
tions to be included with ease. Overall, the result shown in
Fig. 1 suggests that resonant metasurfaces could be used also
for spectral broadening of ultrashort pulses. The advantages
of metasurfaces compared to traditional materials include
compact size, wavelength tunability, and the possibility to en-
gineer the wavefront of interacting free-space beams [36,37].
In addition, metasurfaces are free of phase-matching consid-
erations, that arise from material dispersion in conventional
nonlinear bulk materials [6].

As a second demonstration of the introduced approach,
we investigate MHG in plasmonic metasurfaces. It has
been recently realized that collective responses of periodic
nanostructures can support narrow resonances [38–40]. The
decay times of these narrow resonances can be considerably
longer than those of bulk metals. In addition, the possibil-
ity to fabricate metasurfaces supporting multiple resonances
has also been recently demonstrated [41,42]. Here, we are
interested to understand how the emission spectrum and
process of MHG could be engineered by utilizing the
above-mentioned plasmonic metasurfaces exhibiting multiple
narrow resonances.

First, we consider the metasurface and incident pulse
as described above except for the assumed peak inten-
sity. Here, we use a lower peak intensity of 100 GW/cm2.
Such peak intensity can already be achieved using a
20-mW mean power output beam from a 1-MHz repetition
rate oscillator, now focusing the beam into a spot with a
radius of 10 μm. Such excitation conditions result in mean
power below 0.07 mW/μm2, which is considerably lower
than 1–10 mW/μm2 powers that have been reported to result
in heating-induced damage of plasmonic nanomaterials [43].
In the calculations, the first ten perturbative terms are taken
into account (n = 10). Again, the validity of the perturba-
tion expansion was checked by calculating the amplitude of
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FIG. 2. Calculated emission spectrum (for n = 10) using a pump beam centered at 1.54 eV. Blue curves act as guides to the eye and
visualize the Green’s functions associated with the metasurfaces. Emission spectra for singly resonant (a) and multiresonant (b) metasurfaces
associated with resonances exhibiting relaxation times of τ = 10 fs. MHG up to the fourth harmonic is visible. Emission spectra for singly
resonant (c) and multiresonant (d) metasurfaces with τ = 100 fs. (d) MHG up to the sixth harmonic is clearly visible.

ax̃, which was found in all calculations to be smaller than
8.2×1010 s−2, validating the approach. The calculated emis-
sion spectrum is shown in Fig. 2(a), demonstrating MHG.
Then we study a multiresonant metasurface that exhibits ma-
terial resonances at frequencies of 1.54, 3.08, and 4.62 eV,
which coincide with the fundamental, second-, and third-
harmonic peaks of the incident pulse. The relaxation times
of these resonances are taken to be the same as above
(τ = 10 fs). As these resonances occur at the harmonics of the
incident pulse frequency (1.54 eV), their presence is expected
to enhance MHG. This is also seen in the calculated emission
spectrum shown in Fig. 2(b), where most notably the field
amplitude of the fourth-harmonic peak is increased 1560-fold
compared to the singly resonant metasurface [Fig. 2(a)].

We then investigate singly and multiply resonant meta-
surfaces that exhibit resonances with longer relaxation times
(τ = 100 fs) than considered above. As mentioned in Sec. II,
100-fs-long pulses used to excite the metasurfaces are ex-
pected to couple almost optimally to such resonances. We
also note that such metasurfaces could potentially be realized
by utilizing Fabry-Pérot resonances and collective responses
occurring in metasurfaces [41,42]. The calculated emission
spectra for these singly and multiply resonant metasurfaces
are shown in Figs. 2(c) and 2(d), respectively. Comparing the
calculated emission spectra of singly resonant metasurfaces
[Figs. 2(a) and 2(c)], we see that the narrower resonance re-
sults in a 7700-fold (40-fold) enhancement of third-harmonic
generation (fourth-harmonic generation).

It is even more interesting to compare the emission spectra
of the singly resonant metasurface against the multiresonant

case with narrow resonances [Figs. 2(a) and 2(d)]. In this
case, the field enhancements are calculated to be 3.94×106

(10.36×106) for the third-harmonic (fourth-harmonic) peak.
We also note for the case of the multiresonant metasurface
that even the fifth-harmonic and sixth-harmonic peaks are now
clearly visible. Together these results prompt the investigation
of how such multiresonant metasurfaces could be designed
and realized [41,42].

Next, we discuss the origin of the higher-order processes
of spectral broadening and MHG, as it might seem surprising
that the anharmonic oscillator model [Eq. (2)], exhibiting only
a quadratic nonlinearity, predicts their occurrence. However,
their origin is understood by considering cascaded nonlinear
processes, where the lower-order nonlinear processes give rise
to effective higher-order nonlinear processes [44–48]. Here,
at the beginning of the light-matter interaction, the quadratic
nonlinearity gives rise to second-order processes and asso-
ciated new frequency components [Eq. (9a)], that will later
on act as seeds in further quadratic nonlinear interactions
[Eq. (9b)]. These and subsequent cascaded second-order pro-
cesses will then effectively manifest as higher-order processes
[Eq. (9c)]. Therefore, we see that by using the introduced
approach such cascaded higher-order processes can be taken
into account simply by including higher-order perturbative
terms. This is interesting because our approach allows sim-
ple and intuitive means to understand and even engineer the
occurrence of higher-order processes in metasurfaces.

Then, we consider the asymptotic behavior of the model by
taking an increasingly long relaxation time τ (i.e., vanishingly
small damping term γ ). In this case, the transient responses
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no longer quickly decay, suggesting that they remain non-
negligible even under continuous-wave illumination. Despite
vanishingly small γ being strictly nonphysical, we note that
recent experimental and numerical investigations on collec-
tive responses of metal nanoparticle arrays, known as surface
lattice resonances, suggest that systems associated with quite
long relaxation times (≈ps) can be fabricated [38,39,49].
Furthermore, even though the relaxation times of plasmonic
excitations can be controlled to a degree by changing the
temperature of the system [50], we believe it is considerably
easier to design structures such as studied here by engineering
the relaxation times by controlling the radiative losses of the
system [49].

Last, we consider the validity of the perturbative descrip-
tion for the studied resonant and multiresonant metasurfaces.
In all the cases studied here, the assumption of weak non-
linearities (ax̃ � ω2

0) was strictly valid and the perturbative
description adequate. However, we note that for metasurfaces
supporting long-lasting plasmon excitations saturation effects
arising from the complex population dynamics of the associ-
ated conduction electrons might start playing a role. In such
cases, the introduced model that only considers the dynamics
of a single conduction electron will obviously be inadequate.
However, despite these limitations we think that the intro-
duced model will be a highly useful tool for understanding
the main driving parameters of studied multiresonant meta-
surfaces.

IV. CONCLUSIONS

We have investigated the nonlinear optical responses of
plasmonic materials by extending the anharmonic oscillator
model, commonly used to describe nonlinear responses, by
taking into account also the transient response of the sys-
tem and by finding a general solution including up to n
perturbative orders. The approach allows us to better under-
stand the nonlinear responses of these materials and provides
means to engineer their responses for applications, such as
for spectral broadening or frequency conversion. Our results
suggest that considerable spectral broadening of ultrashort
pulses may occur in metasurfaces due to the transient response
of the system. We also predict that higher-harmonic processes,
namely, the sixth-harmonic generation, could be enhanced
over a 1×106-fold by utilizing multiply resonant plasmonic
structures.
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APPENDIX

For completeness, here we generalize concisely the intro-
duced treatment to centrosymmetric materials. Because of
symmetry considerations, the quadratic anharmonicity term
vanishes, resulting in the cubic anharmonic oscillator model

[31]:

¨̃x + 2γ ˙̃x + ω2
0 x̃ + bx̃3 = −eẼ (t )/m, (A1)

where all the variables have been already defined in the main
text except for the parameter b that is the cubic anharmonic-
ity of the system. Again, in the case of weak nonlinearities
(bx̃2 � ω2

0), an approximate perturbative steady-state solution
now of the form

x̃(t ) = x̃1(t ) + x̃3(t ) + x̃5(t ) + · · · + x̃n(t ) (A2)

can be found [31]. Here, we extend the conventional treatment
by finding a general perturbative solution to Eq. (A1) by tak-
ing into account perturbative corrections up to the nth order.
This allows us to also calculate the perturbative behavior of
the cubic anharmonic oscillator for arbitrary input profiles
Ẽ (t ).

Substituting the ansatz of Eq. (A2) into Eq. (A1) and
equating the terms of the same perturbative order, we get the
following set of coupled differential equations, for the various
perturbation orders:

¨̃x1 + 2γ ˙̃x1 + ω2
0 x̃1 = −eẼ (t )/m, (A3a)

¨̃x3 + 2γ ˙̃x3 + ω2
0 x̃3 = −bx̃3

1, (A3b)

¨̃x5 + 2γ ˙̃x5 + ω2
0 x̃5 = −3bx̃2

1 x̃3, (A3c)

¨̃x7 + 2γ ˙̃x7 + ω2
0 x̃7 = −3b(x̃2

1 x̃5 + x̃2
3 x̃1), (A3d)

...

¨̃xn + 2γ ˙̃xn + ω2
0 x̃n = −b

∑
|α|=3

(
3
α

)
x̃α. (A3e)

The concisely written equation for the general nth-order
term again makes use of the multi-index notation.

Transforming the above equations into the frequency do-
main and by using Eq. (7), the solutions for Eqs. (A3b)–(A3e)
can be then written compactly as

x̂3(ω) = −a Ĝ(ω)[x̂1(ω) � x̂1(ω) � x̂1(ω)], (A4a)

x̂5(ω) = −3b Ĝ(ω)[x̂1(ω) � x̂1(ω) � x̂3(ω)], (A4b)

x̂7(ω) = −3b Ĝ(ω)[x̂1(ω) � x̂1(ω) � x̂5(ω)

+ x̂3(ω) � x̂3(ω) � x̂1(ω)], (A4c)
...

x̂n(ω) = −b Ĝ(ω)
∑
|α|=3

(
3
α

)
x̂α (ω). (A4d)

Again, multi-index notation x̂α = x̂α1
1 � x̂α2

2 � ... � x̂αn
n is

used. Looking at the above terms, it is clear that the found
perturbative solution reproduces the known experimental re-
sult that such cubic (i.e., centrosymmetric) media result in
MHG spectra, solely consisting of the odd harmonics of the
pump. However, our approach does provide insights and de-
sign criteria to develop novel materials, such as nonlinear
metamaterials or two-dimensional materials [51,52], for non-
linear processes of interest, such as for MHG. For example,
looking at the above solution we see that by designing the non-
linear material to exhibit resonances at frequencies 3ω and/or
5ω, the overall efficiency to generate the seventh harmonic
could be enhanced. Perhaps more importantly, in addition to
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enhancing the efficiency of the process, such resonance engi-
neering could be utilized to control the phase of the generated

harmonic component [53–55]. Such intuition cannot be easily
formed by resorting to purely numerical approaches.
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