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Implementation of generalized Harvey-Shack theory in light scattering from rough surfaces
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We present a discrete implementation of generalized Harvey-Shack scalar scattering theory to calculate
angular intensity distributions from height profiles of select randomly textured surfaces proposed for use in solar
cells and covering a wide range of surface characteristics. We compare these calculations to high-resolution
angular intensity distribution measurements. These comparisons suggest that the pupil function does benefit
from an additional correction factor for rough surfaces containing lateral feature sizes on the order of the
wavelength, which can be attributed to effective medium effects. Moreover, secondary interactions within the
surface topography are shown to be a mechanism that partly redistributes scattered power, affecting angular
intensity distribution results. These mechanisms emerge as the two main limitations of the Harvey-Shack scalar
scattering theory in the far field, which nonetheless produces remarkable quantitative predictions.
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I. INTRODUCTION

Light scattering at surfaces is an important phenomenon
in numerous optical applications ranging from noncontact
metrology [1], geophysical remote sensing [2], x-ray imag-
ing and extreme ultraviolet (EUV) photolithography systems
[3–5], and realistic rendering in computer graphics [6], to
stray light rejection systems [7]. Particularly in thin-film solar
cell applications, light scattering from textured interfaces with
micron- to submicron-size lateral features is often a desirable
characteristic to increase optical path length and light trapping
inside active layers, leading to photocurrent enhancement.
However, increasing surface roughness is often detrimental
to the material quality of subsequent layers, and degrades the
electronic performance of the device [8]. In order to optimize
such textures, it is desirable to have a modeling approach
which is accurate, computationally accessible, and relatively
parameter free, to predict the angular distribution of light after
scattering from randomly and/or orderly textured interfaces,
with arbitrary roughness, into slabs of material of arbitrary
thickness, arbitrary refractive index, and for arbitrary inci-
dence angles.

Historically, the two main approaches to the problem of
surface scattering based on some approximation of Maxwell’s
equations consisted of the Rayleigh-Rice small-amplitude
vector perturbation theory [9–13], which remains valid for
large scatter angles and incorporate polarization effects, but
is limited to smooth surfaces (σ/λ � 1), and the Beckmann-
Kirchhoff scalar scattering theory [14], which remains valid
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for rough surfaces but contains a paraxial approximation
that limits its use to small incidence and scatter angles.
Developments in small-amplitude perturbation theory using
the reduced Rayleigh equation (RRE) method [15–20] have
enabled the study of higher-order coherent localization and
multiple scattering effects, albeit for sufficiently small slopes
and at the cost of computational complexity. Derivatives of
the former approach, including the work of Carniglia [21],
together with earlier work by Bennett and Porteus [22], have
been used for total integrated scatter or haze calculations [23],
(i.e., the ratio of diffuse reflected or transmitted scatter to total
reflectance or transmittance), where the paraxial limitation is
not important. However, for many applications including solar
cells, haze calculation alone is not always enough to give an
accurate characterization of the scattering ability of a surface
[24,25].

Rigorous methods that solve for Maxwell’s equations have
been used to model light scattering at randomly textured inter-
faces. These include methods such as rigorous wave coupled
analysis (RCWA) [26,27] which divides the volume into ho-
mogeneous layers, the finite-difference time-domain (FDTD)
[28,29] or finite-element method (FEM) [30] which discretize
the entire volume, and surface integral methods such as the
method of moments (MoM) [31] or the nonperturbative re-
duced Rayleigh equation (RRE) method [32–35]. While these
rigorous numerical methods are important for validating ap-
plicability ranges of more approximate theories, they do not
lend themselves well to parametrization for random textures,
and they can become computationally intensive for statisti-
cally relevant large surfaces.

In this context, a particularly interesting method stems
from the work of Harvey et al., who over the years developed
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a nonparaxial scalar scattering theory based on a Fourier op-
tics linear-systems approach [36–40], suitable for both rough
surfaces and large scatter angles. In Harvey-Shack scalar scat-
tering theory (HS-SST), the optical phase accumulation across
the texture zone is linked to statistical surface parameters such
as roughness and autocorrelation function for well-behaved
surfaces [3–6,36,41] or applied directly to a given surface
topography [42–47], to model surface scatter in a wide range
of applications, including solar cell research [41–47], for over
a decade. These calculations have been incorporated in mul-
tilayer device simulations to model absorption and current
enhancement in solar cells and other optoelectronic devices
[44,45].

In this work, we present an implementation of generalized
HS-SST for angular intensity distribution (AID) calculation
from isotropic textures, that takes advantage of the azimuthal
symmetry in the Fourier transform of their height profiles.
We compare computational results from select solar cell sur-
face textures covering a wide range of surface characteristics
to actual high-resolution far-field intensity measurements to
validate our approach. In light of these comparisons, we pro-
pose an additional correction factor to the Fourier-transformed
phase accumulation to incorporate effective medium effects to
the HS-SST model, which start to become relevant for rough
surfaces as the lateral feature sizes become comparable to
the wavelength. Furthermore, we show that secondary inter-
actions within the surface topography constitute a mechanism
that partly redistributes scattered power, affecting AID results
compared to HS-SST predictions.

II. EXPERIMENTAL PROCEDURE

A. Sample preparation and surface parameters

Two different types of samples, covering a wide range
of surface roughness (σ ) and lateral autocorrelation lengths
(acl) were used in this study. Tapping-mode atomic force
microscope (AFM) topography images from 25 × 25 μm2 ar-
eas with 256 data points per line, and corresponding height
and slope angle distribution statistics, are provided in Fig. 1.
The acl and σ values, extracted using GWYDDION software
[48] after plane subtraction for tilt correction, are provided
in Table I. Slope distributions were obtained using local plane
fitting around each data point.

Samples A and B were prepared using the aluminum in-
duced texturing (AIT) method [49], where a 150-nm-thick
layer of aluminum is deposited, using thermal evaporation,
on 3-mm-thick soda-lime glass substrates (refractive index
n = 1.52), annealed at 600 °C for 60 min to produce a tex-
tured Al2O3 layer with Si precipitates at the interface, which
is then etched using successive H3PO4 and HF : HNO3 so-
lutions (sample A) [50] or a NaOH : H2O2 : H2O solution
(sample B) [51], for different etch durations. The presence
of intermediate Si precipitates creates a larger length scale
superimposed on an optically relevant smaller length scale.
This small texture manifests itself as a micron-sized, craterlike
texture for sample A, and a finer, pyramidlike texture for
sample B, ranging from smooth to moderately rough surfaces.
The radial autocorrelation function (ACF) is best modeled
using a two-Gaussian fit [ f (x) = σ 2

1 e−(x/acl1 )2 + σ 2
2 e−(x/acl2 )2

].

For these samples, the optically relevant smaller autocorrela-
tion length and corresponding roughness values are indicated
with an asterisk. Samples C and D were prepared by deposit-
ing 1.25-μm-thick Al:ZnO by sputtering on 2-mm-thick flat
Schott glass substrates, followed by wet HCl etching [52]
for 30 s, at different concentrations. Ellipsometry analysis
indicates a refractive index of n = 1.87. The rougher textures
produced by this method present a highly uniform distribution
of “etch pits,” resulting in a height distribution with a negative
skew. The radial ACF is ideally modeled using a single Gaus-
sian fit [ f (x) = σ 2e−(x/acl )2

], leading to small autocorrelation
lengths.

B. Angular intensity distribution measurements

AID of light scattering from these samples was measured
using a purpose-designed homemade automated goniometer
system. This instrument, as illustrated in Fig. 2(a), consists
of two concentric rotation stages. The first one in the center
supports a screen with a 3-mm-diameter aperture that holds
the sample and controls the angle of incidence. A laser beam
of fixed path, with 532-nm wavelength and a 1.5-mm Gaus-
sian beam waist traverses the center of this aperture, after
being modulated by an optical chopper. In this work, only
s-polarized incident light is used.

The second stage controls a detector arm that rotates
around the center independently of the first stage, and scans
for scatter signal in either reflection or transmission. On the
detector arm, scattered light is coupled to a 1-mm core di-
ameter optical fiber through a 3-mm-diameter diffuser film
at a distance of 244 mm from the center aperture; this cor-
responds to a light-collecting area of ��s = 1.2 × 10−4 sr.
This small collector footprint ensures very little blocking
of incident light around the incidence direction in reflection
measurements (<2° wide), while being adequate to collect
the entire laser beam power when it is directly incident on
the collector, thus minimizing beam convolution effects. The
other side of the fiber is coupled to a silicon photodetector,
whose signal is measured using a lock-in amplifier. The center
aperture diameter, in conjunction with laser beam width and
sample thicknesses, is selected to be able to reject the effect of
multiple reflections inside the glass substrate for 30° and 60°
incidence measurements, as illustrated in Fig. 2(b). The scatter
signal is then normalized by the incident beam signal (laser
beam measured directly by the same collector without sample)
and by the subtended solid angle, to obtain the normalized
AID in the plane of incidence, expressed in sr−1. Samples
are considered to be nonabsorptive at this wavelength. In
transmission measurements, the reflection loss at the first flat
surface is accounted for by dividing the signal by the corre-
sponding Fresnel coefficient.

III. ANGULAR INTENSITY DISTRIBUTION
CALCULATION

A. Review of Harvey-Shack scalar scattering theory

HS-SST uses the Fourier transform of the optical phase that
light accumulates while traversing the rough surface texture,
to evaluate the far-field approximation of the Rayleigh-
Sommerfeld diffraction integral observed on a hemisphere
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FIG. 1. AFM images, height, and slope angle distributions.

centered around the sample aperture. This resulting radi-
ant power distribution in direction-cosines space can be
expressed as

φ(α, β − β0) = Knorm |F{U0(x̂, ŷ; 0) ei2πβ0 ŷ}|2. (1)

In this expression, x̂, ŷ are the wavelength-normalized co-
ordinates of the aperture plane, α and β are the direction
cosines, and β0 contains the shifting effect due to an oblique

TABLE I. Surface roughness σ and autocorrelation length acl
extracted from AFM topography images.

A B C D

σ (nm) 20.4* 69.6* 82.7 129.4
acl (nm) 859* 618* 321 527

*indicate optically relevant smaller acl and σ values.

incidence along one of the directions. U0 is the complex
amplitude distribution caused at the aperture, which consists
of only phase changes for a nonabsorbing textured surface
[53]. Knorm is a normalization factor that redistributes the
power contained in evanescent waves (α2 + β2 > 1) back into
radiant modes:

Knorm

=
⎧⎨
⎩

∫ ∫ +∞
−∞ |F{U0(x̂,ŷ;0) ei2πβ0 ŷ}|2dαdβ∫ 1

α=−1

∫ (1−α2 )1/2

β=−(1−α2 )1/2 |F{U0(x̂,ŷ;0) ei2πβ0 ŷ}|2dαdβ

; α2 + β2 � 1

0 α2 + β2 > 1

(2)

For a homogeneously illuminated, nonabsorbing rough
textured surface with homogeneous reflectance and transmit-
tance U0, the complex amplitude distribution caused by the
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FIG. 2. (a) General schematic of instrumentation, shown for AID in transmission measurement. (b) Aperture width and sample thickness
minimizing multiple reflection effects, shown for AID in reflection measurement.

aperture, can be expressed as

U0(x̂, ŷ; γi, γs, ẑ = 0) = √
pi fR,T ei2π (γini±γsns ) ĥ(x̂,ŷ), (3)

where pi is the incident power, fR,T is the fraction of power
reflected or transmitted through the surface and is given by
the respective Fresnel coefficients for a flat surface, γi and
γs are the cosines of the angles of incidence and scattering
as illustrated in Fig. 3, ni and ns are the refractive indices of
the medium of incidence and the medium into which scatter-
ing occurs, and ĥ(x̂, ŷ) is the wavelength-normalized surface
height profile. The plus sign is used for scattering in reflection,
where ni = ns also; the minus sign is used for scattering in
transmission.

The use of the pupil function given in Eq. (3) was intro-
duced by Krywonos et al. [39,40] and is the characteristic that
defines the generalized HS-SST. When applied to a surface
featuring a single facet angle, this pupil function correctly
predicts the refraction angle [47]. The earlier, original version
of the theory [3,6,36,41–46] that makes use of a simpler
pupil function omitting the angular dependence of the path
difference does not have this property [46,47]. It should be
noted that because this pupil function depends on the scatter
angle, the Fourier transform is accurate only for the amplitude
corresponding to that particular scatter angle. For any given
incidence angle, a single Fourier transform is hence not suf-
ficient to calculate the complex amplitude and angular power
distributions. The implementation is therefore more computa-

FIG. 3. Optical path difference induced on a light ray by the
texture, compared to a flat plane.

tionally intensive, as it requires multiple Fourier transforms to
reconstruct the scattered intensity and power distributions.

B. Discrete implementation

Here we describe our implementation, which uses elements
from a series of discrete two-dimensional (2D) fast Fourier
transform (FFT) algorithms to reconstruct the AID, gener-
alizing the stitching method [47] used by Haug et al. The
FFT operations are performed, one for each different scatter
angle, on the optical phase accumulated as light traverses the
surface on grid points corresponding to the AFM data points.
The discrete equivalent of Eq. (1) for normal incidence can be
expressed as

Pα,β

pi
= Knorm fR,T

∣∣∣∣FFT2D{ei2π (γini±γsns )ĥ(N×N )}
N2

∣∣∣∣
2

. (4)

An AFM scan of side length L generates a height profile ĥ
taken on N × N discrete points at regular intervals across the
surface. Since the modulus of each exponential is unity, and
there are N2 of them, we make use of Parseval’s theorem to
normalize the sum of the FFT elements by dividing it by N2.
The result of this 2D FFT operation, represented in Fig. 4(a),
is composed of N × N matrix elements that do not contain
information on lateral coordinates. These lateral coordinates
can be assigned by regarding the AFM image as a 2D crossed
diffraction grating with groove period L in either direction.
For simplicity, consider the grating equation along one axis:

ni

ns
sin θi + m

λ

L ns
= sin θs, (5)

where the integer m is the diffraction order. At normal inci-
dence, the power of the nondiffracted beam corresponding to
the order m = 0 will be given by the central element (α =
β = 0), colored in Fig. 4. This central element corresponds
to the zenith direction of the hemisphere. The width of this
central element, as well as the distance between each consec-
utive order on any axis in direction-cosines space, is given
by �α = �β = λ/(L ns), and corresponds to the low spatial
frequency limit of the AFM measurement. The power Pα,β

contained in an element of discrete coordinates (α, β ) can
be thought of as distributed on a �α × �β area centered
around these coordinates. The high spatial frequency band
limit of the AFM measurement [determined by the distance
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FIG. 4. (a) 2D FFT operation, its associated diffraction hemi-
sphere, and direction-cosine coordinates. (b) Azimuthal projection
algorithm for isotropic samples. (a) Position of an element with
respect to the unshifted center in 2D space. (b) Because of circular
symmetry, only the radial distance of elements needs to be consid-
ered, reducing the problem to one dimension. (c) Applying the shift
due to the angle of incidence. (d) Position of the nondiffracted beam.
(e) Resulting AID, after dividing the power in each element by the
corresponding solid angle (with respect to the shifted center).

between each scan point (i.e., L/N)] is not very crucial, as
these frequencies usually correspond to evanescent waves.
However, care should be taken to select a large enough grid
size N , so that the diffraction hemisphere does not brim over
the image grid for oblique incidence angles and smaller wave-
lengths. Since only the matrix elements with a radial distance
(in direction-cosine space) to this central element such as
α2 + β2 � 1 are propagating, the radius of the propagation
hemisphere consists of 1/�α matrix elements. The shifting
effect due to oblique incidence can be incorporated in the 2D
power distribution map by using the ei2πβ0 ŷ term in the FFT,
just as in the analytical expression, but doing this generally
splits the power contained in the nondiffracted beam into
two matrix elements [unless the shift, ni/nssin(θi ) happens to
be an exact multiple of �α]. We prefer instead to shift the
coordinates of the observation hemisphere along one of the
axes, and calculate radial distances from that shifted center.

For isotropic surfaces where we can take advantage of the
circularly symmetric power distribution around the central
element, we use the azimuthal projection algorithm illustrated
in Fig. 4(b) to calculate the AID under oblique incidence. For
each matrix element, the radial distance in direction-cosines
space, d0 =

√
α2 + β2, to the unshifted central element is

calculated. Each element is doubled to contribute one positive
and one negative distance. The shift amount, s = ni/nssin(θi),
is then added to all these distances. Thus, among N × N
elements, only those (p, q) whose shifted distances, d =

±d0 + s, fall within [−1, 1] on the axis of the oblique in-
cidence in direction-cosine space correspond to valid scatter
angles. The FFT operation in Eq. (4) is performed for each of
these elements (p, q) using their corresponding scatter angle
cosines γs, and in the result, only the value of the element (p,
q) is retained, associated to shifted distance d = sin θs. The
radiant angular power distribution is reconstructed element
by element, after scanning for all valid elements mapping to
within [−1, 1].

Finally, to obtain the intensity distribution along the direc-
tion of the oblique incidence, the power diffracted into each
reconstructed element is divided by its corresponding solid
angle ��α,β

∼= �α �β/γ ′, where γ ′ = cos(sin−1d ), d being
the shifted distance:

Iβ,β0

pi
= Knorm fR,T

×Proj.2D→1D

{∣∣∣∣∣FFT2D
{
ei2π (γini±γsns )ĥ(N×N )

}
N2

∣∣∣∣∣
2}/

��α,β,

(6)

where Proj.2D→1D with brackets denotes the element-by-
element projection reconstruction algorithm.

Note that using the generalized HS-SST pupil function,
complex amplitudes corresponding to evanescent modes lying
outside the unit circle are undefined. However, due to the
conservation of energy, the sum of the normalized power dis-
tribution inside the unit circle (before applying the fR,T term),
should be equal to unity. After calculating the 2D radiant
power distribution inside the shifted propagation hemisphere,
Knorm can still be defined as the inverse of the total radiant
power contained inside the unit circle:

Knorm = 1∑
α2+β2�1 Reconstruct2D

{∣∣∣FFT2D{ei2π (γini±γsns )ĥ(N×N )}
N2

∣∣∣2
} ,

(7)

where the term in brackets denotes another element-by-
element reconstruction operation, without projection. In order
to render the AID graph more comprehensible, we use a
smoothing algorithm that averages data points that fall into
angle bins, the width of which is taken to match the an-
gular opening of our goniometer detector area of ∼0.7°, to
reflect a similar angular integration effect. The intensity of the
nondiffracted beam is not affected by this smoothing. With
this algorithm, the isotropy of the sample can be exploited
to obtain well-averaged AID results. Overall, this approach
is computationally demanding due to the sheer number of
operations, but can still be handled by a personal computer
with ease, thanks to the high speeds of FFT algorithms.

IV. RESULTS AND DISCUSSION

AID calculations with respect to scatter angle θs = sin−1β

are given in Fig. 5, and compared to angular measurements.
Overall, the generalized HS-SST model shows remarkable ex-
perimental quantitative agreement for all samples. AIT glass
samples (A, B) have relatively low surface roughnesses and
large autocorrelation lengths; consequently they have strong
light scattering close to the nondiffracted beam direction but
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FIG. 5. AID in reflection (left) and in transmission (right), respectively, for specular and refraction angles of 0°, 30°, and 60°. Symbols
represent calculations according to Eq. (6); solid lines represent measurements. For reflection calculations, incidence is through air; for
transmission, incidence is through glass (n = 1.52, for samples A, B) or Al:ZnO (n = 1.87, for samples C, D). Lambertian AID (weighted by
fR,T ), characterized by a constant power distribution in direction-cosine space, is given in dashed lines for reference.

weak scattering into higher angles, both in reflection and in
transmission. Consequently, measured intensities for sample
A clearly drop below the noise limit of the instrument, es-
pecially in reflection. Textured Al:ZnO samples (C, D) have
higher surface roughness and smaller autocorrelation lengths,
with steeper local angles and feature sizes comparable to or
smaller than the measurement wavelength; consequently they
have strong light scattering into higher angles, superimposed
to a distinct nondiffracted beam that still contains a large
portion of the reflected or transmitted power.

However, two notable deviations remain: Firstly, for AIT
glass samples, calculated intensities for oblique incidence in
both reflection and transmission fall steadily toward nega-
tive scatter angles (which we refer to as the backscattering
direction), while measurements show a plateau, which is
clearly over our instrument’s noise level in most cases. This
plateau is already evident in normal incidence transmis-
sion for sample A, above scatter angles around 45°. Similar
plateaus manifest themselves in AID measurements of related
works in the literature [45]. Moreover, for AIT glass sam-
ples, calculated intensities in the forward scattering direction
around and beyond the nondiffracted beam angle appear to be
overestimated, especially in transmission. Secondly, for

Al:ZnO samples, the magnitude of the calculated intensity
distribution also exhibits a relative decrease in the backscat-
tering direction when compared to measurements, but this
is compounded by another distinct, second deviation: The
diffuse parts of the calculated intensity distributions are no-
ticeably shifted up compared to their measured levels. We
discuss possible explanations about these observations in the
following sections.

A. Effective medium correction factor

The persistent overestimation of diffuse intensity com-
pared to measurements for Al:ZnO samples with relatively
rough surfaces and small lateral autocorrelation lengths sug-
gests that the phase screen that is Fourier transformed in
Eq. (6) could be too dense. Other factors specific to Al:ZnO
samples, such as scattering caused by residual roughness in
the nominally flat glass-Al:ZnO interface, would all have the
opposite effect of greater scattering into high angles in mea-
surements.

Here, we propose a correction factor c to modify the pupil
function of Eq. (3), such that c < 1, which results in a better
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TABLE II. Empirical correction factors for normal incidence transmission, obtained using a dichotomous search optimization. Correction
factors calculated using AID curves one standard deviation lower and higher are indicated in brackets. Relevant surface characteristics are also
indicated.

A B C D

σ tot (nm) 20.5* 70.0* 82.7 129.4
acl (nm) 889* 768* 321 527
Most likely local angle (deg) 2.0° 7.5° 14° 23°
Optimized c factor 1.175 [0.975;1.325] 0.950 [0.825;1.075] 0.750 [0.600;0.900] 0.575 [0.425;0.750]

*indicate optically relevant smaller acl and σ values, as explained in the experimental procedure.

empirical match with the measurements:

U0;GHS(x̂,ŷ; γi, γs, 0) = √
pi fR,T ei2π (γini±γsns ) c ĥ(x̂,ŷ;0). (8)

In order to estimate the correction factors that result in
an optimal fit between calculations and measurements, we
ran a dichotomous search algorithm. For normal incidence
transmission, numerous scatter measurements were repeated
from different locations across each sample, resulting in
statistical variations at each scatter angle. These variations
result from uncertainties due to instrumentation as well as
the stochastic nature of the surface scattering phenomenon
itself. Intensity values calculated using the empirical pupil
function given in Eq. (8) were interpolated at measurement
angles, and the squared difference between these two in-
tensities was multiplied by |sin θs|. This is because for a
sample with isotropic surface texture at normal incidence,
the quantity I (θs)|sin θs| is proportional to the total intensity
scattered across the entire hemisphere at a radial angle θs,
not just a cross section of it as in angular measurements
[24]. The peak values, where experimental uncertainties are
greatest, are not taken into account. The c value resulting
in the least total residual error was determined after several
iterations. This dichotomous parameter search was repeated
using curves one standard deviation lower and higher than the
average AID, to give an estimation of the variability range of
the correction factor. These optimized c factors and their ex-
pected range are given in Table II, together with other relevant
surface parameters.

Correction factors for AIT textured glass samples with
broad textures are close to unity, as expected. Deviations, such
as c = 1.175 seen for sample A, probably result from AFM
images not being representative enough of these samples,
which might have limited homogeneity at this length scale
owing to their larger features. Note that even for sample A,
the expected c = 1 falls within the experimental error range.
Furthermore, since these samples have high-intensity distri-
butions close to the nondiffracted beam, slight experimental
deviations in those few data points can offset the optimization
result. Correction factors for both Al:ZnO samples are sig-
nificantly less than 1, with sample D exhibiting the steepest
angles that require the smallest factor. AID calculations with
optimized c factors are shown in Fig. 6. Also included are
transmission calculations with correction factors for refraction
angles of 30° and 60° (calculated without the |sin θs| multi-
plier to intensity), but the dichotomous search fitting is less
reliable in oblique incidence, due to the compounding effect

of the secondary interactions on the measured AID, which are
visited in the next section.

A possible physical explanation for this behavior could be
the onset of effective medium effects, which are not taken
into account in scalar scattering theory. These samples exhibit
moderately large vertical and small lateral features compared
to the wavelength in the material, resulting in relatively steep
local surface angles. The incident light around the peaks and
pits of these textures experiences a gradual refractive index
change, resulting in less overall optical phase accumulation
compared to a texture with abrupt refractive index change.
This would manifest as a reduction in the effective height
profile of the roughness zone, and hence a correction factor
smaller than unity.

Consider hypothetical pyramidal textures as illustrated in
Fig. 7: (a) features a steep facet angle with a large base,
corresponding to the geometric optics regime. (b) contains
small heights with dimensions at the order of the wavelength
and large lateral features (similar to sample A). It has slow
phase accumulation due to shallow slopes, which results in
weak scattering at high angles. (c) features a facet angle iden-
tical to (a); however, it has small heights at the order of the
wavelength as in (b), but with smaller lateral features. Even
though the phase accumulation on each facet is identical to
that of (a), there are numerous regions with comparatively
small phase change around the tips and pits, which translate to
reduced high-frequency content in the Fourier transform when
compared to (a). Moreover, (c) is more susceptible to effective
medium approximation due to reduced feature dimensions,
such that the effective height profile, suggested by the dotted
lines in Fig. 7, starts to decrease compared to the actual profile
around the tips and pits (i.e., a correction factor smaller than
unity), which also decreases high-angle scattering. According
to Eq. (6), in order to enhance high-angle scattering from a
small texture, facet angles could be increased as in (d), similar
to samples C and D with their skewed height distribution.
However, a pronounced reduction of effective height profile
due to effective medium effects opposes this enhancement,
which explains the decreasing correction factor for samples
B–D.

This limitation of generalized HS-SST arguably points to-
ward a physical limitation of maximum achievable high-angle
scattering inside absorber materials using surface texturing. If
the roughness zone between the material and air acts like a
graded medium, another consequence would be a decrease in
reflectivity (and increase in transmissivity) compared to that
given by Fresnel coefficients for a flat interface. This change
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FIG. 6. AID in transmission, for samples C and D, for refraction angles of 0°, 30°, and 60°. Blue dots correspond to calculations
without correction factors, while pink triangles correspond to calculations using correction factors given in Table II, optimized for fitting
to measurements (black lines). Measurements in normal incidence transmission are shown with surrounding standard deviation intervals.

is proportionally more pronounced in reflection, which, to-
gether with backside reflected intensity in normal incidence
measurements, complicates a similar dichotomous search of
correction factors for reflection. Effective medium approx-
imation is a complicated phenomenon, and an associated
correction factor, if confirmed, would likely be a complicated
function of the autocorrelation length, surface roughness,
and refractive indices as well as the local surface geometry
(volume fraction and distribution of local angles). We ac-
knowledge that the uncertainties inherent in the metrology of
AID measurements are not insignificant, and further investiga-
tions with a greater range of samples and shorter wavelength
lasers are needed to confirm the existence of an effective
medium correction factor.

B. Effects of secondary interactions

Another general limitation of scalar scattering theory is
that it concerns only primary interactions of incident light with
the surface. As such, shadowing events and secondary interac-
tions at the surface topography are not considered. A possible
explanation for the increased backscattering and reduced for-
ward scattering observed across the samples is a redistribution
of part of the scattered power due to the presence of such
secondary interactions. This broad backscattering enhance-
ment is distinct from the localized, coherent retroreflection

phenomenon predicted by higher-order small-amplitude per-
turbation approaches [31–33]. The angle between a local facet
plane and light scatter direction decreases with a high content
of surface slope angles and with increasing scatter angle, ren-
dering a secondary interaction more likely, in which scattered
light reflects off another adjacent surface topographic feature.
A similar argument can be made with increasing incidence
angles and the probability of shadowing events, where a tall
local surface feature blocks light from reaching the average
surface plane. While it is not possible to know the effects
of such interactions without performing rigorous calculations
on well-defined surface geometries, it can be suggested that a
secondary interaction tends to spread out the power contained
in affected (forward) directions to all scatter directions more
or less equally. Since for a random texture, the forward scatter
direction close to the nondiffracted beam contains much more
scattered power, a slight redistribution away from this direc-
tion could compensate for a large relative increase across all
backscatter directions.

Notably, these scatter events do not take place only on the
plane of incidence (which is the plane of our measurements),
they affect the light scattered in any azimuthal direction with
similar probability. A small part of this light undergoing
secondary interaction across a different azimuthal direction
could scatter back in the plane of incidence and be detected
by the scanning detector. However, unlike primary scatter-

FIG. 7. Phase accumulation on pyramid facets with different facet angles and sizes. Colors stand for the optical phase accumulated when
light traverses each profile. Dotted lines suggest an equivalent height profile, encompassing effective medium effects.

063521-8



IMPLEMENTATION OF GENERALIZED HARVEY-SHACK … PHYSICAL REVIEW A 102, 063521 (2020)

FIG. 8. Illustration of secondary interactions on a pyramidlike
surface texture, top view.

ing in the plane of incidence, such interactions involving
other azimuthal directions would result in a change in the
polarization direction of the detected light, as illustrated in
Fig. 8.

To test this hypothesis, we have repeated some of our
scatter measurements with a polarizer placed in front of the
scanning detector. These AID results are given in Fig. 9, and
exhibit a proportional increase of intensity measured with the
p polarizer in the backscattering direction (or toward high
angles for normal incidence) and reduction of intensity mea-
sured with the s polarizer. This observation is in line with the
possible presence of secondary interactions that could explain
the backscattering plateaus in our measurements in Figs. 5
and 6.

FIG. 10. Side view of sample aperture illustrating a secondary
interaction from the surface topography (dark green line) or sides of
the aperture with different radii (lighter green lines).

However, it is also possible that the observed polarization
changes have a nontopographic, experiment-related source.
For example, such secondary scattering events could also
happen on the sides of the small aperture surrounding the
sample surface, as illustrated in Fig. 10. In order to check for
this instrumentation effect, the previous measurements were
repeated using apertures of different diameters, 3 and 6 mm.
The sides of a larger-diameter aperture, that has the same
thickness as a small-diameter one, subtends a smaller solid
angle with respect to the incident beam area, and therefore
should produce fewer secondary interactions, if nontopo-
graphic secondary scattering is predominant.

FIG. 9. Left: AID measurements with s polarizer (dots), p polarizer (triangles), and without polarizer (solid lines) in front of the detector
(incident beam is s polarized). Right: s/no polarizer and p/no polarizer ratios, measured using 3- and 6-mm-diameter aperture sizes.
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The resulting s/no polarizer and p/no polarizer intensity ra-
tios are given in Fig. 9 (right), which display little difference.
This confirms that secondary interactions are indeed originat-
ing from the surface topography. From a purely geometric
optics perspective, the effect of secondary interactions should
be negligible for the small slopes composing our samples. The
redistribution of power to all combined backscatter directions
should indeed make up a small percentage of the overall
radiated power, which is concentrated mainly near the non-
diffracted beam direction, but the effects are still detectable,
and the superposition makes precise quantitative interpreta-
tion of low-level scattering difficult. While it is not possible to
integrate these effects directly into the pupil function, it might
be possible to add them to the 2D power distribution map
heuristically. In samples where these effects are dominant,
such as those with large anisotropic features, scalar scattering
theory should be supplemented by ray tracing or other rigor-
ous methods.

V. CONCLUSION

Accurate modeling of light scattering from textured op-
tical thin films is an important aspect of light management
research. We have presented an implementation of generalized
HS-SST for AID modeling from isotropic textured surfaces
that utilizes the height profile data and refractive indices. De-
tailed comparison of these results with actual measurements

shows remarkable general agreement, while also revealing
two possible limitations of scalar scattering theory, which we
examined in detail. Firstly, there was a consistent decrease of
wide-angle scattering in rougher textures with small lateral
features, that could be explained by an effective decrease
in height profile due to the onset effective medium effects.
This limitation of scalar scattering theory modeling could
also point out to a physical limitation of achievable high-
angle scattering inside thin absorber materials using surface
texturing. Secondly, there was an increased backscattering
at the expense of forward scattering, especially for oblique
incidence, which was experimentally linked to the presence of
secondary interactions at the surface, that serve to redistribute
part of the scattered power.

In a future work, we plan to investigate how the element-
by-element reconstruction method that is required for gener-
alized HS-SST can be used to calculate the so-far-neglected
near-field terms of Rayleigh-Sommerfeld diffraction integral
to produce AID modeling in the near field, which is an impor-
tant factor to understand the origin of absorption performance
inside thin-film devices. We expect this work to contribute in
facilitating effective light management for photonics devices
such as thin-film solar cells.
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