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Partially coherent quasi-Airy beams with controllable acceleration
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Self-acceleration and nondiffraction can be considered as the new properties of partially coherent light beams
nowadays, provided that the light source is properly chosen and modulated. Here, we introduce a class of partially
coherent light beams the propagation trajectory of which performs a parabolic-type curve as the well-known Airy
beams. Theoretically, they are originated from a well-designed cross-spectral density function in the spatial-
frequency domain. Experimentally, they are produced by shining an amplitude-modulated Schell-model source
on the phase mask which is the Fourier transform of predesigned Airy functions. It is shown that, for such beams,
one can control their acceleration properties by adjusting the initial angle of the sidelobes. Moreover, when the
source is under a nearly incoherent state, the oscillation of the sidelobes of the beams turns smooth and the
intensity distribution concentrates on the mainlobe with the Airy tails. The experimental results are in agreement
with the theoretical predictions. A trial solution for coherent-mode representation of such a beam is derived
and our paper provides an alternative outlook for understanding of self-acceleration on partially coherent light
beams.
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I. INTRODUCTION

Lasers, as a vital light source in modern optics, possess
the fundamental characteristic of high spatial coherence re-
sulting from stable oscillation in the optical resonant cavity.
As we know, such a high degree of spatial coherence can
bring increasingly bright illumination and extremely direc-
tional emission. In some fields like optical imaging, however,
a high degree of spatial coherence may be considered as a
drawback to an imaging system [1–3], due to the coherent
artifacts (such as speckle) from the intense interference at
the detector. Atop this background, the concept of partially
coherent light sources [4] with low spatial coherence thus has
been introduced by using the modulation of the degree of
coherence (DOC) function. In late 1970s, it was found [5] that,
for a partially coherent field, this kind of modulation in the
near field enables the control of beam shaping in the far field.
Subsequently, the beam shaping of partially coherent light
beams has raised the attention of the optics community and
experienced a rapid development over the years [6]. Provided
that the DOC function of the source is properly designed, the
intensity distribution of the light beam in the far field can ac-
quire many intriguing physical phenomena, for example, the
coherence vortex [7–12], optical coherence lattices [13,14],
and even blueshift and redshift at the propagating spectra [15].

Since the realization of Airy beams with low spatial co-
herence [16–18], one is now able to sculpture a partially
coherent light beam with the properties of self-acceleration
and nondiffraction. It is important and inspiring for us to
review the previous work. The earlier investigations suggest
that there used to be three means of generating partially
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coherent Airy beams: the cubic-phase modulation of a broad-
band light source in the spatial frequency domain [19], the
ensemble average of Airy beams by propagating through
random media [20], and the appropriate design of the DOC
function for Airy beams in the spatial domain [21]. Such treat-
ments, however, have been found to bring the sharply reduced
acceleration range of the Airy beam under a nearly incoherent
state. In recent years, partially coherent single [18] and multi-
ple [22] Airy beams are realized by replacing Gaussian beams
with monochromatic Gaussian Schell-model beams as light
sources. These two versions, different from the earlier cases,
have been proven to retain the identical accelerating property
as their coherent counterparts.

On the other hand, for the case of fully coherent light
fields, it has been found that some fascinating light beams
can be derived by the specific design of the Airy function
at the input of the optical system. For instance, circular Airy
beams with an abruptly autofocusing feature are proposed by
assembling the Airy function in the radial direction of cylin-
drical coordinates [23–25]; accelerating self-imaging along
curved trajectories induced by Airy-Talbot effect can be en-
gineered by a flexible superposition of Airy wave functions
[26,27]. Here, we present, theoretically and experimentally,
a kind of partially coherent light beam with controllable ac-
celeration. They are generated by imposing the Schell-model
correlation on the spectrum of quasi-Airy beams [28,29] in the
spatial-frequency domain. In order to avoid confusion with the
incoherent self-accelerating beams demonstrated in [18], we
use the term “partially coherent quasi-Airy” (PCQA) beams
for the proposed beams in this paper.

The organization of the paper is as follows. In Sec. II, we
introduce the theoretical model; in Sec. III, we gain a deeper
understanding of PCQA beams from the perspective of their
coherent-mode representation; in Sec. IV, we perform the
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experimental realization of the beams; in Sec. V, we conclude
the paper.

II. THEORETICAL MODEL

In the section, we first build the radiation model of PCQA
beams and study their propagation properties in free space.
By mathematically constructing two one-dimensional Airy
functions with arbitrary geometrical orientations in the spatial
domain, fully coherent quasi-Airy (FCQA) beams at z = 0 are
defined as [28,29]

φi(x, y) = Ai[ξ (x, y)]Ai[η(x, y)]

× exp{(α + iβ )[ξ (x, y) + η(x, y)]} (1)

with separately rotated dimensionless transverse coordinates:

ξ (x, y) = x
w0

cos ϕ

2 + y
w0

sin ϕ

2 ,

η(x, y) = x
w0

sin ϕ

2 + y
w0

cos ϕ

2 ,
(2)

where Ai(·) is the Airy function [30]; ϕ = θ − π/2 with π/2
being the factor that ensures the beams accelerate along the
+x and +y directions; θ is regarded as the initial angle be-
tween the two lobes since it is reported that such an angle in
FCQA beams occurs only at the initial plane (z = 0); w0 is
the transverse size; α is the decay parameter [16,17]; and β is
known as the linear chirp coefficient controlling the incident
angle of the beams [31,32].

Similar to the well-known Airy beams, the light beams
described in Eq. (1) can also be achieved in experiment with
the method of Fourier transform. Then, after omitting the
higher-order terms and selecting β = 0 for simplicity, the
Fourier spectrum φ̃s(kx, ky) of Eq. (1) is proportional to

φ̃s(kx, ky ) ∝ exp
[
−α

2
[ξ 2(kx, ky) + η2(kx, ky)]

]

× exp

[
ic3

0

3
[ξ 3(kx, ky) + η3(kx, ky)]

]
,

(3)

where the tilde symbol implies the Fourier transform and c0
is a normalized dimensionless constant. One can easily tell
that Eq. (3) is basically the Fourier spectrum of Airy beams
with the coordinate transformation shown in Eq. (2). The real
part and the imaginary part in Eq. (3) imply that the amplitude
modulation and the phase modulation need to be involved in
the corresponding experimental realization, respectively.

Of particular interest is the extension of quasi-Airy beams
from the fully coherent case to its partially coherent counter-
part. Figure 1 illustrates a schematic diagram for generation of
PCQA beams. Let us consider a fluctuating, second-order field
at the source plane. The cross-spectral density (CSD) func-
tion, if using Gaussian Schell-model sources, can be defined
as a two-point correlation function [4]:

W̃s(r′
1, r′

2) = 〈φ̃∗
s (r′

1)φ̃s(r
′
2)〉

= φ̃∗
s (r′

1)φ̃s(r
′
2)exp

[−(r′
1 − r′

2)2/2δ2
μ

]
, (4)

where the CSD function is the description of the field in the
space-frequency domain, i.e., in the front focal plane of the
Fourier lens in Fig. 1; φ̃s(r

′
j ) denotes the complex electric

field [represented by Eq. (3)] with r′
j = (kxj , kyj ), j = 1, 2; the

asterisk and the angular bracket denote a complex conjugate

kx

ky

y

x

z
f

f

Source Plane

Initial Plane

z=0

FIG. 1. Theoretical schematic for the radiation model of PCQA
beams, which consists of the cross-spectral density function and
DOC function at the source plane (labeled by s) and the initial plane
(labeled by i) with a Fourier lens.

and an ensemble average, respectively; δμ is the source coher-
ence length related to the spatial coherence width; the term
exp[−(r′

1 − r′
2)2

/2δ2
μ] is the Schell-model correlator. Equa-

tion (4) implies that we choose to impose the Schell-model
correlation on the spectrum of quasi-Airy beams described by
Eq. (3). Such a treatment is inspired by the pioneering work
[18] in which the Airy beams are successfully extended from
the coherent state to the incoherent one without any loss of
acceleration range. Then, by employing Eq. (3) in Eq. (4), the
complete expression for the CSD function of PCQA beams in
the space-frequency domain can be written as

W̃s(r
′
1, r′

2) = exp
[
−α

2
[ξ 2(r′

1) + η2(r′
1) + ξ 2(r′

2) + η2(r′
2)]

]

× exp

[
− ic3

0

3
[ξ 3(r′

1) + η3(r′
1) − ξ 3(r′

2) − η3(r′
2)]

]

× exp

[
− (r′

1 − r′
2)2

2δ2
μ

]
.

(5)

Accordingly, the DOC function of PCQA beams can be
examined by the following formula:

μs(r
′
1, r′

2) = W̃s(r
′
1, r′

2)√
W̃s(r

′
1, r′

1)
√

W̃s(r
′
2, r′

2)

= exp
[−(r′

1 − r′
2)2/2δ2

μ

]
× exp

[
− ic3

0

3

[
ξ 3(r′

1) + η3(r′
1) − ξ 3(r′

2) − η3(r′
2)

]]
.

(6)

It is important to note that the imaginary part of Eq. (6)
indicates the specific modulation of phase on the source. Af-
ter being phase modulated, the source is no longer strictly
Schell-model correlated because the DOC function cannot
be written as the form of μs(r

′
1 − r′

2). Still, the modulus
of μs(r

′
1, r′

2) ranges between 0 and 1. Consequently, PCQA
beams at z = 0 (i.e., at the initial plane) are derived from the
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FIG. 2. Numerical simulation of the intensity distribution of
PCQA beams at the initial plane (z = 0). (a–d) The intensity dis-
tribution with θ = 30◦, 60◦, 120◦, 150◦, respectively, for the source
coherence lengths δμ = 1 mm. (e–h) The intensity distribution of
PCQA beams with the source coherence lengths δμ = ∞, 3, 2 mm,
1 mm, respectively, for θ = 150◦. Other parameters are chosen as
α = 0.025, w0 = 1 mm, and λ = 532 nm.

Fourier-transform formula [4,22]:

Wi(r1, r2) = k2

4π2 f 2

∫∫ ∞

−∞
W̃s(r

′
1, r′

2)

exp

[
− ik(r2 · r′

2 − r1 · r′
1)

f

]
d2r′

1 d2r′
2, (7)

where r j = (x j, y j ), j = 1, 2 is an arbitrary position vector in
the spatial domain; k = 2π/λ is the wave vector with λ being
the wavelength; f implies the focal length of a Fourier lens.
It is worth mentioning that Eq. (5) implies the fields in the
front focal plane of a Fourier lens while Eq. (7) denotes the
fields in the rear focal plane as illustrated in Fig. 1. In other
words, the fields of PCQA beams at the initial plane (z = 0)
are constructed from the Fourier transform of Eq. (5).

Next, one can analyze the intensity distribution S (r, z = 0)
of PCQA beams at z = 0, by applying Eq. (5) in Eq. (7) and
setting r1 = r2 = r. By choosing the source coherence length
as δμ = 1 mm, we depict the intensity distribution of PCQA
beams at the initial plane with the different initial angles θ

in Figs. 2(a)–2(d). Here, we would like to emphasize that δμ

refers to the coherence length of the source fields [described
by Eq. (5)] at the source plane, rather than of PCQA beams
[described by Eq. (7)] at the initial plane. From Figs. 2(a)–
2(d), one can find that PCQA beams with both acute and
obtuse initial angle perform a smooth profile and maintain a
single lobe across two separate dimensions. In a special case
when θ = 90◦, these PCQA beams turn into the previous case
reported in [18]. Moreover, it is instructive to look at the con-
version process of PCQA beams from the fully coherent state
to the partially coherent one. In Figs. 2(e)–2(h), we exhibit the
intensity distribution of PCQA beams at z = 0 with the source
coherence length being δμ = ∞, 3 mm, 2 mm, and 1 mm,
respectively. From Figs. 2(e)–2(h), one can see that when the
source coherence length δμ → ∞, the beam profile reduces
to FCQA beams as shown in Fig. 2(e). Besides, the sidelobes
of PCQA beams at the initial plane gradually disappear as δμ

decreases. It is interesting to note that when δμ = 1 mm, the
sidelobes vanish and the intensity converges on the mainlobe
with the Airy tails as shown in Fig. 2(h).

FIG. 3. The normalized transverse intensity distributions S(r, z)
of PCQA beams at the different propagation distances for (a–d)
θ = 30◦, (e–h) θ = 90◦, and (i–l) θ = 150◦. Other parameters are
chosen as wr = 100 μm, δμ = 1 mm, α = 0.025, w0 = 1 mm, and
λ = 532 nm.

It is essential to examine the propagation dynamics of
such a beam with the controllable initial angle between the
two lobes. In the paraxial regime, the intensity distribution
of PCQA beams in the half space z > 0 is acquired by the
generalized Fresnel diffraction formula:

S (r, z) =
∫∫ ∞

−∞
W̃s(r

′
1, r′

2)P∗
z (r, r′

1, z)Pz(r, r′
2, z) d2r′

1d2r′
2,

(8)

where the propagation kernel Pz in an ABCD optical system is

Pz(r, r′, z) = −ik/(2πB) exp(ikz)

× exp

(
ikA

2B
r′2 − ik

B
r′ · r + ikD

2B
r2

)
, (9)

with the A, B, C, and D elements of the transfer matrix in our
case being described as(

A B
C D

)
=

(
1 f + z
0 1

)(
1 0

−1/ f 1

)

×
(

1 f
0 1

)
=

(−z/ f f
−1/ f 0

)
. (10)

Note that the ABCD optical matrix implies the combination
of the Fourier transform of Eq. (5) and the Fresnel diffraction
of PCQA beams from the initial plane z = 0. Here, the prop-
agation distance is measured in units of the Rayleigh range
z0 = kw2

r /2 with the characteristic transverse width of the
beams wr = c0 f /kw0 [22]. By employing Eq. (5) in Eq. (8),
the evolution of PCQA beams with the different θ during
propagation from 0 to 18z0 is numerically simulated in Fig.
3. When 0 < θ < 90◦, the two lobes of PCQA beams spread
as a pair of wings during propagation. In the far field, the
mainlobe expands to become a slim bar from an intensive spot.
When 90◦ < θ < 180◦, in contrast, the mainlobe constricts
to be a narrow needlelike shape in the far field. To give an
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explanation of these deformations in quantification, we recall
the wavefront expression of a cubic-phase-modulated light
beam presenting the Seidel coma wave aberration [33] and
exercise it in our case:

ξ 3(kx, ky) + η3(kx, ky) =γx

k3
x

w3
0

+ γy

k3
y

w3
0

+ νx

k2
x ky

w3
0

+ νy

kxk2
y

w3
0

,

(11)

with

γx = γy = sin3 ϕ

2
+ cos3 ϕ

2
, (12)

νx = νy = 3

2
sin ϕ

(
sin

ϕ

2
+ cos

ϕ

2

)
, (13)

where γx and γy implement joint modulation with c0 in Eq. (3)
for the cubic phase; νx and νy represent the scales of comatic
aberration along x and y axes in this light beam, respectively.
Although the analysis is based on fully coherent light beams,
it is valid for partially coherent fields even under the nearly
incoherent state with random phase delays [34]. Therefore,
the unusual propagation of PCQA beams shown in Fig. 3
results from the introduction of the optical caustic catastrophe
induced by the Seidel coma. From this viewpoint, one can
expect that when θ = 90◦ (ϕ = 0) these effects of aberration
vanish due to the scales νx = νy = 0. In this case, as shown
in Figs. 3(e)–3(h), the intensity distribution of PCQA beam
remains shape preserving during propagation. The numerical
solution for the CSD function of PCQA beams during propa-
gation is derived in the Appendix.

III. COHERENT-MODE REPRESENTATION OF PCQA
BEAMS

In this section, we focus on the coherent-mode represen-
tation of PCQA beams. A complex field U (r) is determined
by specific amplitude and phase function for a coherent light
beam owing to the stationary fluctuation. For a stochastic light
field, however, U (r) becomes a random envelope, and thus
it is more promising to represent the field with the ensemble
average of U (r). We first consider the light field in our case at
z = 0, i.e., at the initial plane of Fig. 1, as the expression

Wi(r1, r2) = 〈U ∗
i (r1)Ui(r2)〉, (14)

where the asterisk and sharp bracket denote the complex
conjugate and ensemble average, respectively. According to
the multidimensional version of Mercer’s theorem [4], such a
CSD function can be decomposed into an incoherent sum of
spatially coherent modes (or pseudomodes) ψn(r) as

Wi(r1, r2) =
∑

n

χnψ
∗
n (r1)ψn(r2), (15)

where χn is the weight function describing the contribution
of each nth spatial mode ψn(r) to Wi(r1, r2). The intensity
distribution of PCQA beams at z = 0 is then written as

S (r, z = 0) =
∑

n

χn|ψn(r)|2. (16)

From a mathematical viewpoint, χn are the eigenvalues and
ψn(r) are the eigenfunctions of the homogeneous Fredholm

integral equation of the second kind [35], i.e.,∫ ∞

−∞
Wi(r1, r2)ψn(r1)d2r1 = χnψn(r2), (17)

where Wi(r1, r2) has been treated as a kernel function with
discretizing variables. However, deducing a coherent-mode
structure from Eq. (17) with an exact solution is a highly
sophisticated task. Even for the well-established Gaussian
Schell-model light source, its coherent-mode representation
is obtained in a closed form [35].

On the other hand, Gori and Palma proposed that, if we
only focus on the intensity distribution, a Gaussian Schell-
model beam can be considered as a superposition of an infinite
number of coherent Gaussian modes [36]. These Gaussian
modes are mutually incoherent on time average and separated
by a random transverse shift in spatial coordinates. Along
similar lines, Lumer et al. theoretically and experimentally
proved that a partially coherent Airy beam can be constructed
from an arbitrary number of coherent Airy modes [18], where
all the modes have the same acceleration but are transversely
shifted in spatial coordinates. Still, such a superposition law
holds for the intensity distribution only. Enlightened by these
studies, we introduce arbitrary transverse shifts �xn and �yn,
respectively, in the x and y directions of fully coherent quasi-
Airy modes [φi(x, y) in Eq. (1)], to form the coherent-mode
structure of a partially coherent field at z = 0:

ψn(r) = φi(x − �xn, y − �yn)

= Ai[ξ (x − �xn, y − �yn)]Ai[η(x − �xn, y − �yn)],
(18)

where the decay parameter and the chirp coefficient have
been omitted for brevity. Assuming that both �xn and
�yn are uniformly distributed random numbers in the in-
terval [−1, 1], the intensity distribution |ψn(r)|2 for each
nth mode can be obtained with each different value of
(�xn, �yn). Figure 4(a) presents |ψn(r)|2. For comprehen-
sible presentation, we depict |ψn(r)|2 with (�xn,�yn) =
(−1,−1), (1,−1), (0, 0), (−1, 1), and (1, 1) as examples in
Fig. 4(a). In that case, it is obvious that the weight function χn
and the index n jointly determine the statistical properties of
the field featured by the DOC function. For instance, when
χn = 1 for a single mode, the fields described by Eq. (15)
are fully coherent since the corresponding DOC function is
unimodular, i.e., |μi(r1, r2)| = 1. Therefore, to extract the
complete expression of χn in Eqs. (15) and (16), one may first
search for the DOC function of PCQA beams at z = 0, which
can reflect the spatially statistical correlation between every
shifted quasi-Airy mode. Since Wi(r1, r2) is a numerical solu-
tion with the double integrals (presented in the Appendix), the
typical relation μi(r1, r2) = Wi (r1,r2 )√

S (r1,z=0)
√

S (r2,z=0)
is impracti-

cal for derivation of μi(r1, r2). We thus resort to the van
Cittert–Zernike theorem [37] under the Fraunhofer approxi-
mation:

μi(r1, r2) = k2

4π2 f 2

∫ ∞

−∞
W̃s(r′, r′) exp

[
− ikr′(r2 − r1)

f

]
d2r′,

(19)
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FIG. 4. (a) The intensity distribution |ψn(r)|2 of FCQA modes
with different transverse shifts in the x and y directions at the initial
plane. (b) The distribution of the weight function corresponding to
different transverse shifts in spatial coordinates for each nth mode.
(c) The intensity distribution S (r, z = 0) in Eq. (16). Other parame-
ters are chosen as w0 = 1 mm, f = 750 mm, and λ = 532 nm.

where W̃s(r′, r′) is the source intensity distribution derived
from Eq. (5). Equation (19) is a significant formula in coher-
ence theory, revealing that the DOC function of the far field is
proportional to the two-dimensional Fourier transform of the
intensity distribution across the source. By employing Eq. (5)
with r′

1 = r′
2 = r′ into Eq. (19), we see at once that

μi(xd , yd ) = A0 exp

(
− x2

d

σ 2
x

− y2
d

σ 2
y

+ xd yd

2σ 2
xy

)
, (20)

with

σx =
(

2 f

kw0

)
(1 + tan2ϕ)

− 1
2 ,

σy =
(

2 f cosϕ

kw0

)
,

σxy =
(

f cosϕ

kw0

)
(sinϕ)−

1
2 ,

(21)

where A0 is a normalized constant; the variables (xd , yd ) =
(x2 − x1, y2 − y1) represent separations between two arbitrary
points (x1, y1) and (x2, y2). One can find from Eq. (20) that
when θ 
= 90◦ (ϕ 
= 0), the DOC function of PCQA beams at
z = 0 performs the elliptical Gaussian distribution. To match
such an elliptical Gaussian random process [38], we introduce
a trial solution for the weight function χn by replacing (xd , yd )
in μi(xd , yd ) with (�xn,�yn):

χn(�xn,�yn) = μi(�xn,�yn). (22)

Figure 4(b) illustrates the distribution of the weight function.
Until now, as the required mode representation [Eq. (18)]
and the weight function [Eq. (22)] are characterized, the
coherent-mode representation of PCQA beams at z = 0 has
been determined. By employing Eqs. (18) and (22) in Eq. (16),
the intensity distribution of PCQA beams with θ = 150◦ at

Laser

Partially coherent field preparation Amplitude modulation Phase modulation

L1
L2 L3 L4 L5

L6

RGGD SLM1

aperture
SLM2BS

CCD

LP

FIG. 5. Experimental schematic for generating the PCQA beams
and detecting their intensity distribution. L1, L2, L3, L4, L5, and
L6, lenses; RGGD, rotating ground-glass disk; LP, linear polarizer;
SLM1 and SLM2, spatial light modulators; BS, beam splitter; CCD,
charge-coupled device. The focal lengths of lenses are f1 = 100 mm,
f2 = f3 = 150 mm, f4 = f5 = 300 mm, and f6 = 750 mm.

z = 0 is presented in Fig. 4(c). A straight comparison with
Fig. 2(d) proves that there exists consistency between the
two theoretical models, respectively, described by Eqs. (7)
and (15). In addition, when θ = 90◦ (ϕ = 0), χn becomes a
Gaussian distribution and S (r, z = 0) accordingly reduces to
the previous results reported in [18]. It should be noted that
the value range of �xn and �yn is not limited to the interval
[−1, 1]. The simulation in Fig. 4(c) can still be reproduced
by choosing other intervals for the transverse shifts �xn and
�yn in spatial coordinates, as long as they are weighted by the
distribution in Eq. (22).

From Eqs. (15)–(22), such a coherent-mode representation
has a natural physical interpretation: the intensity distribution
of a PCQA beam is constructed from a weighted sum of
intensity distribution of a series of FCQA modes with random
transverse displacements in spatial coordinates. The weight
function implies the contribution of each mode. Thus, one
may state the fact that some of the conclusions in the in-
vestigations about FCQA beams are still valid in a partially
coherent field, including the dependence of the acceleration
with the initial angle. In addition, the intensity distribution of
PCQA beams during propagation can be obtained in a similar
fashion by choosing the coherent modes ψn(r, z) at a certain
propagation distance.

IV. EXPERIMENTAL REALIZATION

In this section, we carry out the experiment for generation
and detection of PCQA beams. The experimental setup is
established in Fig. 5. A linearly polarized Gaussian beam
emitted from a semiconductor laser (λ = 532 nm) is first
focused on a rotating ground-glass disk to effectively pro-
duce the partially coherent beams with the DOC function of
Gaussian Schell-model form by a lens (L1). By adjusting the
position of the lens L1 [4], we tailor the source coherence
length to the case δμ = 1 mm. These beams are collimated
into the SLM1 (LC2012, Holoeye) and then go through a lin-
ear polarizer the polarization axis of which is perpendicular to
the polarization direction of incident light for the functioning
of this SLM1. In our implementation, SLM1 plays the role
of a filter to modulate the amplitude of light. Subsequently,
the amplitude-modulated beams pass through a 4 f optical
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FIG. 6. Experimental results for generation of PCQA beams and
the corresponding detection. (a–e) The amplitude patterns imposed
on SLM1. (f–j) The phase patterns imposed on SLM2. (k–o) The gen-
eration of PCQA beams at z = 0 with θ = 30◦, 60◦, 90◦, 120◦, 150◦

between the two lobes, respectively.

system consisting of a pair of lenses (L4 and L5) with an
aperture, in order to remove the lattice diffraction from liquid
crystal. Afterwards the phase information is imposed on the
beams by the SLM2. The phase-modulated beams go through
a two-dimensional Fourier transform with a Fourier lens (L6)
and finally reach a CCD for detection.

According to Eq. (3), the modulation of amplitude and
phase should be synchronized with each other in the gen-
eration of PCQA beams. The imposed patterns on SLM1

[Figs. 6(a)–6(e)] and SLM2 [Figs. 6(f)–6(j)] are depicted by
calculating real and imaginary parts of Eq. (3), respectively.
Each row of Fig. 6 represents the generation and the detection
in a single experiment. For instance, matching the amplitude
patterns in Fig. 6(e) with the phase patterns in Fig. 6(j) makes
the realization of the PCQA beam at z = 0 with θ = 150◦

FIG. 7. The experimental detection of the intensity distribution
of PCQA beams at the plane z ≈ 18z0 for the cases of (a) θ = 30◦,
(b) θ = 90◦, and (c) θ = 150◦; (d) their one-dimensional distribution
projecting on the x axis at z ≈ 18z0; (e) acceleration range marked
by peak intensity in the mainlobe of PCQA beams for different θ

during propagation from 0 to 18z0. The curves and patterns denote
theoretical predictions and experimental results, respectively.

shown in Fig. 6(o). It is interesting to conclude that with
the increasing of θ , the amplitude patterns seem to become
elliptical Gaussian or Gaussian distributions while the phase
patterns are stretched along the diagonal. What is more, the
experimental results in Fig. 6 are in an agreement with the
numerical simulation in Fig. 2.

The experimental demonstration of beam shaping for
PCQA beams with various θ is presented in Figs. 7(a)–7(c).
To investigate their acceleration properties, we examine the
one-dimensional distribution of the intensity distribution pro-
jecting on the x axis at z ≈ 18z0 in Fig. 7(d), by fixing
the location of CCD and successively changing the corre-
sponding patterns on SLM1 and SLM2. Note that the plot
shown in Fig. 7(d) can be considered as the side view of
PCQA beams at a specific plane. From Fig. 7(d) one can see
that PCQA beams with the different initial angle retain the
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properties of smooth profile and sole local maximum during
propagation. Moreover, PCQA beams with θ = 150◦ experi-
ence an earlier deformation compared to those with θ = 30◦.
This phenomenon indicates that the comatic aberration has a
greater impact on the propagation of the beams with obtuse
initial angle. Furthermore, in Fig. 7(d), it is clear to find that
as the initial angle increases, the direction of the mainlobe
moves along the positive x axis. From these phenomena we
deduce that varying the initial angle θ can lead to the different
accelerating curves of PCQA beams. For the verification of
this deduction, we numerically simulate peak intensity of
the mainlobe of the beams during propagation, and experi-
mentally collect the corresponding data. Figure 7(e) shows
that the propagation trajectory of PCQA beams performs a
parabolic-type curve as the well-known Airy beams. More-
over, by comparing the slopes of these curves, we find that
the acceleration of PCQA beams reduces with the decreasing
of θ . More information about the dependence of acceleration
properties of PCQA beams with different θ can be found in
the Appendix. Therefore, on the basis of the above analyses,
we can draw a conclusion that adjusting the initial angle of
PCQA beams allows the control of the propagation properties
effectively, such as the acceleration and the beam shape.

V. CONCLUSIONS

In summary, we theoretically and experimentally report
on an alternative class of partially coherent light beams with
controllable acceleration. They are originated by imposing
specific amplitude and phase information on a Gaussian
Schell-model source in the spatial frequency domain. Those
beams, at the plane z = 0, exhibit a prearranged initial angle
between their two lobes. As the source coherence length de-
creases, the sidelobes of the beams gradually disappear and
the intensity smoothly concentrates on the mainlobe with the
Airy tails. During propagation, the two lobes perform the
action of expansion and constriction when the initial angle is
acute and obtuse, respectively. It was pointed out that they can
be engineered to propagate along various accelerating curves
as long as the initial angle is properly chosen. In addition,
owing to the comatic aberration, the transverse intensity pat-
tern undergoes the deformation. Based on the coherent-mode
representation, the intensity distribution of a PCQA beam can
be considered as a weighted sum of intensity distribution of
a number of FCQA beams with random transverse shifts in
spatial coordinates. With the proposed experimental setup, our
experimental results provide an agreement with the theoretical
predictions.

We believe our paper may inspire new ideas in research
associated with partially coherent light beams, and also widen
the range of potential applications such as diffraction tomog-
raphy [39] and speckle mitigation [40], where the spatial
coherence properties of light can play an important role.
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APPENDIX: NUMERICAL SOLUTION FOR THE
RADIATION MODEL

In this section, we provide the complete expression for
the radiation model of PCQA beams, and accordingly make
the plots for PCQA beams with various θ , complementary to
Fig. 7(e) in the main text. The CSD function of PCQA beams
during propagation can be written as

W (r1, r2, z)

=
∫∫ ∞

−∞
W̃s(r

′
1, r′

2)P∗
z (r1, r′

1, z)Pz(r2, r′
2, z) d2r′

1d2r′
2.

(A1)

On substituting from Eqs. (5) and (9) in Eq. (A1), and by
integrating kx1 and ky2 of W̃s(kx1 , ky1 , kx2 , ky2 ) with the formula
[41],

∫ ∞

−∞
exp

[
i

(
t3

3
+ at2 + bt

)]
dt

= 2πAi(b − a2) exp

[
i

(
2a3

3
− ab

)]
, (A2)

one can write down the numerical solutions as double inte-
grals:

W (x1, y1, x2, y2, z)

= W0

∫∫ ∞

−∞
Ai

(
�11kx2

+ �21k2
x2

+ �31 − k(y1 + y2)

2c0 f m

)

× Ai

(
�12ky1

+ �22k2
y1

+ �32 + −k(x1 + x2)

2c0 f m

)

× exp
(
�11kx2

+ �21k2
x2

+ �31k3
x2

)
× exp

(
�12ky1

+ �22k2
y1

+ �32k3
y1

)
× exp

(
− kz

2 f 2δ2
μc3

0m3
(kx2

− ky1
)

)
dkx2

dky1
(A3)

where

�1 j = (−1) j
2�ϒ j (z)

3c0m4
− iα sin ϕ

c0mw2
0

,

�2 j = (−1) j �c2
0

3m
− �2c2

0

9m2
,

�3 j = ik2
y1

c0mδ2
μ

− ϒ2
j (z)

c4
0m4

− k(y1 + y1)

2c0 f m
,

�1 j = i2 j−1
2�ϒ2

j (z)

3c3
0m6

+ �w2
0 + αδ2

μ sin ϕ�ϒ j (z)

δ2
μw2

0c3
0m3

,

�2 j = i�(3m3 + 2�)ϒ j (z)

9m6
+ (−1) j α� sin ϕ

3w2
0m3

,

�3 j = i�2c3
0

9m3
+ i2 j−1 2�3c3

0

81m6
,

(A4)
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FIG. 8. Complementary plot for Fig. 7(e).

with

� = 3

2
sin ϕ

(
sin

ϕ

2
+ cos

ϕ

2

)
,

� = iα

2w2
0

+ i

2δ2
μ

,

ϒ j (z) = � − i2 j kz

2 f 2
,

j = 1, 2,

(A5)

where W0 is a normalized constant; � is a coefficient related
to the comatic aberration as identical to νx and νy in Eq. (13).
It is not difficult to tell that, setting z = 0 and (x1 = x2, y1 =
y2) = (x, y ) in Eq. (A3), respectively, leads to Eqs. (7) and
(8). Based on Eqs. (A3)–(A5), the acceleration range (marked
by peak intensity) of PCQA beams with more values of θ

is illustrated in Fig. 8, by utilizing numerical simulation and
experimental results.
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