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Cherenkov radiation and emission of surface polaritons from charges moving paraxially
outside a dielectric cylindrical waveguide
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We investigate the radiation from a charged particle moving outside a dielectric cylinder parallel to its axis.
It is assumed that the cylinder is immersed into a homogeneous medium. The expressions are given for the
vector potential and for the electric and magnetic fields. The spectral distributions are studied for three types of
radiation: (i) Cherenkov radiation (CR) in the exterior medium, (ii) radiation on the guided modes of the dielectric
cylinder, and (iii) emission of surface polaritons. Unlike the first two types of radiation, there is no velocity
threshold for the generation of surface polaritons. The corresponding radiation is present in the spectral range
where the dielectric permittivities of the cylinder and surrounding medium have opposite signs. The spectral
range of the emitted surface polaritons becomes narrower with decreasing energy of the particle. The general
results are illustrated for a special case of the Drude model for dispersion of the dielectric permittivity of the
cylinder. We show that the presence of the cylinder may lead to the appearance of strong narrow peaks in the
spectral distribution of the CR in the exterior medium. The conditions are specified for the appearance of those
peaks and the corresponding heights and widths are analytically estimated. The collective effects of particles in
bunches are discussed.
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I. INTRODUCTION

The polarization of a medium by moving charged particles
gives rise to a number of radiation processes. Examples are the
Cherenkov radiation (CR), transition radiation, and diffraction
radiation. Among those radiation processes, the remarkable
properties of the CR (for reviews see [1,2]) have resulted in
a wide variety of applications, including the counting and
identification of high-energy particles, cosmic-ray physics,
high-power radiation sources in various spectral ranges, par-
ticle accelerating systems, medical imaging and therapy, and
so on. These applications motivate the importance of further
investigations for various mechanisms to control the spec-
tral and angular characteristics of the radiation intensity. In
particular, recent advances in nanophysics, photonic crys-
tals, and metamaterials provide new possibilities for the CR
manipulations. Technologies are available that allow one to
design materials with specified electric and magnetic proper-
ties, including the dispersion relations for effective dielectric
permittivity and magnetic permeability [3]. An exciting pos-
sibility is that the permittivity and permeability can be made
simultaneously negative in some frequency range (double-
negative or left-handed metamaterials). In that spectral range,
the wave vector and the electromagnetic field vectors form
a left-handed system and the CR is emitted in the backward
direction with respect to the velocity of the charged particle
(reversed CR) [4] (for reviews, see [5]). Significant progress
in metamaterial-related research has stimulated active
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theoretical and experimental investigations of the reversed CR
(see [6,7] and references therein).

From the point of view of the CR characteristics control,
another important area of research is the investigation of the
influence of interfaces of media with different electrodynam-
ical properties. Previous considerations of the effects have
included planar, cylindrical, and spherical boundaries (for
reviews of the early research, see [1,2]). More complicated
geometries and approximate methods for evaluation of the
radiation fields and intensity have been considered in [8]. The
CR from a short relativistic electron bunch in dielectric loaded
waveguides with different periodic structures is a promising
candidate for a high-power narrow-bandwidth source with
adjustable spectral range (see, for instance, [9–11] and ref-
erences therein). Various amplification mechanisms have been
discussed. The Cherenkov emission of surface waves in planar
structures has been considered in [12]. The authors of [13]
investigated the CR emitted by surface plasmon polaritons.

In the present paper, we consider the CR and the emission
of guided modes and surface polaritons by charged particles
moving outside a cylindrical dielectric waveguide, parallel
to its axis (for various aspects of interactions of charged
particles with cylindrical structures, see [14] and references
given there). Exact analytical expressions are provided for the
spectral distributions of all these types of radiation. The con-
ditions are specified under which the cylinder can essentially
influence the spectral density of the CR in the surrounding
medium. Aside from applications as a source of the electro-
magnetic radiation in various spectral regions, the presented
results can be used to test the accuracy of various approximate
methods used for investigation of the CR in more complicated
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geometries of interfaces. The properties of the emitted surface
polaritons are highly sensitive to the geometry of the surface
and this offers an alternative surface probe. Among important
physical realizations of cylindrical waveguides, with radii tun-
able in a relatively wide range, are metallic and semiconductor
carbon nanotubes.

The layout of the paper is as follows. In the next section,
expressions for the vector potential and for the electric and
magnetic fields are provided. Assuming that the Cherenkov
condition in the exterior medium is satisfied, in Sec. III a
formula is derived for the spectral density of the radiation
evaluating the energy flux through a cylindrical surface with
large radius. The features of the radiation intensity are de-
scribed depending on the relative permittivity. The energy
losses are investigated in Sec. IV. An alternative expression
is provided for the spectral density of the CR in the exterior
medium. The radiation on the guided modes of the dielectric
cylinder is discussed in Sec. V. The radiation intensity for sur-
face polaritons is considered in Sec. VI. Section VII concludes
the main results of the paper.

II. ELECTROMAGNETIC FIELDS

Consider a point charge q moving parallel to the axis of
a cylinder with dielectric permittivity ε0 and with the radius
rc. The distance of the charge trajectory from the axis will be
denoted by r0 > rc and it will be assumed that the cylinder
is immersed into a homogeneous medium with dielectric per-
mittivity ε1 (see Fig. 1; the magnetic permeabilities for both
the cylinder and surrounding medium will be taken to be a
unit). In accordance with the problem symmetry, we will use
cylindrical coordinates (r, φ, z) with the z axis along the axis
of the cylinder. In the generalized Lorentz gauge, the vector
potential of the electromagnetic field created by the charge is
expressed in terms of the electromagnetic field Green tensor
Gil (r, t, r′, t ′) as

Ai(t, r) = − 1

2π2c

∫
dt ′dr′

3∑
l=1

Gil (t, r, t ′, r′) jl (t
′, r′),

(2.1)

FIG. 1. The problem geometry and the notations.

where jl (t, r) is the current density for the source. In the
problem under consideration, the only nonzero component of
the latter is given by

j3(t, r) = q

r
vδ(r − r0)δ(φ − φ0)δ(z − vt ), (2.2)

with v being the charge velocity.
It is convenient to write the relation (2.1) in terms of the

partial Fourier components Al,n(kz, r) of the vector potential
defined in accordance with

Al (t, r) =
∞∑

n=−∞
ein(φ−φ0 )

∫ ∞

−∞
dkz eikz (z−vt )Al,n(kz, r). (2.3)

By using the Fourier expansion,

Gil (t, r, t ′, r′) =
∞∑

n=−∞

∫ ∞

−∞
dω

∫ ∞

−∞
dkz Gil,n(ω, kz, r, r′)

× ein(φ−φ′ )+ikz (z−z′ )−iω(t−t ′ ), (2.4)

from (2.1) we get

Al,n(kz, r) = − qv

πc
Gl3,n(vkz, kz, r, r0). (2.5)

In [15], a recurrence scheme was developed for evaluation
of the Green tensor in a medium with an arbitrary number of
cylindrically symmetric homogeneous layers. In the problem
at hand, the Green tensor is obtained by using the correspond-
ing tensor in a homogeneous medium. In particular, for the
region r > r0, the Fourier components of the Green tensor
appearing in (2.5) are given by the expressions [15]

Gl3,n(ω, kz, r, r0) = i2−l kz

2rc
Jn(λ0rc)

Hn(λ1r0)

αnV H
n

×
∑
p=±1

pl−1Jn+p(λ0rc)
Hn+p(λ1r)

V H
n+p

,

G33,n(ω, kz, r, r0) = π

2i

[
Jn(λ1r0) − Hn(λ1r0)

V J
n

V H
n

]
Hn(λ1r),

(2.6)

where l = 1, 2, and λ2
j = ω2ε j/c2 − k2

z with j = 0, 1. In
(2.6), Jn(x) is the Bessel function, Hn(x) = H (1)

n (x) is the
Hankel function of the first kind, and we have introduced the
notation

V F
n = Jn(λ0rc)∂rc Fn(λ1rc) − [∂rc Jn(λ0rc)]Fn(λ1rc), (2.7)

for F = J, H . The function αn in the expression for the com-
ponent Gl3,n(ω, kz, r, r′) is given by the formula

αn = ε0

ε1 − ε0
+ 1

2

∑
l=±1

[
1 − λ1

λ0

Jn+l (λ0rc)Hn(λ1rc)

Jn(λ0rc)Hn+l (λ1rc)

]−1

.

(2.8)

The eigenmodes of the dielectric cylinder are determined from
the equation αn = 0. They are poles of the integrand in (2.4)
for the corresponding components of the Green tensor.

The Fourier components of the vector potential are given
by (2.5) with the Green tensor components from (2.6), where
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now ω = vkz and λ j is given by the expression

λ2
j = k2

z

(
β2

j − 1
)
, (2.9)

with β2
j = (v/c)2ε j . In the discussion below, we will assume

that the exterior medium is transparent and the permittivity
ε1 is real. Both cases β1 > 1 and β1 < 1 will be considered.
In the second case λ1 is purely imaginary and its sign is
determined in accordance with λ1 = i|kz|

√
1 − β2

1 . Note that
in the arguments of the Hankel functions, only λ1 appears and
with this choice of the sign they are reduced to the Macdonald
functions Kν (|λ1|x), with x = r, r0, rc. For real ε j and β2

j > 1,

the signs are defined in accordance with λ j = kz

√
β2

j − 1.

Fourier expanding the electric and magnetic fields El (t, r)
and Hl (t, r), similar to (2.3), with the Fourier coefficients
El,n(kz, r), Hl,n(kz, r), for the magnetic field one finds

Hl,n(kz, r) = qvkz

4il−1c

∑
p=±1

pl−1 f (p)
n Hn+p(λ1r), l = 1, 2,

H3,n(kz, r) = iqvkz

4c

√
β2

1 − 1
∑
p=±1

p f (p)
n Hn(λ1r), (2.10)

where, for p = ±1, we have defined the functions

f (p)
n = −

√
β2

1 − 1Jn(λ1r0) + Hn(λ1r0)

V H
n

[√
β2

1 − 1V J
n + 2ipkz

π

Jn(λ0rc)

rcαn

Jn+p(λ0rc)

V H
n+p

]
. (2.11)

By taking into account that for the function from (2.7) one has V F
−n = V F

n , F = J, H , it can be seen that

f (p)
−n = (−1)n f (−p)

n . (2.12)

The Fourier coefficients for the electric field are obtained from the Maxwell equations and are given by

El,n(kz, r) = qkz

8ilε1

∑
p=±1

pl
[(

β2
1 + 1

)
f (p)
n − (β2

1 − 1
)

f (−p)
n

]
Hn+p(λ1r),

E3,n(kz, r) = qkz

4ε1

√
β2

1 − 1
∑
p=±1

f (p)
n Hn(λ1r), (2.13)

where l = 1, 2. From (2.12), we get the following relations
for the Fourier components of the fields:

El,−n(kz, r) = (−1)l+1El,n(kz, r), Hl,−n(kz, r)

= (−1)lHl,n(kz, r), (2.14)

for l = 1, 2, 3. Note that we also have the relations
El,−n(−kz, r) = E∗

l,n(kz, r) and Hl,−n(−kz, r) = H∗
l,n(kz, r),

where the star stands for the complex conjugate.
The electromagnetic fields for a charge moving in a homo-

geneous medium with dielectric permittivity ε1 are obtained
from the expressions given above, taking ε0 = ε1. In this limit,
V J

n = 0 and V H
n = 2i/πrc, whereas the function αn tends to

infinity. Hence, the corresponding Fourier components are
given by (2.10) and (2.13), with the replacement

f (p)
n → −

√
β2

1 − 1Jn(λ1r0). (2.15)

Now we see that the fields in the exterior region are de-
composed into the parts corresponding to the fields in a
homogeneous medium with permittivity ε1 and the part in-
duced by the presence of the cylinder. The latter is given by
(2.10) and (2.13), excluding the first term in the right-hand
side of (2.11). The Fourier components have poles at the
zeros of the function αn. As mentioned before, those zeros
determine the eigenmodes of the cylinder. The expressions
for the fields in the region rc < r < r0 are obtained from the
corresponding formulas in the region r > r0, given above, by
the replacements J → H , H → J in the parts corresponding
to the fields in a homogeneous medium with permittivity ε1.

The cylinder-induced contributions are described by the same
expressions for all values r > r1. The fields inside the cylinder
can be found by using the corresponding expressions of the
Green tensor components from [15].

III. CHERENKOV RADIATION
IN THE EXTERIOR MEDIUM

Having the electric and magnetic fields in the form of the
Fourier expansion, we can investigate the radiation intensity
emitted by the charged particle. In the problem at hand, we
have three types of radiations. The first one corresponds to the
CR in the exterior medium influenced by the presence of the
cylinder. The second one is the radiation emitted on the guided
modes of the cylinder and propagates inside the waveguide.
The corresponding fields exponentially decay in the exterior
medium. Under certain conditions on the characteristics of
the media, one can also have the radiation in the form of
surface polaritons (surface modes). We start our discussion
from the radiation in the exterior medium at large distances
from the cylinder, r � rc. From the expressions (2.10) and
(2.13), it follows that this kind of radiation is present under
the condition λ2

1 > 0. By taking into account the expression
(2.9), the latter condition is translated to β2

1 > 1, which is
the Cherenkov condition for the exterior medium. The cor-
responding radiation is the CR influenced by the dielectric
cylinder. For λ2

1 < 0, the Hankel functions in (2.10) and (2.13)
are expressed in terms of the Macdonald functions Kn(|λ1|r),
Kn+p(|λ1|r), and the Fourier components exponentially decay
at large distances from the cylinder, r � v/ω.
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We denote by I the energy flux per unit time through the
cylindrical surface of radius r. It is given by the expression

I = c

4π

∫ 2π

0
dφ

∫ ∞

−∞
dz rn · [E × H], (3.1)

where n is the unit normal to the integration surface. By using
the Fourier expansions of the fields, we get

I = πcr
∞∑

n=−∞

∫ ∞

−∞
dkz n · [En(kz, r) × H∗

n (kz, r)]. (3.2)

Under the condition λ2
1 > 0, substituting the expressions for

the Fourier components, using the relation (2.12) and the
asymptotic expressions of the Hankel functions for large ar-
guments, at large distances from the cylinder we find

I =
∫

dω
dI

dω
, (3.3)

with the spectral density

dI

dω
= q2ω

2vε1

∞∑
n=0

′[∣∣ f (1)
n + f (−1)

n

∣∣2 + β2
1

∣∣ f (1)
n − f (−1)

n

∣∣2],
(3.4)

where, in the expressions (2.11) for f (±1)
n , the quantities λ j

are given by (2.9) with kz = ω/v. In (3.3), the integration
over ω goes over the part of the region ω ∈ [0,∞), where
the condition β2

1 > 1 is obeyed and the prime under the sign
of the summation in (3.4) means that the term n = 0 should
be taken with an additional coefficient 1/2. An alternative
representation for the spectral distribution of the radiation
intensity dI/dω, based on the evaluation of the energy losses,
will be given below [see (4.9)]. In deriving (3.4), we have
used the asymptotic expressions for the functions Hn(λ1r)
and Hn+p(λ1r) in (2.10) and (2.13) that are valid in the range
λ1r � 1. This corresponds to the distances from the cylinder
axis that are much larger than the radiation wavelength. For
a cylinder with finite length Lc, additional conditions r 	 Lc

and rc 	 Lc should be imposed.
From the relation ω = kzv, it follows that the radiation de-

scribed by (3.4) propagates along the Cherenkov cone having
the opening angle θ = θCh with respect to the cylinder axis,
where cos θCh = 1/β1. In the limit ε0 → ε1, the functions f (p)

n

are given by the right-hand side in (2.15), and from (3.4) the
Tamm-Frank formula is obtained for the CR in a homoge-
neous transparent medium. In the limit rc → 0 for fixed values
of the other parameters, from (3.4) to the leading order, we
obtain the corresponding result in a homogeneous medium.
The leading contribution to the cylinder-induced part in (3.4)
comes from the terms with n = 0, 1, and that contribution
behaves as (ωrc/v)2. The contributions of the terms with n �
2 behave like (ωrc/v)2n. Note that the quantity ω−1dI/dω,
which determines the number of the radiated quanta (see
below), depends on the frequency and on the cylinder radius
in the form of the product ωrc. Hence, the limiting behavior
for small rc also determines the behavior of the radiation
intensity for small frequencies. Namely, for ωrc/v 	 1, the
cylinder-induced contribution to the number of the radiated
quanta behaves as ω2 for the terms with n = 1, 2 and as ω2n

for n � 2.

In the figures below, we present the spectral density of
the number of photons radiated per unit length of the charge
trajectory:

d2N

dzdω
= 1

h̄ωv

dI

dω
. (3.5)

The corresponding quantity for the CR in a transparent homo-
geneous medium with permittivity ε1 is given by

d2N0

dzdω
= q2

h̄c2

(
1 − 1

β2
1

)
. (3.6)

In Fig. 2, we display the ratio

RN = d2N/dzdω

d2N0/dzdω
(3.7)

as a function of ωrc/c for several values of the ratio r0/rc

(the numbers near the curves). The graphs are plotted for the
electron energy Ee = 2 MeV and for ε1 = 3.8 (average value
for the real part of the dielectric permittivity for a fused quartz
in the frequency range �1 THz; in that range, the imaginary
part of the permittivity is small, �10−3). The left and right
panels correspond to ε0 = 1 and ε0 = 2.2 (the real part of the
dielectric permittivity for teflon).

As seen from the graphs, we have characteristic oscillations
with relatively small shifts around the value corresponding
to the radiation in a homogeneous medium. The oscillation
frequency increases with increasing r0/rc. In the case corre-
sponding to the left panel of Fig. 2, the CR inside the cylinder
is absent and the oscillations are a consequence of the inter-
ference between the direct CR and radiation reflected from
the cylinder. For small wavelengths, compared to the waveg-
uide diameter, the oscillations enter the quasiperiodic regime.
The beginning of that regime with respect to the radiation
wavelength increases with increasing values of the ratio r0/rc.
For small frequencies, the presence of a cylindrical hole in a
homogeneous medium leads to the decrease of the radiation
intensity. That is related to the fact that a part of the medium
is excluded from the radiation process. For the example con-
sidered on the right panel of Fig. 2, the Cherenkov condition
for the cylinder material is obeyed and the interference pattern
is more complicated. It is formed by the interference of the
direct radiation, the radiation reflected from the cylinder, and
the CR formed inside the cylinder. We have ε0 < ε1 and, as
in the previous case, here the radiation intensity for large
wavelengths is smaller than that for a homogeneous medium.

For the graphs in Fig. 2 we have taken ε1 > ε0. The be-
havior of the radiation intensity is essentially different for
ε1 < ε0. This is seen in Figs. 3 and 4, where we have plotted
RN versus ωrc/c for ε0 = 3.8, ε1 = 2.2. In Fig. 3, we have
taken Ee = 2 MeV, r0/rc = 1.2 (left panel) and r0/rc = 1.1
(right panel). Figure 4 is plotted for r0/rc = 1.05 and for the
energies Ee = 2 MeV (full curve) and Ee = 10 MeV (dashed
curve). We have numerically checked that the curves corre-
sponding to the energies Ee > 10 MeV practically coincide
with those for the energy 10 MeV. This is a consequence of
the fact [also seen from the general formula (3.4)] that the
effects we consider are sensitive to the velocity of the charge
and not to the energy in the range Ee � mec2. As we see from
the graphs, for the charge trajectory sufficiently close to the
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FIG. 2. The ratio RN as a function of ωrc/c for the electron energy Ee = 2 MeV and for ε1 = 3.8. The left and right panels correspond to
ε0 = 1 and ε0 = 2.2 and the numbers near the curves are the values of r0/rc.

cylinder, strong narrow peaks appear in the spectral density
of the radiation intensity. The amplification of the radiation
intensity for relatively small values of ωrc/c is related to the
fact that now ε0 > ε1 and the CR inside the cylinder is more
intense than in an equivalent cylinder with permittivity ε1.

The appearance of the strong narrow peaks in the spectral
distribution of the CR in the exterior medium is an interesting
effect induced by the cylinder. Their presence can be under-
stood analytically by using the formula (3.4) for the radiation
intensity (see, also, the discussions in [16] and [17] for the
peaks in the angular distribution of the radiation intensity
from charges rotating around or inside a dielectric cylinder
along circular and helical trajectories, respectively). First of
all, it can be seen that the peaks come from the terms in the
series on the right-hand side of (3.4) with large values of
n. For large n, one has the following asymptotic expression
for the Neumann function (the leading term in the Debye’s
asymptotic expansion; see [18]):

Yn(ny) ∼ 2enζ (y)

√
2πn(1 − y2)1/4

, (3.8)

with 0 < y < 1, and

ζ (y) = ln
1 +

√
1 − y2

y
−
√

1 − y2. (3.9)

The function (3.9) is positive and monotonically decreasing in
the region 0 < y < 1 with ζ (1) = 0. For y > 1 and for large
n, the function Yn(ny) exhibits an oscillating behavior [see the
analog behavior for the function Jn(ny) in (3.10) below]. For
the Bessel function, one has the asymptotics [18]

Jn(ny) ∼ e−nζ (y)

√
2πn(1 − y2)1/4

, 0 < y < 1,

Jn(ny) ∼
√

2

πn

cos{n[
√

y2−1−arccos(1/y)]−π/4}
(y2 − 1)1/4

, y>1.

(3.10)

The key point for our discussion is that the ratio
|Jn(ny1)|/Yn(ny) is exponentially small for large n and for
fixed 0 < y < 1. For 0 < y1 < 1, one has Jn(ny1)/Yn(ny) ∝
e−n[ζ (y)+ζ (y1 )], and for y1 > 1, we get |Jn(ny1)|/Yn(ny) ∝
e−nζ (y).

FIG. 3. The same as in Fig. 2, for ε0 = 3.8, ε1 = 2.2. For the left and right panels, r0/rc = 1.2 and r0/rc = 1.1.
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FIG. 4. The ratio RN vs ωrc/c for the electron energies Ee =
2 MeV (full curve) and Ee = 10 MeV (dashed curve). The graphs
are plotted for r0/rc = 1.05, ε0 = 3.8, ε1 = 2.2.

With these asymptotic estimates, let us return to the expres-
sion (2.8) for the function αn. As we have mentioned above,
the roots of the equation αn = 0 determine the eigenmodes
of the dielectric cylinder. Under the condition λ2

1 > 0, this
equation has no solutions. There are no eigenmodes in this
range and all the radiated energy goes to infinity in the form
of the CR with the spectral density (3.4). We can try to specify
the conditions under which the function αn would take its min-
imal value. In accordance with (3.4), that could correspond to
large intensities for the CR. By taking into account that in
accordance with the asymptotics given above, for large n and
λ1rc < n the ratio |Jn(λ1rc)|/Yn(λ1rc) is exponentially small,
we can expand αn in terms of this ratio. In the next-to-leading
order, we get

αn ≈ ε0

ε1 − ε0
+ 1

2

∑
l=±1

gl,n + i

πλ0rc

∑
l=±1

lJn+l (λ0rc)g2
l,n

Jn(λ0rc)Y 2
n+l (λ1rc)

,

(3.11)

where

gl,n =
[

1 − λ1

λ0

Jn+l (λ0rc)Yn(λ1rc)

Jn(λ0rc)Yn+l (λ1rc)

]−1

. (3.12)

Note that compared to the first two terms in the right-hand side
of (3.11), the last term is of the order of e−2nζ (λ1rc/n). From
here, it follows that near the roots of the equation∑

l=±1

gl,n + 2ε0

ε1 − ε0
= 0, (3.13)

the function αn is exponentially small, αn ∝ e−2nζ (λ1rc/n). Of
course, this does not yet mean that the radiation intensity at
those points will be large because exponential factors may
also come from the other functions in the last term of the
right-hand side of (2.11).

We recall that under the condition λ2
1 > 0, the equation

αn = 0 has no solutions and there are no eigenmodes of the
cylinder in that region. The mathematical reason is that the
function is complex and the real and imaginary parts do not

become zero simultaneously. Unlike the function αn, the func-
tion gl,n is real and the equation (3.13) may have solutions. In
order to specify the conditions under which the roots exist,
first we consider the case λ2

0 > 0 when the Cherenkov condi-
tion for the material of the cylinder is obeyed. For λ0rc < n,
by using the asymptotics (3.8) and (3.10) for the functions
Yn(λ1rc) and Jn(λ0rc), to the leading order, Eq. (3.13) is re-
duced to

√
n2 − λ2

1r2
c /

√
n2 − λ2

0r2
c = −ε1/ε0. This shows that

for large values of n and for λ1rc < n, Eq. (3.13) has solutions
under the condition λ0rc > n. In particular, one should have
ε0 > ε1. By making use of the uniform asymptotic expansion
for the modified Bessel function In(|λ0|rc), we can see that
from (3.13), the same leading-order equation is obtained for
λ2

0 < 0. From that equation, as a necessary condition for the
existence of the roots in the range λ2

0 < 0 < λ2
1, one gets

ε0 < −ε1. In the leading order, the roots with respect to the
angular frequency are given by

ω ≈ cn

rc

(
ε0ε1

ε0 + ε1
− c2

v2

)−1/2

. (3.14)

Note that the inequality ε0 < −ε1 also appears as a necessary
condition for the radiation of surface polaritons (see below).
For the latter modes, one has λ2

1 < 0 and they are localized
near the cylinder boundary.

Having specified the necessary conditions for the appear-
ance of the peaks, we can estimate the corresponding heights
and widths. First of all, on the base of the asymptotics for
the Neumann and Bessel functions in the expression (2.11)
of the functions f (p)

n , it can be seen that for the appearance
of the peaks, an additional condition λ1r0 < n is required.
Under this condition, for the Hankel function in (2.11), one
has Hn(λ1r0) ≈ iYn(λ1r0) and f (p)

n ∝ enζ (λ1r0/n). As a conse-
quence, the heights of the peaks in the spectral distribution
of the radiation intensity are estimated as e2nζ (λ1r0/n). We have
numerically checked that the locations of the peaks with re-
spect to ωrc/c in the graphs above are determined by the
roots of Eq. (3.13) with high accuracy. For example, the peaks
in Fig. 4 at ωrc/c = 10.83, 11.51, 12.17, 12.85, 13.51, 14.18
come from the terms in (3.4) with n = 15, 16, 17, 18, 19, 20,
respectively. On the base of the asymptotic consideration
given above, the widths of the peaks can be estimated as
well. In order to do that, we expand the function αn near
the roots of Eq. (3.13). By using (3.11), it can be seen that
the width of the peaks is determined by the last term in the
right-hand side and is of the order of �ω/ω ∝ e−2nζ (λ1rc/n).
Note that in the estimates given above, we have assumed that
the dielectric permittivity ε0 is real. For complex permittivity
ε0 = ε′

0 + iε′′
0 , with real and imaginary parts ε′

0 and ε′′
0 , the

consideration that is presented is valid under the condition
e−2nζ (λ1rc/n) � |ε′′

0/ε
′
0|. For e−2nζ (λ1rc/n) < |ε′′

0/ε
′
0|, the heights

and the widths of the peaks are determined by the imaginary
part of the permittivity.

Summarizing the discussion above, we conclude that
though there are no eigenmodes of the waveguide in the range
under consideration (λ2

1 > 0), Eq. (3.13) may have roots and,
for large values of n, they approximately obey the equation
αn = 0 with exponential accuracy. In this sense, those roots
can be termed “quasimodes” of the dielectric waveguide (for
the discussion of quasibound waves on curved interfaces,
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see, e.g., [19]). Unlike to the guided and surface modes (see
below) which remain coupled to the waveguide during their
propagation and exponentially decay in the exterior medium,
the radiation on the quasimodes appears in the form of the CR
giving rise to high narrow peaks in the spectral distribution of
the radiation intensity under the conditions λ1r0 < n < λ0rc

for λ2
0 > 0 and under the conditions λ1r0 < n, ε0 < −ε1 for

λ2
0 < 0. In the latter case, for a given n, the angular frequencies

of the peaks are given by (3.14). In the corresponding spectral
range, one has a quasidiscrete part of the CR. The spectral
peaks appear for large values of n and, hence, this effect is
absent in the axially symmetric problems (coaxial motion of
charges and beams), where only the mode n = 0 contributes
to the radiation intensity. We expect that similar features of
the radiation intensity may appear for other geometries of the
interface (see, for example, Ref. [20] for the radiation on a
dielectric ball).

In the consideration above, in order to have an exactly
solvable problem, we have made a number of idealizations.
The possibility of experimental observation of the features
discussed requires further investigation by taking into account
a number of additional factors that can affect the radiation
characteristics. In particular, they include the finite thickness
of the medium where the particle moves (the exterior medium
in the problem under consideration), the finite length of the
waveguide, the collective effects of the particles in the bunch
when the bunch size is of the order of radiation wavelength
or larger, and the shift of the particle trajectory from the
one we have considered. Similar to the case of the standard
Cherenkov radiation in dielectric plates, the finite thickness of
the radiator will lead to broadening of the angular distribution
of the radiation. We also expect broadening of the peaks in the
spectral distribution.

The charge moving in a medium suffers multiple scattering
and this restricts the mean length of a straight trajectory. The
multiple scattering leads to beam broadening that is deter-
mined by root-mean-square (rms) scattering angle θms. The
influence of beam broadening on the Cherenkov radiation in a
homogeneous medium has been investigated in the literature,
both theoretically and experimentally (see, e.g., [21] and ref-
erences therein). For small angles θms, the beam broadening
leads to an additional factor in the angular-frequency distri-
bution of the radiated energy. Note that at relatively small
energies, the multiple scattering may essentially restrict the
length of the particle straight trajectory in a medium. For
example, for an electron with energy 2 MeV, which we have
taken above for illustrative purposes only, the lengths in quartz
and teflon are of the order of 1 mm. With increasing en-
ergy, the scattering angle θms decreases inversely proportional
to the energy (see, for example, [22]) and the mean length
of the straight trajectory increases. As already mentioned
before, the features of the Cherenkov radiation that we have
discussed are sensitive to the velocity of the particle and are
not sensitive to the particle energy at relatively high energies.
For example, for the values of the parameters corresponding
to Fig. 4, the locations of the peaks and the corresponding
heights are almost the same for all the energies larger than
10 MeV. Note that in general, the thickness of the exterior
medium and the length of the waveguide can be different.

The charge moves in the exterior medium and the multiple
scattering restricts the first parameter only.

An interesting possibility to escape multiple scattering was
indicated in [2,23]. It has been argued that an empty channel
along the particle trajectory in a solid dielectric does not affect
the radiation intensity if the channel radius is smaller than
the wavelength of the radiation. The Cherenkov radiation by
an electron bunch moving in a hollow cylindrical channel in
dielectric-lined waveguides has been experimentally observed
in [10] for the electron energies Ee = 10 MeV, 60 MeV and
for the radii of the channel rc = 0.25 mm, 0.1 mm, respec-
tively. Hollow capillary tubes with dielectric walls are among
the main elements in dielectric wakefield accelerators and in
capillary-guided laser wakefield accelerators (see [24–26] and
references therein). Such schemes provide relatively compact
accelerating systems with large acceleration gradients. In re-
lated experiments the parameters of the electron bunch and
the radius of the tube vary over wide ranges. For example,
in [25], the experiments were performed for the beam energy
28.5 GeV, rms bunch radius 0.01 mm, rms bunch lengths from
0.01 to 0.1 mm, and tube inner diameter 0.1 mm. The corre-
sponding parameters for the experiments described in [26] are
given as 20.35 GeV, 0.03 mm, 0.025–0.05 mm, and 0.3 mm.
In both cases, SiO2 annular capillaries have been used. In
[26], the length of the capillaries ranges from 1 to 15 cm.
In our setup, a hollow cylinder along the particle trajectory,
corresponding to the inner region of this kind of capillaries,
will not influence the features of the Cherenkov radiation in
the frequency range �1 THz.

IV. ENERGY LOSSES

In addition to the radiation propagating at large distances
from the cylinder, one can have radiation emitted by the
charge on the eigenmodes of the cylindrical waveguide. The
total energy losses per unit of path length can be evaluated in
terms of the work done by the electromagnetic field on the
charge,

dW

dz
= qE3|r→r0,z→vt,φ→φ0 . (4.1)

Substituting the analog of the Fourier expansion (2.3) for the
z component of the electric field, one gets

dW

dz
= 4q

∞∑
n=0

′
Re

[∫ ∞

0
dkz En3(kz, r0)

]
, (4.2)

where the relation (2.14) is used for En3. By using the ex-
pression for the corresponding Fourier component (2.13), we
obtain

dW

dz
= q2

∞∑
n=0

′
Re

[∫ ∞

0
dkz

kz

ε1

√
β2

1 − 1
∑
p=±1

f (p)
n Hn(λ1r)

]
.

(4.3)

Note that unlike the expression (3.4), the functions f (p)
n enter

in the expression of the energy losses linearly.
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By taking into account the formulas (2.13) and (2.11), the
expression (4.2) is decomposed into two contributions:

dW

dz
= dW (0)

dz
+ dW (c)

dz
, (4.4)

where

dW (0)

dz

=−2q2 lim
r→r0

∞∑
n=0

′
Re

[∫ ∞

0
dkz

kz

ε1

(
β2

1 −1
)
Jn(λ1r0)Hn(λ1r)

]

(4.5)

corresponds to the losses in a homogeneous medium with
permittivity ε1, and

dW (c)

dz
= 2q2

∞∑
n=0

′
Re

⎧⎨
⎩
∫ ∞

0
dkz

kz

ε1

(
β2

1 − 1
)H2

n (λ1r0)

V H
n

×
⎡
⎣V J

n + ikzJn(λ0rc)

π

√
β2

1 − 1rcαn

∑
p=±1

p
Jn+p(λ0rc)

V H
n+p

⎤
⎦
⎫⎬
⎭

(4.6)

is induced by the cylinder. This formula gives the expression
for the losses in the general case of the dielectric permittivity
for the cylinder.

First we consider the case when the Cherenkov condition
for the exterior medium is satisfied, β2

1 > 1. The part (4.5) is
further simplified by using the formula

∞∑
n=0

′
Jn(λ1r0)Hn(λ1r) = 1

2
H0(λ1(r − r0)). (4.7)

The real part of the latter is J0(λ1(r − r0))/2 and, taking the
limit r → r0 in (4.5), we get

dW (0)

dz
= −q2

c2

∫
β1>1

dω ω
(
1 − 1/β2

1

)
, (4.8)

which gives the standard expression for the Cherenkov radia-
tion in a homogeneous medium. Under the condition β2

1 > 1,
one has λ2

1 > 0 and it can be shown that the equation αn = 0
has no solutions with respect to kz and the integrand in (4.6)
is regular on the positive semiaxis of kz. For real values of
ε0 = ε0(ω), the energy losses are in the form of the radiation
(here and below, we will not consider the ionization losses that
correspond to the zeros of the function ε1). For the spectral
density of the energy radiated per unit time, we find

dI

dω
=−v

d2W

dzdω
= q2v

c2
ω

(
1− 1

β2
1

)(
1−2

∞∑
n=0

′
Re

{
H2

n (λ1r0)

V H
n

×
⎡
⎣V J

n + ikzJn(λ0rc)

π

√
β2

1 − 1rcαn

∑
p=±1

p
Jn+p(λ0rc)

V H
n+p

⎤
⎦
⎫⎬
⎭
⎞
⎠.

(4.9)

For β2
1 > 1, there is no radiation on the eigenmodes of the

cylinder and (4.9) corresponds to the CR in the exterior

medium. We have numerically checked that the formula (4.9)
gives the same results as (3.4) for both the cases λ2

0 > 0 and
λ2

0 < 0. Note that in (4.9), the contribution corresponding to
the radiation in a homogeneous medium (the part with the first
term in figure braces) is explicitly separated.

V. RADIATION ON GUIDED MODES OF THE WAVEGUIDE

Now we consider the case when the Cherenkov condition
for the exterior medium is not obeyed, β1 < 1. In this case,
one has λ1 = i|λ1| and the expression in the square brack-
ets of (4.5) is purely imaginary. As a consequence, we get
dW (0)/dz = 0 and the radiation in a transparent homogeneous
medium is absent. Introducing the modified Bessel functions
In(x) and Kn(x), the expression for the energy losses is pre-
sented as

dW

dz
= −2q2

π

∞∑
n=0

′
Im

⎧⎨
⎩
∫ ∞

0
dkz

kz

ε1

(
1 − β2

1

)K2
n (|λ1|r0)

V J,K
n

×
⎡
⎣2V J,I

n − kzJn(λ0rc)

rc

√
1 − β2

1αn

∑
p=±1

Jn+p(λ0rc)

V J,K
n+p

⎤
⎦
⎫⎬
⎭,

(5.1)

with (F = I, K)

V J,F
n = Jn(λ0rc)∂rc Fn(|λ1|rc) − Fn(|λ1|rc)∂rc Jn(λ0rc) (5.2)

and

αn = ε0

ε1 − ε0
+ 1

2

∑
l=±1

[
1 + l

|λ1|
λ0

Jn+l (λ0rc)Kn(|λ1|rc)

Jn(λ0rc)Kn+l (|λ1|rc)

]−1

.

(5.3)

For real values of ε0, the integrand in (5.1) is real on the real
axis of kz and the nonzero contributions to the integral may
come from the possible poles on the real axis only. We can see
that the integral is regular at the zeros of the functions V J,K

n±1
and V J,K

n . Hence, the only nonzero contributions come from
the zeros of the function αn. These zeros with respect to kz we
will denote by kz = kn,s > 0, where s = 1, 2, . . . enumerates
the roots for a given n, kn,s+1 > kn,s. These roots determine the
eigenmodes of the dielectric cylinder (the equation αn = 0 is
easily transformed to the form given, for example, in [27]).
For n = 0, the equation for those modes is simplified to

ε0

√
1 − β2

1√
β2

0 − 1

J1(λ0rc)

J0(λ0rc)
+ ε1

K1(|λ1|rc)

K0(|λ1|rc)
= 0. (5.4)

Note that the product kzrc = kn,src does not depend on rc and
is a function of two parameters, ε0/ε1 and β1,

kn,src = f (ε0/ε1, β1). (5.5)

In order to evaluate the integral in (5.1), one needs to
specify the integration contour near the poles kz = kn,s. In this
section, we will consider the spectral range where λ2

0 > 0. The
corresponding eigenmodes kn,s are the guided modes of the
dielectric cylinder. For those modes, the radial dependence of
the Fourier components for the fields inside the cylinder is
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expressed in terms of the Bessel function Jn(λ0r). In order to
specify the contour, we note that in physically realistic prob-
lems, the permittivity ε0 has an imaginary part, ε0 = ε′

0 + iε′′
0 .

We consider αn from (5.3) as a function of kz and ε0, αn =
αn(kz, ε0). Note that in the presence of dispersion, one has
ε0 = ε0(ω) = ε0(kzv) and the second argument is a function
of kz as well. Assuming that |ε′′

0/ε
′
0| 	 1, the dominant contri-

bution to the integral in (5.1) comes from the region near kz =
kn,s, where kn,s is the sth root of the equation αn(kz, ε

′
0) = 0.

First we write αn(kz, ε0) ≈ αn(kz, ε
′
0) + iε′′

0∂ε′
0
αn(kz, ε

′
0) and

then expand near kz = kn,s:

αn(kz, ε0) ≈ ∂kzαn(kz, ε
′
0)|kz=kn,s (kz − km,s + iε′′

0 bn,s), (5.6)

where

bn,s = ∂ε0αn(kz, ε0)

∂kzαn(kz, ε0)

∣∣∣∣
kz=kn,s,ε0=ε′

0

. (5.7)

Note that though ε0 may depend on kz, the derivative
∂ε0αn(kz, ε0) is taken for the fixed value of kz. As for the
denominator, ∂kzαn(kz, ε0) = (d/dkz )αn(kz, ε0), in the pres-
ence of dispersion ε0 = ε0(kzv), the derivative is taken with
respect to both of the arguments. From (5.6), we see that the
pole of the integrand in (5.1) is located at kz = km,s − iε′′

0 bn,s.
We have numerically checked that the numerator in (5.7) is
negative for λ2

0 > 0 and the sign of bn,s is determined by
the sign of the denominator. The latter will be denoted as
σn,s = sgn[∂kzαn(kz, ε

′
0)|k=kn,s ] = −sgn(bn,s). By taking into

account that ε′′
0 (ω) > 0 for ω > 0, from here we conclude

that for λ2
0 > 0 in (5.1), the poles kz = kn,s should be avoided

from above for σn,s < 0 and from below for σn,s > 0 by
small semicircles in the complex plane kz . The integrals over
these semicircles are expressed in terms of the corresponding
residues. Returning to the case of real ε0, ε0 = ε′

0, for the
energy radiated per unit time we get

I =
∞∑

n=0

′ ∑
s

In,s = −v
dW

dz
, (5.8)

where the radiation intensity on the angular frequency ωn,s =
vkn,s is given by

In,s = −2δnq2 v

ε1

√
1 − β2

1 k2
z

K2
n (|λ1|r0)

V J,K
n

Jn(λ0rc)

rc|α′
n(kz )|

×
∑
p=±1

Jn+p(λ0rc)

V J,K
n+p

∣∣∣∣
kz=kn,s

. (5.9)

Here, α′
n(kz ) = ∂kzαn(kz, ε0), δ0 = 1/2, and δn = 1 for n =

1, 2, . . .. This expression determines the radiation intensity
on the guided modes of the dielectric waveguide. If the
Cherenkov condition for the surrounding medium is not sat-
isfied, the CR emitted inside the cylinder is totally reflected
from the separating boundary.

The dependence of the radiation intensity on the distance
of the charge from the waveguide axis enters through the
function K2

n (|λ1|r0). For large values of r0, the intensity is
exponentially small. For large values of |λ1|rc � 1, the in-
tensity is suppressed by the factor e−2|λ1|(r0−rc ). Hence, the
guided modes of the waveguide are mainly radiated on the

TABLE I. The first eigenvalues for kzrc for different values of the
azimuthal number n.

n 0 1 2 3 4 5 10 15 20

kn,1rc 1.689 0.886 1.971 2.866 3.685 4.465 8.124 11.613 15.027

frequencies

ωn,s �
v√

1 − β2
1 (r0 − rc)

. (5.10)

For n � 1, one has kn+1,1 > kn,1. In Table I, we present kn,1rc

for Ee = 2 MeV, ε0 = 3.8, ε1 = 1, and for several values of n.
As seen, for n � 1, the first root kn,1rc is of the order of n.

Assuming that |λ j |rc � n, the asymptotic expression for
the roots kn,s is found by using the asymptotic formulas for
the cylinder functions for large arguments,

kn,2l+1rc ≈ 1√
β2

0 − 1

⎡
⎣nπ

2
+ π

4
− arctan

(
ε1

ε0

√
β2

0 − 1

1 − β2
1

)

+π l

⎤
⎦, (5.11)

where l � 1 and kn,2l < kn,2l+1 is close to (5.11). For a given
n, the frequency ωn,s of the guided mode increases with in-
creasing s and the upper limit of the summation over s in (5.8)
is determined from the Cherenkov condition, vε0(ωn,s)/c > 1.

In the figures below, we plot the number of quanta radiated
on a given mode kn,s per unit length of the charge trajectory,

Nn,s = In,s

h̄ωn,sv
. (5.12)

Figure 5 presents the number of the radiated quanta as a
function of ωn,src/c for given n and for different values of
s. For the parameters, we have taken Ee = 2 MeV, ε0 = 3.8,
ε1 = 1, and r0/rc = 1.05. The left and right panels correspond
to n = 1 and n = 2, respectively. As seen, for fixed n and
starting from s = 2, the roots kn,s come in pairs which are
close to each other. The radiation intensity on the first root in
the pair is much smaller than on the second one. For example,
N1,2/N1,3 ≈ 0.0026 and N2,2/N2,3 ≈ 0.001. The radiation on
the modes with n = 0 is essentially smaller compared to the
cases presented in Fig. 5. For the same values of the parame-
ters, one has ω0,1rc/c ≈ 1.63 and rcN0,1 ≈ 0.026q2/(h̄c). The
corresponding results for n = 5 (circles), n = 10 (diamonds),
and n = 20 (squares) are presented in Fig. 6.

Note that the numerical results above are given in relative
units and can be used to estimate the radiation intensity in
a wide range of frequencies. The absolute values for the
radiation frequencies depend on the diameter of the cylin-
drical waveguide and are restricted by the condition (5.10).
For available waveguides, the diameter may vary over a wide
range starting from 50 nm (used for optical wave guiding). In
particular, various types of terahertz waveguides, with radius
of the order of 1 mm, have been discussed in the literature.
Note that in the figures given above (and also given below
for the radiation of surface polaritons), we have plotted the

063517-9



A. A. SAHARIAN et al. PHYSICAL REVIEW A 102, 063517 (2020)

FIG. 5. The number of quanta radiated on guided modes of the cylinder vs ωn,src/c for n = 1 (left panel) and n = 2 (right panel). The data
are presented for Ee = 2 MeV, ε0 = 3.8, ε1 = 1, and r0/rc = 1.05.

number of quanta radiated from the part of the particle trajec-
tory equal to the cylinder radius. For waveguides with small
radii, the number of quanta radiated from the unit length of
the trajectory can be fairly large. However, in the experimental
conditions, a number of additional factors must be taken into
account. In particular, the lower limit of the distance from the
cylinder surface r0 − rc, appearing in the condition (5.10) is
restricted by the bunch radius. It is of interest to note that
for a bunch moving in vacuum (ε1 = 1), the upper limit in
(5.10) linearly increases with increasing beam energy. For
example, considering the parameters of the bunch used in the
experiments of Ref. [10] (bunch energy 60 MeV and radius
0.1 mm) and taking r0 − rc = 1 mm, for the upper limit of
the frequency ω/(2π ), obtained from the right-hand side of
(5.10), we get ≈5.6 THz.

VI. EMISSION OF SURFACE POLARITONS

In this section, we consider the radiation on the modes
of the dielectric cylinder with λ2

j < 0, j = 0, 1, that corre-
spond to surface polaritons. For the Fourier components of
the fields with a given n, the radial dependence is described

FIG. 6. The same as in Fig. 5, for n = 5, 10, 20.

by the function Kn(|λ1|r) in the region r > rc and by the
function In(|λ0|r) inside the cylinder, r < rc, and these modes
correspond to surface waves. Depending on the electromag-
netic properties of the contacting media, various types of
surface waves can be excited on the separating boundary.
Among them, motivated by wide applications in light-emitting
devices, surface imaging, data storage, surface-enhanced Ra-
man spectroscopy, biomedicine, plasmonic solar cells, etc.,
the surface plasmon polaritons have attracted a great deal of
attention [28]. They are evanescent electromagnetic waves
propagating along a metal-dielectric interface as a result of
collective oscillations of electrons coupled to an electromag-
netic field. Among the most important properties of surface
plasmon polaritons is the possibility for concentration of the
fields beyond the diffraction limit that enhances the local field
strengths by several orders of magnitude. Other types of active
media instead of metals can also support surface polariton
modes. Examples are organic and inorganic dielectrics, ionic
crystals, doped semiconductors, and metamaterials [29]. An
important advantage of these materials is the possibility to
control the parameters in the dispersion relations for dielectric
permittivity and magnetic permeability. In particular, they can
be used for the extension of plasmonics to the infrared and
terahertz frequency ranges.

In the problem under consideration, the formula for the
energy losses in the form of surface polaritons is obtained
from (5.1) introducing, instead of the functions Jn(λ0rc)
and Jn±1(λ0rc), the modified Bessel functions In(|λ0|rc) and
In±1(|λ0|rc). Similar to the case of guided modes, we can
see that for real kz, the integrand is real and, hence, the only
nonzero contribution to the integral comes from the poles of
the integrand. As before, the latter correspond to the zeros of
the function αn. In the case under consideration, this function
is written as

αn = ε0

ε1 − ε0
+ 1

2

∑
l=±1

[
1 + |λ1|

|λ0|
In+l (|λ0|rc)Kn(|λ1|rc)

In(|λ0|rc)Kn+l (|λ1|rc)

]−1

.

(6.1)

The equation αn = 0 determines the dispersion relation for
the surface modes (see, for example, [31]). By taking into
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FIG. 7. The localization of the eigenmodes of the cylinder with
respect to kzrc for n = 0 (dashed curves) and n = 1 (full curves). For
the surrounding medium, we have taken ε1 = 1 and the numbers near
the curves are the values of v/c.

account that the term with the ratios of the modified Bessel
functions is always positive, we conclude that the equation
may have solutions if and only if 0 < 1/(1 − ε1/ε0) < 1 or,
equivalently, under the condition ε1/ε0 < 0. Hence, in order
to have eigenmodes of the cylinder with λ2

0 < 0, the dielectric
permittivities of the cylinder and of the surrounding medium
should have opposite signs. Of course, this is a result that is
well known for planar interfaces as well.

As before, we will denote by kn,s the eigenvalues for kz, be-
ing the roots of the equation αn = 0. Unlike the case of guided
modes, because of monotonicity of the modified Bessel func-
tions, the equation αn = 0 for surface polaritons has a finite
number of solutions. For a given n, we can have one or two
roots. This feature is illustrated in Fig. 7 where the roots with
respect to kzrc are plotted versus ε0 for ε1 = 1 and for several
values of the ratio v/c (numbers near the curves). The dashed
and full curves correspond to n = 0 and n = 1, respectively.
By taking into account that the product kn,src depends on the
parameters through the combinations ε0/ε1 and β1, we see
that Fig. 7 describes the distribution of the roots for ε1 = 1
as well. In the limit kzrc → ∞, the curves tend to the limiting
value ε0 = ε

(∞)
0 , which depends on the ratio v/c and does not

depend on n. Below it will be shown that

ε
(∞)
0 = − ε1

1 − β2
1

. (6.2)

As seen from the graphs, for n = 0, one has a single root in the
region ε0 < ε

(∞)
0 and there are no surface modes in the range

ε0 > ε
(∞)
0 . For n � 1, the surface modes are present in the

region ε
(m)
0 � ε0 < −ε1 (see the asymptotic analysis below),

where the minimal value ε
(m)
0 depends on n and v/c. For ε0

close to the minimal value, one has two roots, whereas in the
remaining range a single root exists. In the limit v/c → 0,
one has ε

(m)
0 → −ε1 and for v/c 	 1 the surface modes are

present in the narrow range for the permittivity ε0 with the
length of the order of β2

1 .
The distribution of the roots presented in Fig. 7 can be

understood qualitatively considering the asymptotic behavior

of the function αn from (6.1). For kzrc � n + 1, assuming also
that |λ j |rc � n + 1, we get

αn ≈ ε0

ε1 − ε0
+
(

1 +
√

1 − β2
1

1 − β2
0

)−1(
1 + 1

2|λ0|rc

)
. (6.3)

From here it follows that for the graphs in Fig. 7, one has
ε0 → ε

(∞)
0 ≡ −ε1/(1 − β2

1 ) in the limit kzrc → ∞. Note that
this asymptotic does not depend on n. In the opposite limit of
small kzrc 	 1, we get

α0 ≈ ε1

ε1 − ε0
+ 1

4

(
1 − β2

1

)
(kzrc)2 ln(kzrc),

α1 ≈ 1

2

ε1 + ε0

ε1 − ε0
− 1

4

(
1 − β2

0

)
(kzrc)2 ln(kzrc), (6.4)

and

αn ≈ 1

2

ε1 + ε0

ε1 − ε0
+ k2

z r2
c

2 + [(n − 1)ε1 − (n + 1)ε0]v2/c2

8n(n2 − 1)
,

(6.5)

for n > 1. From these asymptotic expressions, it follows that
for the roots of the equation α0 = 0, we have ε0 → −∞ in the
limit kzrc → 0. This feature is seen in Fig. 7 (dashed curves).
For n � 1, the asymptotic expressions (6.4) and (6.5) imply
that for the roots of αn = 0, one has ε0 → −ε1 in the limit
kzrc → 0. Again, this is confirmed by Fig. 7 (full curves).

In considerations of surface polaritons the allowance for
the dispersion of the dielectric permittivity of the cylinder,
ε0 = ε0(ω), is required. Among the most popular models used
in surface plasmonics (see, for example, [28,29]) is the Drude-
type dispersion,

ε0(ω) = ε∞ − ω2
p

ω2 + iγω
, (6.6)

where ε∞ is the background dielectric constant, ωp is the
plasma frequency, and γ is the characteristic collision fre-
quency or the damping coefficient. The plasma frequency
can be tuned by changing the carrier concentrations in
the material. For example, in the terahertz range, doped
semiconductors are used. Alternatively, one can control the
electromagnetic properties by using artificially constructed
materials.

In the discussion below, we will ignore the imaginary part
in (6.6), assuming that the absorption is small. In the cor-
responding model, the surface polaritons are radiated in the
spectral range ω < ωp/

√
ε∞. Let us consider the properties

of those modes in the asymptotic regions of the dimensionless
parameter ωprc/v. For ωprc/v 	 1, one has |λ j |rc 	 1 and,
for α0, we have the asymptotic expression (6.4). As already
mentioned, from that asymptotic, it follows that −ε0 � 1
or ω/ωp 	 1 for the n = 0 modes (for composite materials
with high negative permittivity, see, for example, [30] and
references therein). For the dispersion (6.6) with γ = 0, from
the asymptotic expression of α0 for the frequencies of n = 0
surface polaritons in the range ωprc/v 	 1, one gets

ω

ωp
≈ (ωprc/v)−1√

1 − β2
1

exp

[
−2ε1(ωprc/v)−2

1 − β2
1

]
. (6.7)
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FIG. 8. Eigenfrequencies of the cylinder corresponding to surface polaritons vs ωprc/c for the dispersion law (6.6) with γ = 0 and for
ε1 = 1. On the left panel, the full and dashed curves correspond to the modes with n = 1 and n = 0, respectively, and the numbers near the
curves are the values of the ratio v/c. The graphs on the right panel are plotted for v/c = 0.5 and the numbers near the curves correspond to
the values of n.

For the modes with n � 1 and under the condition ωprc/v 	
1, we use the asymptotics (6.4) and (6.5). From those expres-
sions, in combination with (6.6), it follows that one should
have |ε0 + ε1| 	 1. By taking into account (6.6), for the sur-
face polariton modes with n � 1, we obtain

ω

ωp
→ 1√

ε∞ + ε1
, ωprc/v → 0. (6.8)

In the opposite limit ωprc/v � n + 1, one has |λ j |rc � n +
1 and we can use the asymptotic expression (6.3). From the
equation αn = 0, in combination with ε0/ε1 < 0, it follows
that ε0/ε1 ≈ −1/(1 − β2

1 ). For the dispersion (6.6), this gives

ω2

ω2
p

≈ 1

ε∞ + ε1/
(
1 − β2

1

) , (6.9)

in the asymptotic region ωprc/v � n + 1.
In the left panel of Fig. 8, for dispersion law (6.6) with

ε∞ = 1 and γ = 0, we present the frequencies for the eigen-
modes of the cylinder as functions of the plasma frequency.
The full and dashed curves correspond to n = 1 and n = 0,
respectively. The numbers near the curves are the values of
the ratio v/c. The right panel of Fig. 8 presents the frequencies
of the eigenmodes for different values of n (numbers near the
curves). From the data plotted in Fig. 8, we see that for n = 0,
the frequencies of the surface polaritons are in the range

ω < ωp

(
ε∞ + ε1

1 − β2
1

)−1/2

. (6.10)

For the frequencies of the modes with n � 1, in addition to
the upper limit in (6.10), one has a lower limit: ω � ω(m). The
limiting frequency increases with increasing n and tends to
ωp/

√
ε∞ + ε1/(1 − β2

1 ) for large values of n.
Having clarified the distribution of the eigenmodes, we

turn to the radiation intensity for surface polaritons. Similar to
the case of guided modes, in order to specify the integration
contour near the poles of the integrand in (5.1), we introduce
an imaginary part of the permittivity ε0 and use the expansion
(5.6). The poles are located at kz = kn,s − iε′′

0 bn,s, where bn,s is

defined by (5.7). We have checked numerically that for λ2
0 <

0, one has ∂ε′
0
αn(kn,s, ε

′
0) > 0. From here, it follows that the

poles kz = kn,s should be avoided from above for σn,s > 0 and
from below for σn,s < 0 by small semicircles in the complex
plane kz. The energy radiated per unit time is presented as
(5.8), where the radiation intensity for surface polaritons of
the angular frequency ωn,s = vkn,s is expressed as

In,s = 2δnq2 v

ε1

√
1 − β2

1 k2
z

K2
n (|λ1|r0)

V K
n

In(|λ0|rc)

rc|α′
n(kz )|

×
∑
p=±1

In+p(|λ0|rc)

V K
n+p

∣∣∣∣
kz=kn,s

, (6.11)

where |λ j | = kz

√
1 − β2

j ,

V F
n = In(|λ0|rc)∂rc Fn(|λ1|rc) − Fn(|λ1|rc)∂rc In(|λ0|rc),

(6.12)

for F = I, K . Note that one has V K
n < 0. Similar to the case of

the guided modes, the radiation intensity is suppressed by the
factor e−2|λ1|(r0−rc ) for the modes with |λ1|rc � 1. Unlike the
guided modes, there is no velocity threshold for the generation
of surface polaritons.

Let us consider asymptotic estimates of the radiation
intensity for the dispersion relation (6.6) with γ = 0. In ac-
cordance with the analysis given above, in the limit v →
0, one has ω → ωp/

√
ε1 + ε∞. By taking into account that

|λ j |rc ≈ ωrc/v, we see that the arguments of the modified
Bessel functions in (6.11) are large. By using the corre-
sponding asymptotic expressions, we conclude that in the
limit v → 0, the radiation intensity is suppressed by the fac-
tor exp[−2ωp(r0 − rc)/(v

√
ε1 + ε∞)]. Now we turn to the

behavior of the radiation intensity in the limiting regions
of the combination ωprc/v. In the region ωprc/v 	 1 and
for the modes n = 0, we get I0,s ∝ (ω/ωp)2/(ωprc/v)2, where
the ratio ω/ωp is given by (6.7). The corresponding radiation
intensity is exponentially small. For the surface modes with
n � 1, the radiation intensity in the same region is estimated
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FIG. 9. The spectral distribution of the number of radiated sur-
face polaritons on the modes with n = 0 for a cylinder immersed in
the vacuum. The numbers near the curves are the values for v/c.

as

In,s ≈ 2q2v

r2
c

(rc/r0)2n(ωprc/v)2

n(ε∞ + ε1)2 . (6.13)

The corresponding frequencies are given by (6.9) and the
radiation intensity is suppressed by the factor (ωprc/v)2. In
the opposite limit, ωprc/v � n + 1, the radiation intensity is
estimated as

In,s ≈ 2q2ωp

r0

(ω/ωp)3

1 − β2
1/2

exp

[
− 2(r0 − rc)

ω

v

√
1 − β2

1

]
,

(6.14)

with the radiation frequency from (6.9). Similar to the case
of the guided modes, the frequency of the radiated surface
polaritons is restricted by the condition (5.10). For the values
of the bunch parameters discussed at the end of the previous
section, the upper limit of the frequency for surface polaritons
is of the order of 10 THz. On the other hand, our consideration
is restricted by the condition ω � γ that is required to neglect
the imaginary part of the dielectric permittivity in (6.6). For

metals, the ratio γ /(2π ) is of the order of 10 THz and the
approximation used in deriving (6.11) is not valid for the
above-mentioned values of the bunch characteristics. Note
that the formula (4.3) for the energy losses is valid for the
general case of the complex function ε0(ω). In the presence of
the imaginary part of ε0(ω), in addition to the radiation part,
dW/dz also contains other types of energy losses.

In Fig. 9, we have displayed the number of the radiated
quanta for surface polaritons as a function of the frequency
for the modes with n = 0 and for ε1 = 1, r0/rc = 1.05. The
numbers near the curves are the values of the ratio v/c. Note
that different frequencies correspond to different values of
the permittivity ε0. The value for ε0 corresponding to a given
frequency can be found from the data depicted in Fig. 7. We
see that the number of the radiated quanta is large enough
compared to the case of the radiation of guided modes.

Here, a comment is in order. In the numerical evaluations
corresponding to Fig. 9, for a given value of ε0, with fixed ε1

and v, we solve the equation αn = 0 with respect to kzrc. At
this step, for a given ε0, the specific form of the dispersion is
not required. The latter is needed in the numerical evaluation
of the radiation intensity. Indeed, the radiation intensity con-
tains the derivative α′

n(kz ). By taking into account the relation
ω = kzv, in the expression for α′

n(kz ) the derivative ∂ωε0(ω)
will enter coming from the terms in (6.1) with λ0 and from
the first term in the right-hand side. Hence, for the evaluation
of the radiation intensity on a given frequency ω, in addition to
ε0(ω), the value of the derivative ∂ωε0(ω) is required. Plotting
the graphs in Fig. 9, we have assumed that the dispersion is
weak and the part of the derivative α′

n(kz ) containing ∂ωε0(ω)
has been ignored. In the spectral range with ε0 < 0, this
idealization may lead to problems. For example, a problem
appears in the evaluation of the radiation intensity on the mode
n = 1. In the absence of dispersion, there exists a special
value of ωrc/c (or, equivalently, of ε0) for which the derivative
α′

n(kz ) becomes zero. This means that the corresponding point
is a higher-order pole of the integrand in (5.1). One of the
possible ways to regularize this singularity is to include the
imaginary part of the permittivity ε0(ω). Note that this kind
of problem does not appear in the problem of radiation from a
charge circulating around a cylinder, discussed in [31,32]. The

FIG. 10. The number of the radiated quanta in the form of surface polaritons, as a function of the frequency, for different values of
n ∈ [0, 20] (for the values of the parameters, see the text).
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FIG. 11. The same as in Fig. 10, for ωprc/c = 5.

reason is that in the latter problem, for a given n, the radiation
frequency ν = n/T , with T being the charge rotation period
and kz are independent variables. As a consequence of this,
for evaluation of α′

n(kz ), the derivative ∂ωε0(ω) is not required
and a given value of ε0 determines both the eigenvalues of kz

and the radiation intensity.
Given the importance of dispersion in discussing the emis-

sion of surface polaritons, in Fig. 10, for the dispersion law
(6.6) with ε∞ = 1, γ = 0, and for ε1 = 1, the number of
the radiated quanta for surface polaritons is presented as a
function of the frequency (in units of the plasma frequency)
ω/ωp = ωn,s/ωp for n ∈ [0, 20]. In the numerical evaluation,
we have taken r0/rc = 1.05 and ωprc/c = 1. The circles and
diamonds in the plot correspond to v/c = 0.25 and v/c = 0.5
on the left panel and to v/c = 0.75 and v/c = 0.9 on the right
panel. Note that the eigenfrequencies increase with increasing
n, ωn,s < ωn+1,s. The same data for ωprc/c = 5 are presented
in Fig. 11. As already concluded from the asymptotic anal-
ysis, for large n the radiation frequencies tend to the value
ωp/

√
ε∞ + ε1 (=ωp/

√
2 for the examples in Figs. 10 and 11).

The spectral range of the radiated surface polaritons becomes
narrower with decreasing v/c.

In the discussion above, we have considered the radiation
from a single point charge. The corresponding results for the
spectral density of the radiation intensity can be generalized
for a bunch containing Nq particles. Let us consider a simple
case of the bunch with transverse beam size that is smaller
than the radiation wavelength. The z component of the current
density is presented as j (b)

3 (t, r) =∑Nq

m=1 jm3(t, r), where the
expression for the current density jm3(t, r) for the mth par-
ticle in the bunch is obtained from (2.2) by the replacement
z → z − zm, with zm being the z coordinate of the mth particle
at the initial moment t = 0. The expressions for the Fourier
components of the fields are obtained from the correspond-
ing formulas given above for a single charge by adding the
factor

∑Nq

m=1 e−ikzzm , with kz = ω/v. In the expression for the

radiation intensity, the factor |∑Nq

m=1 e−ikzzm |2 will appear. The

double sum in this modulus squared,
∑Nq

m,m′=1, is decom-
posed into the incoherent contribution with m′ = m and the
remaining coherent contribution. Introducing the longitudinal
distribution function of the bunch f (z) in accordance with

∑Nq

m=1

∫ +∞
−∞ dz δ(z − zn)e−ikzz = Nq

∫ +∞
−∞ dz f (z)e−ikzz, we see

that the radiation intensity from a bunch is obtained from the
formulas for a single charge by adding an additional geomet-
rical factor,

Nq[1 + (Nq − 1)|g(kz )|2], (6.15)

where g(kz ) = ∫ +∞
−∞ dz f (z)e−ikzz. For a Gaussian bunch, one

has f (z) = e−z2/2σ 2
z /(

√
2πσz ) and |g(kz )|2 = exp(−k2

z σ
2
z ),

with σz being the rms bunch length. The second term in the
squared brackets of (6.15) presents the contribution of the
coherent effects in the radiation intensity.

In the discussion above, we have assumed that the waveg-
uide has infinite length along its axis. This allowed one to
provide an exact solution for the problem under consideration.
In fact, the majority of the papers cited above, that consider
the radiation in waveguides, used this approximation. The
results for the fields given above will approximate the features
for a dielectric cylinder with the length Lc under the conditions
r, r0, λr 	 Lc, with λr being the radiation wavelength. For a
finite cylinder, in addition to the radiations discussed above,
there will be diffraction radiation at the ends. Another inter-
esting effect at the termination of the waveguide corresponds
to the transformation of guided modes and surface polaritons
to free electromagnetic fields propagating in the surrounding
medium.

VII. CONCLUSION

We have investigated the radiation emitted by a charge
uniformly moving outside a dielectric cylinder, parallel to its
axis. The electric and magnetic fields are found for general
cases of dielectric permittivities of the cylinder and surround-
ing medium. First we have investigated the spectral density
for the CR intensity in the exterior medium by evaluating the
energy flux at large distances from the charge. The spectral
density is given by (3.4) with functions f (p)

n from (2.11). It
has been shown that the influence of the cylinder on the CR
is essentially different in the cases ε0 < ε1 and ε0 > ε1. The
characteristic feature in the first case is presented in Fig. 2
with relatively small oscillations of the spectral density of
the radiation intensity around the value corresponding to the
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radiation in a homogeneous medium. For wavelengths much
smaller than the cylinder diameter, the oscillations enter into a
quasiperiodic regime. These oscillations result from the inter-
ference of the direct CR, the CR reflected from the cylinder,
and also the CR formed inside the cylinder if the correspond-
ing Cherenkov condition is obeyed. In the case ε0 > ε1, strong
narrow peaks may appear in the spectral distribution of the
radiation intensity. We have specified the conditions for the
presence of those peaks. They come from the terms of the
series in (3.4) with large values of n and are closely related to
the eigenvalue equation for the dielectric cylinder. Equation
(3.13) that determines the spectral locations of the peaks is
obtained form the eigenvalue equation αn = 0, ignoring the
exponentially small terms of the order of |Jn(λ1rc)|/Yn(λ1rc).
Under the Cherenkov condition with the dielectric permittiv-
ity of the surrounding medium, the eigenvalue equation has no
solutions and the radiation modes corresponding to the strong
peaks could be called “quasimodes” of the dielectric cylin-
der. The radiation on these types of modes may also appear
in the spectral range where ε0 < −ε1. We have analytically
estimated the heights and widths of the peaks by using the
asymptotic expressions for the cylinder functions for large
arguments.

If the Cherenkov condition for the exterior medium is
not satisfied, depending on the spectral range, two types
of radiations may appear propagating inside the cylindri-
cal waveguide. They have a discrete spectrum determined
by the dispersion relation αn = 0. The corresponding fields
exponentially decay as functions of the distance from the
cylinder surface and they correspond to guided modes and
to surface polaritons. For guided modes, λ2

0 > 0 and the
Cherenkov condition is satisfied for the dielectric permittiv-
ity of the cylinder. For those modes, the radial dependence
of the fields is expressed in terms of the Bessel function
Jn(λ0r) and the radiation intensity is given by (5.9). The lower
threshold for the guided modes’ frequency increases with
increasing n and the radiation frequency range is determined
by (5.10).

Unlike the guided modes, there is no velocity threshold
for the emission of surface polaritons. They are radiated in
the spectral range where the dielectric permittivities of the
cylinder and of the surrounding medium have opposite signs.
The corresponding radial dependence of the radiation fields
inside the cylinder is described by the Bessel modified func-
tion In(|λ0|r) and the radiation intensity on a given frequency
is expressed as (6.11). The dispersion for surface polaritons
is qualitatively different for the modes with n = 0 and n � 1.
For n = 0, there is an upper threshold for the values of the
permittivity ε0 [given by (6.2)]: the eigenvalue equation has
a single root in the region ε0 < ε

(∞)
0 and there are no surface

modes in the range ε0 > ε
(∞)
0 . In the case n � 1, a single or

two surface modes exist in the finite range ε
(m)
0 � ε0 < −ε1,

with the lower threshold ε
(m)
0 depending on n and v/c. In

the nonrelativistic limit, ε
(m)
0 tends to −ε1 and the surface

modes are present in the narrow range for ε0 with the length
of the order of β2

1 . For illustration of the general results, as an
example of dispersion for dielectric permittivity of the cylin-
der, we have considered a Drude-type model. In the limiting
regions of the dimensionless parameter ωprc/v, the frequen-
cies of the surface modes are estimated by (6.7)–(6.9). The
radiation intensities for surface polaritons in those regions
are approximated by (6.13) and (6.14). The spectral range
of the generated surface polaritons becomes narrower with
decreasing v/c. Having the fields and radiation intensity for
a single charge, one can obtain the corresponding result for
a bunch of particles. In the simple case of the bunch with
small transverse size, the effect of the bunch appears in the
form of the geometrical factor (6.15) determined by the bunch
longitudinal form factor.
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