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Trapping effect and trajectory control of surface plasmon polaritons
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A nonlinear optical-magnetic manipulation scheme is proposed to realize the low-loss surface plasmon
polaritons (SPPs) trapping in metal-dielectric-metal (MDM) waveguide, based on double electromagnetically
induced transparency (EIT) and cross-phase modulation (CPM), theoretically. Using incoherent pumping, the
Ohmic loss of SPPs is compensated. The huge nonlinearity in the system balances the diffraction of the SPPs,
and a SPPs soliton is obtained. With the SPPs solitons, we realize the trapping of another weaker SPPs via
CPM. We find that the trapped SPPs have a similar profile as the stronger SPPs, thus, the profile of trapped
SPPs can be controlled even can be focused when being defused. We also show that the SPPs will deflect in an
external gradient magnetic field, and the trajectory of the SPPs can be manipulated dynamically via adjusting
the magnetic field gradient. The results obtained here may have great potential in future on-chip circuitry.
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I. INTRODUCTION

On-chip circuitry in optics version is attractive for develop-
ing next generation high speed communication and computing
technology [1]. Surface plasmon polaritons (SPPs) can highly
confine the electromagnetic field into the subwavelength scale
near the metal-dielectric interface, thus, it provide a effective
method to integrate the light into chip [2]. Recently, many
plasmonic devices such as ultrafast switch [3], splitters [4],
logic gates [5], etc. have been designed to construct such an
optical circuitry, and the researches in this field even have
been extended the research to quantum level [6].

One of the key points to realize the optical circuitry is
to manipulate SPPs effectively. Such manipulation is mainly
about controlling the propagation properties of the SPPs. On
the one hand, loss and diffraction nature will hugely reduce
the intensity of SPPs, which can be used to modulate the
SPPs signal intensity [7]. On the other hand, the propagation
trajectory of SPPs signal also deserves to manipulate, which is
important for constructing some functional devices like SPPs
router [8,9].

In recent years, many methods have been developed to
meet the two aspects. The plasmonic and hybrid waveguides
are ideal to guide the SPPs, and the route to guide SPPs can
be designed, and with the help of so called active plasmonic
technology [2,7], the loss of SPPs become controllable via
adjusting additional field applied to the system, such as tem-
perature [10], voltage [11,12], magnetic field [13], and so
on. Special waveguide array can create an inhomogeneous
transverse reflect index environment and induces a zigzag
trajectory of SPPs [14,15]. Further more, the SPPs can be
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manipulated by designing the exciting structure and control-
ling the properties of incident light (such as polarization,
incident angle) in waveguide system [16–19]. The discovery
of nondiffraction SPPs beams [20] enrich the method to ma-
nipulate SPPs. For example, the Airy SPPs beam, not only
being nondiffracting but also self-healing [21], thus, the loss
of SPPs reduced, and it has a controllable bending trajectory
related to the incident condition [22–24]. Coupling SPPs to
quantum system is also an alternative way to manipulate SPPs.
The application of electromagnetically induced transparency
(EIT) [25] technic and negative-index metamaterial (NIMM)
interface largely enhance the nonlinearity response of SPPs,
thus, it generates a great platform for nonlinear manipulation
of the tightly confined electromagnetic wave like SPPs [26],
SPs (surface polaritons, a kind of tightly confined EM mode
similar to SPPs) [27–30]. With the platform, the low-loss
nonlinear SPPs or SPs such as solitons [31–33], rogue wave,
breather, and frequency comb [34,35] can be generated, the
diffraction effect can be balanced with the huge nonlinearity,
and the spatial control can be realized.

Most of the methods we mentioned above are inspired from
the methods to manipulate light in free space or fiber, and have
make great progress in controlling SPPs. Other methods such
as soliton radiation trapping [36–38] (i.e., trapping light by
light), Stern-Gelach-like effect of light [39–41] (i.e., deflect
light via gradient magnetic field), are also useful to manipulate
the trajectory of week light signal. However, using such meth-
ods to manipulate SPPs seem have not arisen enough attention
of researchers.

In this paper, we propose to adopt a metal-dielectric-metal
(MDM) waveguide based platform to manipulate SPPs, and
based on it, we theoretically investigate the trapping effect
and trajectory control of SPPs via EIT effect and external
magnetic field. We apply the incoherence pump technic, and

2469-9926/2020/102(6)/063516(10) 063516-1 ©2020 American Physical Society

https://orcid.org/0000-0002-9325-7168
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.063516&domain=pdf&date_stamp=2020-12-11
https://doi.org/10.1103/PhysRevA.102.063516


ZHOU, LIU, WANG, AND TAN PHYSICAL REVIEW A 102, 063516 (2020)

FIG. 1. (a) MDM waveguide system to manipulate SPPs. A strong control field (red arrow, along the −x direction), weak probe field (blue
arrow, along the x direction), and weaker signal field (green arrow, along the x direction) are incident, and SPPs are excited. The dielectric
layer is hot atomic vapors (red points) interacting with the three SPPs fields. A inhomogeneous magnetic field with gradient in the y− direction
is applied to the system to manipulate the SPPs. (b) Energy level configuration of atoms. � j ( j = 2, 3, 4) is detuning, �i j is spontaneous
emission decay rate(for i < j) or incoherent pumping rate(for i > j), � j and ω j ( j = c, p, s) are, half-Rabi frequency and center frequency,
respectively.

realize the low-loss propagation for both symmetric and anti-
symmetric SPPs modes. Then, we obtain a shape-preserving
probe SPPs due to the strong nonlinearity in the system. Fur-
thermore, we show that a weaker signal SPPs can be trapped
by the probe SPPs soliton via cross-phase modulation, and the
trapped SPPs has a similar profile as the probe one, which can
be used to focus the defused signal SPPs or reshape it. Our
numerical results also suggest that the trapping effect is still
valid when a transverse gradient magnetic field is applied to
the system, and the SPPs will deflect in the magnetic field,
thus, the trajectory of SPPs can be controlled. A real time
trajectory control is realized using a time-dependent gradient
magnetic field.

The article is arranged as follows. In the next section, we
describe the theoretical model. In Secs. III and IV, the linear
and nonlinear properties of SPPs in our system are analyzed,
respectively. In Sec. V, we study the manipulation of the SPPs
based on CPM and the external magnetic field. In the last
section, we summarize the main results obtained in this work.

II. THEORETICAL MODEL

We consider a MDM waveguide system, as shown in
Fig. 1(a). For convenience of theoretical analyzing, we assume
the geometry configuration of the waveguide system is ex-
tended to infinity both in the y and z directions. The dielectric
with permittivity ε1 and permeability μ1 has a thickness d in
the z direction. And the covered layers in both side of the
dielectric are the same metal with permittivity ε2 and per-
meability μ2. The dielectric layer adopted here is hot atomic
vapors, and atoms in which have an inverted-Y-type four-level
configuration. As illustrated in Fig. 1(b), the energy levels of
the atoms are two ground states |1〉 and |2〉 and one inter-
mediate state |3〉 and one upper state |4〉. Three laser fields
(control, probe and signal) are guided in the MDM waveguide
with TM SPPs mode, and interacting with the atoms. The
probe and signal fields propagate along the x direction, and

the control field propagates along the −x direction, such a
scheme can suppress the first-order Doppler effect [42]. ωc,
ωp and ωs are center frequency of the control, probe and
signal fields, respectively. The strong control field drives the
transition |3〉 ↔ |4〉 with half-Rabi frequency �c, while the
weak probe field drives the transition |1〉 ↔ |2〉 with half-Rabi
frequency �p, and the weaker signal field drives the transition
|2〉 ↔ |3〉 with half-Rabi frequency �s. � jl ( j < l, l = 3, 4) is
the spontaneous emission decay rate from state |l〉 to state | j〉,
�4l (l = 1, 2) is the incoherent pumping, and �k (k = 2, 3, 4)
is the detuning.

As shown in Ref. [43], the MDM waveguide system only
support transverse-magnetic (TM) SPPs modes, and two TM
modes (symmetric and antisymmetric) can be found from
Maxwell equations, which satisfied the boundary conditions
at metal-dielectric interface (as well as boundary conditions at
z = ±∞), and the dispersion relation of TM mode in MDM
waveguide is given by

tanh

(
kz1d

2
+ ψ

)
= −ε1

ε2

kz2

kz1
, (1)

where k2
z j = k2 − ε jμ jk2

0 ( j = 1 for the dielectric and j = 2
for the metal), ψ = mπ i/2 (i is imaginary unit, m = 0 for
symmetric mode and m = 1 for antisymmetric mode), k0 is
the wave number in vacuum and k is the propagation constant
of SPPs. When we discuss symmetry in this paper, we are
referring the symmetry of magnetic field profile with respect
to the center plain of the dielectric layer in MDM configura-
tion. Equation (1) gives a complex propagation constant for
both symmetric and antisymmetric mode due to the Ohmic
loss of the metal, thus the weak probe and signal fields could
not propagate for a relatively long distance. To compensate the
loss, we introduce incoherent pumping to our system, which
pump the ground states |1〉 and |2〉 to upper state |4〉 with
pumping rate �41 and �42, respectively.
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The electric fields interacting with the atoms read

E(r, t ) =
∑

l=c,p,s

Elul (z)ei(k(ωl )x−ωl t ) + c.c., (2)

where ul (z) = (k(ωl ) cosh(kz1z + ψ )ez + ikz1(ωl ) sinh(kz1z
+ ψ )ex )/k(ωl ) is the mode function in the z direction, and
El is the amplitude envelope function of the electric field.
To investigate the trapping effect and the trajectory control
of SPPs, an external magnetic field is applied to the system,
which has the following form:

B(y, t ) = exB0y, (3)

with B0 being the transverse gradient of external field. Then
a small but y coordinate dependent Zeeman energy shift is
induced to state | j〉, which reads �Ej = μBgj

F m j
F B0y (μB

is Bohr magneton, gj
F and m j

F are gyromagnetic factor and
magnetic factor of state | j〉, respectively). The small energy
shift corrects the detuning as �′

j = � j − μ j1B0y, with μ jl =
μB(gj

F m j
F − gl

F ml
F )/h̄.

In the interaction picture, the simplified Hamiltonian after
performing electric-dipole and rotating wave approximations
reads

Ĥint = − h̄
4∑

j=2

�′
j | j〉〈 j| − h̄[ζc(z)eiθc�c|4〉〈3|

+ ζp(z)eiθp�p|3〉〈1| + ζs(z)eiθs�s|3〉〈1| + H.c.], (4)

where �c = |p34|Ec/h̄, �p = |p13|Ep/h̄, �s = |p23|Es/h̄,
ζc(z) = p34 · uc(z)/|p34|, ζp(z) = p13 · up(z)/|p13|, and
ζs(z) = p23 · us(z)/|p23|. Here, p jl is electric dipole
matrix element related to state | j〉 and state |l〉,
θc = [k(ωc) + k3 − k4] x, θp = [k(ωp) + k1 − k3] x and
θs = [k(ωc) + k2 − k3] x are the phase mismatch caused
by dispersion of SPPs, with kl (l = 1, 2, 3, and 4) being
the wave number of state |l〉. Note that the Ohmic loss in
the system can be characterized by the image part of the
phase mismatch, which donates a exponent decay factor of
half-Rabi frequency.

The interaction information of the system is given by the
density matrix σ , which is a 4 × 4 matrix. The evolution of σ

is governed by optical Bloch equation [33]
∂σ

∂t
= − i

h̄
[Ĥint, σ ] − �σ, (5)

with � being a 4 × 4 relaxation matrix describing the spon-
taneous emission and dephasing effect of the system. The
explicit expression of Eq. (5) is given in Appendix A.

The evolution of the electric field is given by the Maxwell
equations, under slowly varying envelope approximation, the
Maxwell equations can be written in form of half-Rabi fre-
quency as follow:

i

(
∂

∂x
+ 1

c

n2

neff

∂

∂t

)
�pζp(z)eiθp + 1

2k(ωp)

∂2

∂y2
�pζp(z)eiθp

+κ13

∫ ∞

−∞
dv f (v)σ31 = 0, (6a)

i

(
∂

∂x
+ 1

c

n2

neff

∂

∂t

)
�sζs(z)eiθs + 1

2k(ωs)

∂2

∂y2
�sζs(z)eiθs

+κ23

∫ ∞

−∞
dv f (v)σ32 = 0, (6b)

where κ13 = Na|p13|2ω2
p/[2ε0 h̄c2k̃(ωp)], κ23 = Na|p23|2ω2

s /

[2ε0 h̄c2k̃(ωs)] with Na the number density of the atoms,
neff = k/k0 is effective refraction index and k̃ = Re(k). v is
the velocity of the atoms, due to the Doppler effect, the motion
of the atoms could cause an inhomogeneous broadening of
the energy level, thus, we have averaged Eq. (6) over all
atoms weighted by their velocity distribution f (v), which is
the Maxwell velocity distribution, and reads [44]

f (v) =
√

ln2√
πWD

e−ln2( kv
WD

)2

, (7)

where 2WD = 2k
√

2ln2kBT/matom is the full width at half
maximum (FWHM) of the Doppler broadened line, T
is temperature, kB is the Boltzmann constant, and matom

is the mass of the atom. The inverted-Y-type four-level
system is chosen from hot 87Rb atomic gas ensemble,
and the energy levels are |1〉 = |5 2S1/2, F = 1, mF = −1〉
(g1

F = −1/2), |2〉 = |5 2S1/2, F = 1, mF = 1〉 (g2
F = −1/2),

|3〉 = |5 2P3/2, F = 0, mF = 0〉 (g3
F = 0), |4〉 = |5 2D1/2, F =

1, mF = 1〉 (g4
F = 21/10). Thus, in our case, λc ≈ λp ≈

λs = 780 nm, and we can obtain the Doppler width 2WD =
0.55 GHz.

Equations (5) and (6) are known as the Maxwell-Bloch
(MB) equations, which fully describe our system, they can
be solved by multiscale method [45]. We take asymptotic
expansions of the density matrix elements, the weak probe
field and the weaker signal field as: σi j = ∑∞

l=0 εlσ
(l )
i j , �p =∑∞

l=1 εl�(l )
p , �s = ∑∞

l=2 εl�(l )
p , with ε a dimensionless small

parameter characterizing the typical amplitude of half-Rabi
frequency, |�p/�c| ∼ ε, |�s/�c| ∼ ε2. In addition, all quan-
tities on the right hand side of expansions are considered as the
functions of multiscale variables xl = εl x(l = 0, 2), y1 = εy,
and tl = εl t (l = 0, 2). In our analysis, the external magnetic
field is assumed to be the order of ε2, thus we rewrite the
external magnetic field as B(y) = ε2B0y1. We substitute the
expansions into MB equations, then we will obtain a series
of linear but inhomogeneous equations, which can be solved
order by order.

III. LINEAR PROPERTIES AND GAIN ASSISTED
PROPAGATION OF SPPs

The zeroth-order approximation of MB equations are ac-
quired by taking �p, �s and B(y) to be zero (corresponding to
the initial state of the system), which reads

σ
(0)
11 = �13

�41
σ

(0)
33 , (8a)

σ
(0)
22 = �23

�42
σ

(0)
33 , (8b)

σ
(0)
44 = 1 − (

σ
(0)
11 + σ

(0)
22 + σ

(0)
33

)
, (8c)

σ
(0)
43 = ζc(z)�c

d43

(
σ

(0)
44 − σ

(0)
33

)
, (8d)

σ
(0)
33 = �41�42(2γ43|ζ (z)�c|2 + �34|d43|2)

J1|ζc(z)�c|2 + J2|d43|2
, (8e)

where J1 = 2γ43[�23�41 + (�13 + 2�41)�42], J2 = �23�34

�41 + [�13�34 + (�3 + �34)�41]�42, and σ
(0)
21 = σ

(0)
31 =
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FIG. 2. Linear dispersion relation of the probe field Kp as a function of ω for different SPPs modes. (a) shows the Im[Kp(ω)] curves which
characterize the linear absorbtion of the system, and (b) shows the Re[Kp(ω)] curves which characterize the linear dispersion of the system. In
both panels, blue solid line is represent for even (symmetric) SPPs mode, while red dashed line for odd (antisymmetric) SPPs mode.

σ
(0)
41 = σ

(0)
32 = σ

(0)
42 = 0. � j = ∑

i< j �i j , and γi j =
(�i + � j )/2 donate total spontaneous emission rate of state
| j〉 and dephasing rate of states |i〉 and | j〉, respectively. The
expression of σ

(0)
33 indicates that some atoms will populate in

state |3〉 before probe field and signal field incident into the
system, if the incoherent pumping are applied to the system
(i.e., �41 
= 0, �42 
= 0). Thus a Raman-like gain is generated
for the probe and signal fields. We can see such a gain effect
more clearly in the linear dispersion relation.

In the first- (second-) order approximation of the MB
equations, we obtain the solution �(1)

p (�(2)
s ), σ

(1)
j1 (σ (2)

j2 , j =
3, 4), which are proportional to exp(iθ1) (exp(iθ2)), with θ1 =
Kp(ω)x0 − ωt0(θ2 = Ks(ω)x0 − ωt0). Here, Kp(ω), Ks(ω) are
the linear dispersion relation of the probe field and the signal
field, which read

Kp(ω) = ω

c

n2

neff
+ κ13

∫ ∞

−∞
dv f (v)

〈
D11

D1

〉
z

, (9a)

Ks(ω) = ω

c

n2

neff
+ κ23

∫ ∞

−∞
dv f (v)

〈
D21

D2

〉
z

. (9b)

We have defined following symbols: D1 = (ω + d (0)
31 )(ω +

d (0)
41 ) − |ζ (z)�c|2, D11 = (ω + d (0)

41 )(σ (0)
33 − σ

(0)
11 ) − ζ ∗(z)

�∗
cσ

(0)
43 , D2 = (ω + d (0)

32 )(ω + d (0)
42 ) − |ζ (z)�c|2, D21 =

(ω + d (0)
42 )(σ (0)

33 − σ
(0)
22 ) − ζ ∗(z)�∗

cσ
(0)
43 , and d (0)

i j = �i −
� j + iγi j (i = 3, 4, j = 1, 2,�1 = 0) is dephasing parameter
of zeroth-order approximation. And 〈g(z)〉z = ∫ +∞

−∞ g(z)

|ζ (z)|2dz/
∫ +∞
−∞ |ζ (z)|2dz donates the expectation value of

arbitrary function g(z). Note that in Eqs. (9) and (9b), ω is the
frequency shift to the center frequency of probe and signal
field. From Eqs. (9) and (9b), we can find that the mainly dif-
ference of the linear dispersion relation Kp and Ks is induced
by parameters �2, κ j3, and �4 j ( j = 1, 2). The difference will
cause the group velocities mismatch of the probe field and the
signal field, thus the probe field could not trap the signal field.
In our following analyze, we choose these system parameters
as �2 = 0, κ13 = κ23 and �14 = �24. Under this condition,
the linear dispersion relation of probe field and signal field
are almost the same, i.e., Kp(ω) ≈ Ks(ω), hence the group
velocities (Vgp(s) = Re[∂Kp(s)/∂ω]−1) is well matched.

Figure 2 shows the imaginary part and real part of
the linear dispersion relation Kp(ω) as function of cen-
ter frequency shift ω. The system parameters are chosen
as [44,46]: |p13| = |p23| = 1.46 × 10−29 C m, �13 = �23 =
3 MHz, �34 = 1 MHz, WD = 0.28 GHz. Parameters of the
control field and the incoherent pumping are �c = 6 MHz,
�41 = �42 = 2.5 MHz, respectively. The Detunings are �2 =
�3 = �4 = 0. In order to obtain a same coupling strength
constant, we assume the number density of atoms as Na =
5.84 × 1013 cm−3 (for symmetric mode), and Na = 1.41 ×
1011 cm−3 (for antisymmetric mode), thus, κ13 = κ23 = 5 ×
1011 cm−1 s−1. The parameter of MDM waveguide are: μ1 =
μ2 = 1, ε1 = 1, ε2 = −29.25 + 0.57i, d = 300 nm, and k =
(8.71 + 0.0069i) × 104 cm−1 (for symmetric mode) or k =
(0.021 + 4.91i) × 104 cm−1 (for antisymmetric mode). In
Fig. 2, the blue solid line and red dashed line correspond to
the even (symmetric) and odd (antisymmetric) SPPs mode.

Figure 2(a) shows the linear absorption spectrum
Im[Kp(ω)]. For both symmetric and antisymmetric SPPs
modes, the profile of absorption spectrum is a doublet peaks
with a transparent window opened at the center frequency
ω = 0, which is a EIT phenomenon. Different from usual
EIT effect without incoherence pumping, in our system, the
transparency window is opened deeply into the region where
Im[Kp(ω)] has a negative value. This means the probe field
will obtain a gain from the system, and suppress the Ohmic
loss. With the same parameters, the two SPPs modes have
similar absorption spectrum as indicates in Fig. 2(a), but the
peaks are a bit lower, and the transparency window is slightly
narrower and a little deeper for the antisymmetric SPPs mode
comparing to the symmetric mode. The difference is mainly
due to the slight different field distribution of two SPPs modes.

Figure 2(b) shows the linear dispersion Re[Kp(ω)]. Due to
the EIT effect, the dispersion is much enhanced as report in
Ref. [32], and we can see that near the resonant point (i.e.,
ω = 0), Re[∂Kp/∂ω] > 0, which means normal dispersion.
Further more, in Fig. 2(b), we calculate the group velocity and
find that Vgp|ω=0 = 7.72 × 10−6c for antisymmetric mode and
Vgp|ω=0 = 1.33 × 10−5c for symmetric mode, both of which
correspond to ultra-low group velocity. That indicates we can
slow down the group velocity of SPPs in the transparency win-
dow. We can also find that there is a region in the transparency

063516-4



TRAPPING EFFECT AND TRAJECTORY CONTROL OF … PHYSICAL REVIEW A 102, 063516 (2020)

window where satisfies Re[∂Kp/∂ω] < 0, i.e., superluminal
group velocity can also be obtained in the system for the two
SPPs modes.

Note that the gain assisted propagation of SPPs in our
system and group velocity match condition is significant im-
portant in our following analyze. Also, we will mainly focus
on the symmetry SPPs mode in our following analyze due to
the antisymmetry mode has a large Ohmic loss (Im(k) � 0).

IV. NONLINEAR EVOLUTION EQUATION OF
SPPs SOLITON

In this section, we will derive the nonlinear evolution
equation of the probe field and the signal field. In previous
section, we give the solution of the MB equations up to
second-order approximation, and the density matrix element
σ

(l )
i j (l = 0, 1, 2) is obtained but with two unknown function

to be determined. The explicit expression of σ
(l )
i j (l = 1, 2)

is available in Appendix B. The unknown functions are the
envelope functions of the probe field and the signal field,
which satisfy �(1)

p = Fp exp(iθ1) and �(2)
s = Fs exp(iθ2). Fp

and Fs are function of multiscale variables. Substitute the
gotten solution into the third-order approximation equations,
we got the solvable condition of Fp

i

(
∂

∂x2
+ 1

Vgp

∂

∂t2

)
Fp + 1

2kp

∂2

∂y2
2

Fp − Wpp|Fp|2Fpe−2ᾱpx2

+ B0Mp · y1Fp = 0, (10)

with ᾱp = αp/ε
2, αp = Im(k + Kp), coefficient Wpp and Mp

are given in Appendix B.
Similarly, we obtain the solvable condition of Fs in the

fourth-order approximation.

i

(
∂

∂x2
+ 1

Vgs

∂

∂t2

)
Fs + 1

2ks

∂2

∂y2
2

Fs − Wsp|Fp|2Fse
(−2ᾱpx2 )

+ B0Ms · y1Fs = 0, (11)

and coefficient Wsp and Ms are given in Appendix B.
Combining each order solution and returning to the origi-

nal variable scale (x, y, t), Eqs. (10) and (11) can be written in
dimensionless form

i

λ

∂up

∂τ
+ 1

2

∂2up

∂ξ 2
− wp|up|2up + Mpξup = −iapup, (12a)

i

λ

∂us

∂τ
+ 1

2

∂2us

∂ξ 2
− ws|up|2us + Msξus = −iasus, (12b)

where the dimensionless variables are defined as η =
(x − Vgpt )/LDiff , ξ = y/Ry, τ = t/τ0 and u j = u j (η, ξ, τ ) =
� j exp[−iRe(Kj |ω=0)x]/U0( j = p, s). Here, LDiff = kR2

y, Ry,
τ0 and U0 are typical scale quantities characterizing typi-
cal diffraction length, waist radius of incident laser beam,
probe-pulse duration and typical half-Rabi frequency, re-
spectively. And w j = Wj p/|Wpp|( j = s, p) is coefficient char-
acterizing self-phase (wp) or cross-phase (ws) modulation,
a j = Im(k + Kj |ω=0) LDiff ( j = s, p) characterizes the absorp-
tion, λ = Vgpτ0/LDiff is dimensionless group velocity, M j =
B0MjR2

yLDiff ( j = s, p).

One can find that the derivative in variable η is not apparent
in Eq. (12), thus the variable η is separable from u j , i.e.,
u j (η, ξ, τ ) = f j (η) · v j (ξ, τ ). Note that η is a local variable
associated to a frame moving in x− direction with velocity
Vgp, which means the envelope of probe and signal field is
shape-preserved in the x direction with profile f j (x/LDiff ).
Without loss of generality, we assume f j has a Gauss profile:
f j (η) = exp(−η2/2ρ2

0 )/
√

2πρ2
0 and

∫ +∞
−∞ | f j (η)|2dη = 1 is

satisfied. During above derivation, we have used the group
velocity match condition.

After integrating the Eq. (12) over variable η, then we
obtain

i

λ

∂vp

∂τ
+ 1

2

∂2vp

∂ξ 2
− wp|vp|2vp + Mpξvp = 0, (13a)

i

λ

∂vs

∂τ
+ 1

2

∂2vs

∂ξ 2
− ws|vp|2vs + Msξvs = 0. (13b)

We have neglected the absorption term (−ia j) in Eq. (12).
This is valid with the gain induced by the incoherent pumping.
Equation (13) is the system equation which describes the
nonlinear evolution of the probe field and the signal field.
Generally speaking, Eq. (13) is not always integrable due to
the coefficients λ, w j and M j are complex number. However,
we will show later that we can choose a set of realistic physical
parameters to make all these coefficients have a much smaller
imaginary part than their corresponding real part. Thus, it is
possible to get shape preserving solution from Eq. (13), i.e.,
SPPs soliton is available in the system.

V. CONTROLLING SIGNAL SPPs SOLITON WITH PROBE
SPPs SOLITON VIA CROSS-PHASE MODULATION

We now investigate the manipulation of the low-loss
SPPs soliton in MDM waveguide system. To obtain a
shape-preserved SPPs, the realistic physical parameters are
chosen as following for symmetric mode: �c = 0.2 GHz,
�41 = �42 = 15.5 MHz, �2 = 0, �3 = 71.43 MHz,
�4 = 0.1 MHz, and τ0, Ry and other system parameters are
the same as that we used in antisymmetric case. And we obtain
LDiff = 0.087 cm, Mp = (−9.77 − 0.50i) × 105 cm−1 T−1,
Ms = (−1.58 − 0.085i) × 106 cm−1 T−1, the corresponding
dimensionless coefficients are λ = −0.99 + 0.057i,
wp ≈ ws = −0.99 − 0.13i, ap ≈ as = 0.0018. We can see
that for both the antisymmetric and symmetric SPPs modes,
the corresponding system parameters can make sure the
imaginary parts of dimensionless coefficients much smaller
than their corresponding real parts, and the absorbtion term
ap(as) can be neglected.

A. Manipulate signal SPPs without external magnetic field

We firstly consider the case when the external magnetic
field is absent, i.e., B0 = 0 (thus Ms = Mp = 0). In this
case, the evolution equation of the probe field Eq. (13) is
a nonlinear Schrödinger equation (NLSE), and it has single
soliton solution [31,32]. What we are more interested is the
evolution of the signal SPPs. From Eq. (13b), we know that
the evolution of the signal SPPs (vs) is coupled to the probe
SPPs (vp), which is known as cross-phase modulation (CPM)
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FIG. 3. Propagation of the signal SPPs (a) without and (b) and (c) with the probe SPPs. In (a), the signal SPPs diffused quickly due to the
diffraction effect. In (b), the probe SPPs is excited when the signal SPPs propagates to x = 4LDiff , and the signal SPPs is firstly diffused, then
focused and maintain its shape. In (c), both signal (weaker) and probe SPPs are excited at x = 0, and the signal SPPs is trapped by the probe
SPPs without diffusion, and the green dotted line is the trajectory of the SPPs pulse center. The Gaussian profile of SPPs in the x direction is
used only in (c).

[40,41], and is characterized by coefficient w21 (W21). We can
control the propagation of the signal SPPs via modulating
CPM. Figure 3 shows the numerical result of Eq. (13), and
the initial profile of the signal SPPs is vs(ξ, 0) = 0.2sech(ξ ).
In Fig. 3(a), the probe SPPs is absent, thus there is no CPM,
and with the propagation distance increasing the signal SPPs
diffuses rapidly due to the diffraction effect.

In Fig. 3(b), the input signal SPPs has the same profile as
that in Fig. 3(a), but a probe SPPs is excited as the signal SPPs
propagates to the position x = 4LDiff . The initial profile of the
probe SPPs reads vp(ξ, 4/λ) = sech(ξ ), which has the same
pulse width as signal’s but a lager amplitude. Before the probe
SPPs is excited, there is no CPM and signal diffuses. Then
as the probe SPPs excited, the central part of diffused signal
SPPs is focused, and its shape is preserved in the later evolu-
tion. That means the diffused signal SPPs could be refocused
via CPM. As discussed in former section, the CPM can work
continuously thanks to the group velocity matched.

Note that in both Figs. 3(a) and 3(b), we have set f j (η) =
1 to observe the diffraction effect intuitively. However, in
Fig. 3(c), f j (η) is taken as the Gaussian profile we mentioned
in former section. And the probe and signal SPPs are launched
together with initial pulses vp = sech(ξ ) and vs = 0.2sech(ξ ).
From Eq. (13) we know that the weak signal would not af-
fect the evolution of probe SPPs, and the numerical result in
Fig. 3(c) shows that the probe SPPs (brighter spot in the fig-
ure) propagates along the x direction directly. Due to the CPM
and group velocity matched condition, the signal SPPs (darker
spot in the figure, its amplitude is multiplied by 3 in the figure
due to its intensity is much weak than probe field) is carried
by the probe SPPs, and maintains its shape to distance. The
numerical result indicates the weak signal SPPs is trapped by
the probe SPPs, and the CPM provide a enough nonlinearity
for the signal SPPs to balance the diffraction effect. Note that
in this article, the green dotted line in all figures is the central
trajectory of the two SPPs, and we have dislocated the center
of the SPPs into the two side of the trajectory to show the
trapping effect.

The CPM effect in the system not only can be used to
focus and trap the weak signal SPPs but also provide a method
to reshape the weak signal SPPs. Shown in Fig. 4 is the
intensity distribution of the signal SPPs (|�s/U0|) during its
evolution ( f j (η) = 1 for intuitive). Panel (a) and panel (b) are

numerically simulated with the same initial signal SPPs pulse
vs = 0.1sech(ξ ) but different initial probe SPPs pulse: vp =
sech(ξ ) (basic state solition) for panel(a) and vp = 2sech(ξ )
(first-order soliton) for panel (b). As illustrated in Fig. 4, the
signal SPPs evolutes to a basic soliton when the input probe
SPPs is a basic soliton [panel (a)] or evolute to a first-order
soliton when the input probe SPPs is a first-order soliton
[panel (b)]. In other words, when the signal SPPs is trapped by
the probe SPPs, the signal SPPs will follow the probe SPPs’s
evolution due to CPM.

B. Manipulate signal SPPs with external magnetic field

We now consider the influence of the external magnetic
field to the system. When the external magnetic field applied
to the system, Mp 
= 0 and Ms 
= 0 (due to B0 
= 0). Then
Eq. (13) is a NLSE with external potential, and Eq. (13b)
remains the same as that in the case of last subsection. Using
quasiparticle theory [47,48], a shape preserved solution of
Eq. (13) is still available but the solution with a transverse
movement due to the external potential, which is induced by
the external magnetic field with transverse gradient. However,
the solution of the signal SPPs can not equally feel the ex-
ternal potential as the probe SPPs does in our system (due to
Ms 
= Mp). Thus, to trap signal SPPs efficiently, a stronger
CPM is need, which means the probe SPPs pulse should have
a larger pulse amplitude as well as narrower pulse width in
space. We simulate the trapping effect when the magnetic field
is applied to the system as shown in Fig. 5.

FIG. 4. Propagation of the signal SPPs (a) when the signal SPPs
is trapped by the probe SPPs with initial shape vp = sech(ξ ) and
(b) when the signal SPPs is trapped by the probe SPPs with initial
shape vp = 2sech(ξ ). In both panels, the initial shape of the signal
SPPs is vs = 0.1sech(ξ ).
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FIG. 5. Dynamic trapping and trajectory control of the signal SPPs. (a) The signal SPPs trapped by the probe SPPs and deflects in the y
direction with an external magnetic field B = B0yex . (b) The signal SPPs trapped by the probe SPPs and oscillates in the y direction with an
external magnetic field B = B0 tanh (y) yex . (c) The signal SPPs trapped by the probe SPPs and deflects in the y direction with a time-dependent
external magnetic field B = B0 tanh (t − t0)yex . In all panels, the green dotted line is the trajectory of the SPPs pulse center, and the brighter
spot represents the probe SPPs and the darker spot represents the signal SPPs.

Figure 5(a) shows the trapping effect when the magnetic
field is B = B0yex with B0 = 5.88 × 10−4 T cm−1, with the
initial probe SPPs pulse vp = 2sech(2ξ ) and the initial signal
SPPs pulse vs = 0.2sech(2ξ ). It is obvious that the probe
SPPs is deflect in the y direction, while signal SPPs is trapped
and deflect simultaneously as the probe SPPs. From Eq. (13),
we know that the trajectory (green dotted line) of the SPPs is
parabola. With different magnetic field gradient B0, we can
obtain different parabola trajectory of SPPs, and can carry
weak signal SPPs to output at different positions.

We can also make the SPPs to oscillate in the y di-
rection during the propagation of SPPs. Figure 5(b) is the
evolution of SPPs when the external magnetic field has a sym-
metric gradient about y = 0 which reads B = B0 tanh (y)yex

with B0 = 3.50 × 10−3 T cm−1, the initial SPPs pulses vp =
2sech[2(ξ + 1)], vs = 0.2sech[2(ξ + 1)]. In this case, the
probe SPPs carries the signal SPPs and oscillate in the y
direction around y = 0 like a classical partial trapped in a
potential well. Using such a method, we can bind the SPPs
to propagate in a finite space in the y direction.

The trapping effect is still effective when the magnetic
field is time-dependent. Fig. 5(c) is the numerical result when
the magnetic field takes the form B = B0 tanh (t − t0)yex and
B0 = 3.50 × 10−3 T cm−1, t0 = 4|λτ0|, the initial SPPs pulse
profile are the same as that in panel(a). In such a magnetic
field, the trajectory of SPPs is complicated but a dynamic
trapping of the signal SPPs is realized. Note that the inten-
sity(amplitude of signal field) of all dark spots in Fig. 5 is 5
times larger than its real value for intuitive.

VI. CONCLUSION

In conclusion, a scheme based on EIT with incoherent
pumping is proposed to support the low-loss propagation of

the SPPs in the MDM waveguide for both symmetric and
antisymmetric modes, and further more, the trapping effect
and trajectory control of the SPPs is realized via CPM and the
external gradient magnetic field. We found the lossy SPPs in
the MDM waveguide can acquire a gain to counteract the ab-
sorption using incoherent pumping. We also shown that both
subluminal and superluminal SPPs are available in our sys-
tem. Our system also support the SPPs soliton solutions, and
a weak and diffused signal SPPs can be trapped by the probe
SPPs via CPM, thus, the weak signal SPPs can be carried to a
distent position without much diffuse. Our results reveal that
the trapping effect can be used to focus a diffused SPPs, and
the trapped signal SPPs has a similar evolution as the probe
SPPs, thus we can use this method to reshape the weak signal
SPPs via changing the shape of probe SPPs. We further prove
that a external gradient magnetic field can deflect the probe
SPPs in our system, and the weak signal SPPs could still be
trapped by probe SPPs. By carefully designing the magnetic
gradient, a complicated trajectory can be obtained, and we can
realize the dynamic trajectory control of the SPPs.

The scheme we proposed is more general than that in
free space, and the results obtained of our work are helpful
for understanding the nonlinear features in the interaction
between SPPs with coherent mediums, and also have potential
applications in micro/nano-optics such as in future on-cheap
optical circuit, quantum information processing, etc.
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APPENDIX A: THE BLOCH EQUATIONS

The explicit Bloch equations in terms of density matrix elements are given by

i
∂σ11

∂t
+ i�41σ11 − i�13σ33 + e−iθ∗

p ζ ∗(z)�∗
pσ31 − eiθpζ (z)�pσ

∗
31 = 0, (A1a)

i
∂σ22

∂t
+ i�42σ22 − i�23σ33 + e−iθ∗

s ζ ∗(z)�∗
s σ32 − eiθsζ (z)�sσ

∗
32 = 0, (A1b)
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i
∂σ33

∂t
+ i�3σ33 − i�34σ44 + [ζ ∗(z)�∗

cσ43 + eiθpζ (z)�pσ
∗
31 + eiθsζ (z)�sσ

∗
32 − c.c.] = 0, (A1c)

i
∂σ44

∂t
+ i�34σ44 − i�41σ11 − i�42σ22 + ζ (z)�cσ

∗
43 − ζ ∗(z)�∗

cσ43 = 0, (A1d)(
i
∂

∂t
+ d21

)
σ21 + e−iθ∗

s ζ ∗(z)�∗
s σ31 − eiθpζ (z)�pσ

∗
32 = 0, (A1e)

(
i
∂

∂t
+ d31

)
σ31 + ζ ∗(z)�∗

cσ41 + eiθpζ (z)�p(σ11 − σ33) + eiθsζ (z)�sσ21 = 0, (A1f)

(
i
∂

∂t
+ d32

)
σ32 + ζ ∗(z)�∗

cσ42 + eiθpζ (z)�pσ
∗
21 + eiθsζ (z)�s(σ22 − σ33) = 0, (A1g)

(
i
∂

∂t
+ d41

)
σ41 + ζ (z)�cσ31 − eiθpζ (z)�pσ43 = 0, (A1h)

(
i
∂

∂t
+ d42

)
σ42 + ζ (z)�cσ32 − eiθsζ (z)�sσ43 = 0, (A1i)

(
i
∂

∂t
+ d43

)
σ43 + ζ (z)�c(σ33 − σ44) − e−iθ∗

p ζ ∗(z)�∗
pσ41 − e−iθ∗

s ζ ∗(z)�∗
s σ42 = 0, (A1j)

where d21 = −[k(ωp) − k(ωp)] · v + �′
2 + iγ21, d31 = −k(ωp) · v + �′

3 + iγ31, d32 = −k(ωs) · v + �′
3 − �′

2 + iγ32, d41 =
−[k(ωc) + k(ωp)] · v + �′

4 + iγ41, d42 = −[k(ωc) + k(ωs)] · v + �′
4 − �′

2 + iγ42, d43 = −k(ωc) · v + �′
4 − �′

3 + iγ43, v is
the velocity of the atoms, and satisfies the Maxwell distribution function. We can see that compare to the case in free space,
the Bloch equations in waveguide system have additional coefficient exp (iθl )(l = c, p, s) accompany with half-Rabi frequency
�l (l = c, p, s) due to the phase match, also contains the Ohmic loss. Given that the half-Rabi frequency of control field (�c) is
strong enough in our system, the coefficient exp (iθc) is neglected in the above equations.

APPENDIX B: SOLUTIONS OF THE BLOCH EQUATIONS

The Bloch equations are solved by using the multiscale method, the solution of density matrix element σi j = σ
(0)
i j + εσ

(1)
i j +

ε2σ
(2)
i j + ε3σ

(3)
i j + . . . , and the solution σ

(k)
i j (k = 1, 2, 3) are given as following.

1. The first-order approximation

�(1)
p = Fp exp (iθ1), (B1a)

σ
(1)
31 = ζ (z)

D11

D1
Fp exp [i(θ1 + θp)], (B1b)

σ
(1)
41 = ζ (z)

D12

D1
Fp exp [i(θ1 + θp)], (B1c)

where D12 = (ω + d (0)
31 )σ (0)

43 − ζ (z)�c(σ (0)
33 − σ

(0)
11 ). And σ

(1)
21 = σ

(1)
32 = σ

(1)
42 = σ

(1)
43 = σ

(1)
j j ≡ 0( j = 1 − 4), �(1)

s = 0.

2. The second-order approximation

�(1)
s = Fs exp (iθ2), (B2a)

σ
(1)
32 = ζ (z)

D21

D2
Fs exp [i(θ2 + θs)], (B2b)

σ
(1)
42 = ζ (z)

D22

D2
Fs exp [i(θ2 + θs)], (B2c)

σ
(2)
11 = a11|Fp|2|ζ (z)|2e−2ᾱpx2 , (B2d)

σ
(2)
22 = a22|Fp|2|ζ (z)|2e−2ᾱpx2 , (B2e)

σ
(2)
33 = a33|Fp|2|ζ (z)|2e−2ᾱpx2 , (B2f)

σ
(2)
44 = a44|Fp|2|ζ (z)|2e−2ᾱpx2 , (B2g)

σ
(2)
43 = a43|Fp|2|ζ (z)|2e−2ᾱpx2 , (B2h)

063516-8



TRAPPING EFFECT AND TRAJECTORY CONTROL OF … PHYSICAL REVIEW A 102, 063516 (2020)

where D22 = (ω + d (0)
32 )σ (0)

43 − ζ (z)�c(σ (0)
33 − σ

(0)
22 ), a11 = (a1 + a2σ

(0)
11 ), a22 = a2σ

(0)
22 , a33 = a2σ

(0)
33 , a44 = (a2σ

(0)
44 − a1 − a2),

with

a1 = i

�41

(
D11

D1
− D∗

11

D∗
1

)
,

a2 =
[

1

2γ43|ζ (z)�c|2 + �34

∣∣d (0)
43

∣∣2

(
id∗(0)

43 ζ ∗(z)�∗
cD12

D1
− id (0)

43 ζ (z)�cD∗
12

D∗
1

)
− a1

(
�41

∣∣d (0)
43

∣∣2

2γ43|ζ (z)�c|2 + �34

∣∣d (0)
43

∣∣2 + 1

)]
,

a43 = 1

d (0)
43

[D12

D1
+ ζ (z)�c(a44 − a33)

]
,

and σ
(2)
21 = σ

(2)
31 = σ

(2)
41 ≡ 0, �(2)

p = 0.

3. The third-order approximation

σ
(3)
21 = a(3)

21 FpF ∗
s |ζ (z)|2ζ (z)ei(θ1−θ∗

2 +θp−θ∗
s ), (B3a)

σ
(3)
31 = (

a(3)
31,1|Fp|2Fp|ζ (z)|2e−2ᾱpx2 + a(3)

31,2∂t2 Fp + a(3)
31,3Fp

)
ζ (z)ei(θ1+θp), (B3b)

σ
(3)
41 = (

a(3)
41,1|Fp|2Fp|ζ (z)|2e−2ᾱpx2 + a(3)

41,2∂t2 Fp + a(3)
41,3Fp

)
ζ (z)ei(θ1+θp), (B3c)

with the coefficients

a(3)
21 = 1

ω + d (0)
21

(
D∗

21

D∗
2

− D11

D1

)
,

a(3)
31,1 = (a33 − a11)

(
ω + d (0)

41

) − a43ζ
∗(z)�∗

c

D1
,

a(3)
31,2 = −i

D11
(
ω + d (0)

41

) − D12ζ
∗(z)�∗

c

D2
1

,

a(3)
31,3 = d (2)

41 D12ζ
∗(z)�∗

c − d (2)
31 D11

(
ω + d (0)

41

)
D2

1

,

a(3)
41,1 = (a11 − a33)ζ (z)�c + a43(ω + d31)

D1
,

a(3)
41,2 = i

D11ζ (z)�c − D12
(
ω + d (0)

31

)
D2

1

,

a(3)
41,3 = d (2)

31 D11ζ (z)�c − d (2)
41 D12

(
ω + d (0)

31

)
D2

1

,

with d (2)
i j = −B0y1 μi j . Others elements in the third approximation are all equal to zero. We also obtain the coefficient in Eq. (10)

W11 = κ13

∫ ∞

−∞
dv f (v)

〈
|ζ (z)|2 a43�

∗
c + (a11 − a33)

(
ω + d (0)

41

)
D1

〉
z

, (B4)

Mp = κ13

∫ ∞

−∞
dv f (v)

〈μ31D11
(
ω + d (0)

41

) − μ41D12�
∗
c

D2
1

〉
z
. (B5)

4. The fourth-order approximation

In the fourth-order approximation, we obtain the coefficient in Eq. (11)

W21 = κ23

∫ ∞

−∞
dv f (v)

〈
|ζ (z)|2 a43�

∗
c + (

a(3)∗
21 + a22 − a33

)(
ω + d (0)

42

)
D2

〉
z

, (B6)

Ms = κ23

∫ ∞

−∞
dv f (v)

〈μ32D21
(
ω + d (0)

42

) − μ42D22�
∗
c

D2
2

〉
z
. (B7)
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