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We design and generate the bipolar-variant spin angular momentum (SAM) carried by vector optical field and
theoretically investigate the evolution of the bipolar-variant SAM in the tight focusing process. It is found that

the longitudinal SAM density annihilates and the purely transverse SAM density appears in the focal plane, and
the evolution of the complex singularities of SAM into V -point singularities is also studied. We further extend the
study to general bipolar-variant SAM, and give the theoretical explanation of the annihilation and appearance
of different components of SAM density. We believe the presentation of the bipolar-variant SAM can greatly
enrich the study of SAM as well as the singular optics. Meanwhile, the evolution of the bipolar-variant SAM
in the focusing process is interesting and important in revealing the focal properties of SAM of the photon, and
the purely transverse SAM in the focal plane with a spin axis orthogonal to the propagation direction opens up
avenues in optical trapping and manipulation, especially for optically induced rotations.

DOI: 10.1103/PhysRevA.102.063514

I. INTRODUCTION

Polarization and phase are two important salient features
of light, and they are both associated with angular momentum
(AM): spin angular momentum (SAM), and orbital angular
momentum (OAM), respectively. As an intrinsic nature of
the light field, OAM is associated with the vortex phase of
structured light and can make the particle orbit around the
optical axis [1-6]. Meanwhile, SAM is related to the circular
polarizations with two possible quantized values of 7, which
can make the particle spin around its own axis [3,4,7,8].
Traditional SAM density is either parallel or antiparallel to
the propagation direction of the optical field, which is called
the longitudinal SAM density. Recently, the transverse SAM
density, which is perpendicular to the propagation direction,
has attracted extensive attention [9—12]. The transverse SAM
is also known as the photonic wheel [11], which allows for
additional rotation degrees of freedom in optical manipula-
tion, as it can rotate the particle along a nonaxial direction
[10-16]. Along with increasing interest in studying the vector
optical fields (VOFs) with space-variant states of polarization
(SoPs) [17-22], VOFs are widely used in generating trans-
verse SAM, as they can lead to strong longitudinal component
of the tightly focused field [11-13,16,23-26]. However, the
generation of transverse SAM by tightly focusing VOF
without cylindrical symmetric SAM distribution is rarely
reported.

In this paper, we present the bipolar-variant SAM car-
ried by noncylindrical symmetric VOF in bipolar coordinates
and achieve purely transverse SAM in the focal plane. We
further extend the concept to general bipolar-variant SAM
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and discuss the varying singularity structure. Moreover, the
annihilation of longitudinal SAM and appearance of the
transverse SAM in a tight focusing process are explained
theoretically. We hope the transition from longitudinal to
transverse SAM can bring insights into SAM evolution and
that the purely transverse SAM in the focal plane can hold po-
tential applications in various areas including nanophotonics,
quantum processing, and biophotonics.

II. THE DESIGN AND GENERATION OF
BIPOLAR-VARIANT SAM CARRIED BY VOF

As is well known, the VOF with hybrid SoP consists of
linear, elliptical, and circular polarizations on the wavefront
simultaneously [27-30], which can lead to the space-variant
SAM distribution. Specially, for the VOF with hybrid SoP
designed in the polar coordinates [27,28], the SAM vary-
ing along the azimuthal direction can be regarded as the
azimuthal-variant SAM. In contrast with the famous OAM
originated from azimuthally variant phase distribution, the
azimuthal-variant SAM is interesting to study as it originated
from azimuthally variant polarization distribution. Figure 1(a)
shows the polar coordinate system, and the constant curves of
the two coordinates (p, ¢) are presented as an orange solid
circle and purple dashed ray, respectively. The SoP of the
VOF carrying azimuthal-variant SAM designed in the polar
coordinates is shown in Fig. 1(b), and the SoP keeps the same
along the constant ¢ curve and changes along the constant p
curve.

By analogy with the azimuthal-variant SAM, we propose
a bipolar-variant SAM carried by VOF. The scheme of the
bipolar coordinate system is shown in Fig. 1(c) and the con-
stant u and v curves are two groups of nonconcentric circles,
respectively. The bipolar coordinates (u, v) have the following

©2020 American Physical Society


https://orcid.org/0000-0003-2814-2038
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.063514&domain=pdf&date_stamp=2020-12-10
https://doi.org/10.1103/PhysRevA.102.063514

GAO, ZHAO, WANG, LIU, ZHANG, AND PAN

PHYSICAL REVIEW A 102, 063514 (2020)

oS TN e

/ 3 X
/ F1 Fz\‘I

(a) 7 cnoe? (b) Oyu O @f
/,'/ A Q Qg
o X o) (en) *
) Q@
60
(C) :;’+(,3}—Iacom)2 =— (d) y‘
o T
{ 3 Q By e
7SS

N, 7
\ /
. o/ .

~‘~~.--"’ ™ - 7

Y
1%
>
7%
1%}
S
(o)
g

FIG. 1. (a) The polar coordinate system where the purple dashed
ray and orange solid ring represent the constant curves of the polar
coordinates ¢ and p, respectively. (b) The SoP of VOF carrying
azimuthal-variant SAM in polar coordinate system. (c) The bipolar
coordinate system where the purple dashed and orange solid curves
represent the constant curves of the bipolar coordinates u and v,
respectively. (d) The SoP of the VOF carrying bipolar-variant SAM
in bipolar coordinate system when m = 1. Red ellipse: Right-handed
elliptic (circular) polarization; blue ellipse: left-handed elliptic (cir-
cular) polarization; green arrow: linear polarization.

relationship with the Cartesian coordinates (x, y) [31]:

x>+ (y—acotu)® = —5—» (1a)
sin” u
)
x>+ (y—acothv)’ = ——, (1b)
sinh” v

where 2a is the focal length of the two foci in bipolar
coordinate system located at (—a, 0) and (a, 0), which are
represented as the yellow dots in Fig. 1(c).

The SoP of the VOF carrying bipolar-variant SAM is
shown in Fig. 1(d), and the polarizations keep the same along
the constant u curve and change along the constant v curve.
The electric field distribution of the VOF carrying bipolar-
variant SAM can be expressed as

E(u) = cos(mu)é, + jsin(mu)e,, 2)

where {&,, &,} are the unit vectors in Cartesian coordinates. m
is the topological charge of the bipolar-variant SAM, which
can control the changing period of SAM around one focus of
the bipolar coordinates. To study the bipolar-variant SAM in
more detail, we calculate the time-averaged SAM density of
this VOF as [32-36]

_ Im[e(E* x E) + n(H* x H)]
B 4o ’

where w is the angular frequency of the field, ¢ and p are
the vacuum permittivity. Im[-] represents the imaginary parts,
and E* and H* denote the complex conjugate of the electric
and magnetic fields, respectively. We consider the cases in

S 3)

FIG. 2. Experimental setup. SLM, spatial light modulator; L1
and L2, lenses; SF, spatial filter; A/2 and /4, half- and quarter-wave
plates; G, Ronchi phase grating; C, camera; P, polarizer. The inset
(a) depicts two holographic gratings with m = 1 and 2. (b) shows
the setup used to probe the polarization state of the generated VOF
carrying bipolar-variant SAM.

free space with nonmagnetic surrounding medium, so only
the SAM originated from the electric field is taken into ac-
count. The three components of the SAM density can be
expressed as

€ * *

Sx = @ Im[Ey EZ - EZ Ey],
€ * *

Sy = @ II’I’I[E‘z Ex - Ex EZ],

S, = % Im[ESE, — E;E,]. (4)

For the VOF-carrying bipolar-variant SAM we propose,
the transverse components of the SAM density S, and S,
are zero in the incident plane, which is associated with the
zero longitudinal component of the electric field, as recog-
nized from Eq. (4). The longitudinal SAM density is S, =
1> sin(2mu), which keeps the same along the constant u
curves (two series of purple circles) and changes along the
constant v curves (two series of orange circles), as shown in
Figs. 1(c) and 1(d).

To experimentally generate the VOF carrying bipolar-
variant SAM, a common path interferometer implemented
with a spatial light modulator (SLM) and a 4f system are
employed [28,31,37-40], as shown in Fig. 2. The input colli-
mated beam is split into £ 1st orders via a bi-fork holographic
grating loaded in the SLM with 1920x 1024 pixels (each
pixel has a dimension of 8x8 um?). The holographic grating
is composed of two forks with different locations, and the
number of the forking shape in each fork is determined by m,
as shown in Fig. 2(a). The diffracted £1st orders are allowed
to pass through a spatial filter and then are converted into
two orthogonally 445° linearly polarized beams by a pair of
half-wave plates located at the Fourier plane of the 4f system.
The two orthogonally linearly polarized parts are recombined
by the Ronchi phase grating placed in the output plane of
the 4f system. The setup composed of a quarter-wave plate
and a polarizer is used to probe the stokes parameters of the
generated VOF carrying bipolar-variant SAM, as shown in
Fig. 2(b). We should point out that we use another 4f system
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FIG. 3. The simulated and measured total intensity patterns and
normalized Stokes parameters of the VOF carrying bipolar-variant
SAM when m = 1 and a = 0.3p,,, where p,, is the radius of the VOF.
The corresponding polarization distribution is superimposed with
simulated intensity pattern in the first column. Red ellipse: Right-
handed elliptic (circular) polarization; yellow ellipse: left-handed
elliptic (circular) polarization; black line: linear polarization. The
size of any pattern is 2.2 mmx 2.2 mm.

in the experiment between the Ronchi phase grating and the
camera to guarantee the quality of the VOF we generate.

Figure 3 shows the theoretically simulated and experi-
mentally measured intensity patterns and normalized Stokes
parameters of the VOF carrying bipolar-variant SAM when
m =1 and a = 0.3p,,, where p,, is the radius of the VOF.
From the total intensity pattern, we can see that there are
two singular spots located at two foci in the bipolar coordi-
nate system, which is obviously different from the traditional
cylindrical VOF with one central singularity. It is found that
the measured Stokes parameter S, in Fig. 3 is in disagreement
with the theoretical result, which is caused by the quarter-
wave retarder plate and polarizer used to measure the Stokes
parameters in the experiment as shown in Fig. 2(b). Specifi-
cally, the lack of precision in their orientation to probe S, and
the slight wavelength difference of the incident field and the
wave plate lead to this discrepancy. The Stokes parameters
S and S3 exhibit the similar shapes as the constant u curves,
which are in good agreement with the theoretical simulations.
Note that the Stokes parameter S3 is proportional to the longi-
tudinal SAM density by the formula S3 = j(E.E] — E\EY) =
sin(2mu) o S,. As a result, the Stokes parameter S5 can rep-
resent the longitudinal component of the SAM density S,. We
can find clearly from Fig. 3 that the longitudinal SAM keeps
the same along the constant u curve, which agrees with the
discussion in Fig. 1, proving that the generated VOF carries
bipolar-variant SAM.

Recently, the polarization singularity has attracted interest
in recent years [41,42]. The V point is defined as the point
where the direction of the polarization vector is undefined
at the beam center and the C point is the isolated point of
circular polarization where the orientation of the major axis
of polarization ellipse is undefined. The L line is the line con-
necting points where the handedness of polarization ellipse is
undefined. According to the SoP of the VOF carrying bipolar-
variant SAM in Fig. 1(d), the singularities here at the two
foci of the bipolar coordinate system are complex polarization
singularities where the orientation, ellipticity, and handedness

Total intensity
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FIG. 4. Generated VOFs carrying bipolar-variant SAM when
a=0.3p,,m=1,2,3,4,and 5, respectively. The first row shows the
total intensity patterns, and second and third rows show the intensity

patterns of the x and 45° components, respectively. The size of any
pattern is 2.2 mmx2.2 mm.

45°-component

of the polarization ellipse are all undefined simultaneously.
It is also obvious that the longitudinal SAM, proportional to
the Stokes parameter S3, is undefined at the two foci in the
bipolar coordinate system, as shown in Fig. 3. Therefore, we
name these singularities as complex singularities of the SAM
where the SAMs are undefined, which is different from the
traditional polarization singularities.

Figure 4 shows the generated VOFs carrying bipolar-
variant SAM when the topological charge m = 1, 2, 3, 4, and
5, respectively. The total intensity patterns exhibit uniform
distribution excluding two singularities. The experimentally
measured singularities become bigger as m increases, mainly
because the SLM with limited resolution cannot distinguish
the rapidly changing polarizations and the polarizations are
more complex around the two singularities when m increases.
Meanwhile, the fixed aperture of the 4f imaging system and
the size of the spatial filter can also result in different sizes
of singularities, as they will lead to the loss of high-order
spatial modes during imaging. We should also point out that
in theory, the singularities should be geometric points inde-
pendent of m. The extinction circles or light-passing circles of
the intensity patterns of the x component always pass though
the two complex singularities and their number is equal to
the value of m. It can also be seen that the points with the
same polarization lie always in a constant u circle passing
through the two foci, as shown in Fig. 1(c). The intensity
patterns of the 45° components have no obvious extinction
except the singularities and the intensity are a half of the total
intensity.

III. THE EVOLUTION OF BIPOLAR-VARIANT
SAM IN A TIGHT FOCUSING PROCESS

After generating a bipolar-variant SAM carried by VOF,
we concentrate on studying the evolution property of the
bipolar-variant SAM in the tight focusing process. According
to the Richards-Wolf vectorial diffraction theory [43,44], the
tightly focused VOF carrying bipolar-variant SAM can be
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written as

Jkf[°
2 0

E =

with

" 27 ) .
do / de(Q)Mejk(zcosé—Frsm@ cos(p—¢)) sin 97 (5)
0

[cos(mu)(cos O cos” ¢ + sin® @) + j sin(mu) sin ¢ cos p(cos 6 — 1)]é,

M = | [cos(mu) sin ¢ cos g(cos & — 1) + j sin(mu)(cos 0 sin® ¢ + cos> p)le, |, (6)

[cos(mu) sin & cos ¢ + j sin(mu) sin 6 sin @€,

where (p, @) are the radial and azimuthal coordinates in the
incident plane. r, ¢, and z are the radial, azimuthal, and
longitudinal coordinates in the focal plane. k = 27 /A is the
wave vector of light with a wavelength of A in free space.
f is the focal length of the objective. 6,,x = arcsin(NA) is
the maximum ray angle through the objective lens, and NA
is the numberical aperture of the focal lens. P(6) is the pupil
plane apodization function, which can be chosen as P(6) =
+/cos@. Based on the derived electric field components in
the focal plane, we can further calculate the time-averaged
SAM density of the tightly focused field. Considering the
nonzero contributions of the longitudinal component of tightly
focused VOF, the transverse component of the SAM density
may appear in the focal plane.

Figure 5 shows the variation of the SAM density of the
VOF carrying bipolar-variant SAM in the tight focusing pro-
cess when a = 0.3p,, and m = 1. The SoP and longitudinal
SAM density of the incident VOF carrying bipolar-variant
SAM are shown in Figs. 5(a) and 5(b), respectively. It is
obvious that the SoP and longitudinal SAM density S, keep
the same along the constant u curve, and the longitudinal
SAM density is symmetric about the y axis and opposite

0.285 0.57
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FIG. 5. (a) The polarization distribution and (b) longitudinal
SAM density distribution of the VOF carrying bipolar-variant SAM
with m =1 and a = 0.3p,, in the input plane. (c)-(e) The total
intensity I, transverse intensity /;, and longitudinal intensity I, of
the tightly focused VOF carrying bipolar-variant SAM when NA =
0.95. The corresponding SoP is superimposed with the transverse
intensity pattern in (d) and the white dots indicate polarization sin-
gularities. (f)—(h) Three components of the SAM density in the tight
focusing plane. Any image in the focusing plane has a dimension of
2.5A%2.5x.

(

about the x axis. The corresponding intensity patterns and the
SAM densities in the tight focusing plane with the numerical
aperture NA = 0.95 are shown in Figs. 5(c)-5(h). From the
SoP superimposed with the transverse focal intensity pattern
in Fig. 5(d), we can find that the transverse field is purely
linearly polarized in the focal plane. This indicates that the
local polarizations undergo an absolute transition from el-
liptical (circular) polarizations to linear polarizations in the
focusing process. The two singularities in the focal plane are
shown by the white dots in Fig. 5(d), which are obviously
V points as the orientations of linear polarizations at these
two positions are undefined. Figures 5(f)-5(h) illustrate the
x, ¥, and z components of the SAM density in the focal
plane, which is normalized by the maximum value of S. It
is obvious that the longitudinal SAM density annihilates and
purely transverse SAM density appears in the focal plane. As
a result, a particle trapped in such a focused field is expected
to rotate along a nonaxial direction, which provides additional
rotational degrees of freedom in optical manipulation.

To investigate the influence of the topological charge m
on the variation of the bipolar-variant SAM during a tight
focusing process, we further discuss the case when m = 2
in Fig. 6. Compared with the case in Fig. 5, the changing
period of the SoP and SAM is two times larger when m = 2
and the energy distribution of the tightly focused field also
changes. Moreover, we find that the tightly focused field is
always purely linearly polarized and the longitudinal SAM
annihilates in the focal plane. As a result, the SAM density
is purely transverse in the focal plane, and the symmetry of
the x and y components of the SAM density is the same as the
patterns in Fig. 5. Additionally, the property of the evolution
of SAM density is independent of the value of a, and the
detailed illustration will not be discussed here.

We have presented the bipolar-variant SAM carried by
VOF with complex singularities at the two fixed foci (a =
0.3, on x axis) in a bipolar coordinate system; now we will
study the case when the positions of the complex singularities
are arbitrarily designed. We can rotate the bipolar coordinates
to achieve general bipolar-variant SAM with arbitrary spatial
distribution. Based on Eq. (1a), we can get the expression of
the rotated bipolar coordinate u as

2

PP+ (g —acotu)’ = (7)

sin®u’
where p =xcos¢y + ysingy and g = —x sin ¢y + y cos ¢,
and ¢, is the rotation angle of the bipolar coordinates

in anticlockwise direction. In this case, the VOF carrying
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FIG. 6. (a) The polarization distribution and (b) longitudinal
SAM density distribution of the VOF carrying bipolar-variant SAM
with m =2 and a = 0.3p,, in the input plane. (c)—(e) The total
intensity I, transverse intensity /;, and longitudinal intensity I, of
the tightly focused VOF carrying bipolar-variant SAM in the tight
focusing plane when NA = 0.95. The corresponding SoP is superim-
posed with the transverse intensity pattern in (d) and the white dots
indicate polarization singularities. (f)—(h) Three components of the
SAM density in the tight focusing plane. Any image in the focusing
plane has a dimension of 31 x3A.

general bipolar-variant SAM is E = cos(mu)é, + j sin(mu)g,,
and the two complex singularities of SAM locate at
(acos ¢y, asingy) and (—acos ¢y, —asingy) in Cartesian
coordinate system, respectively. The longitudinal SAM den-

Total intensity

Po =

@p=T1/8

@ =T/4

@y =T1/2

FIG. 7. The SoP and longitudinal SAM density of the VOF car-
rying general bipolar-variant SAM with a = 0.5p,, and m = 1 are
shown in the first two columns, and the x and y components of the
SAM density in the focal plane with NA = 0.95 are shown in third
and fourth columns, respectively. The transverse intensity patterns
of the tightly focused field are shown in the fifth column, and the
corresponding SoPs are superimposed with the intensity patterns
and the white dots indicate polarization singularities. The four rows
show the four cases for the rotation angles of 0, 7 /8, 7 /4 and 7 /2,
respectively. Any image in the focusing plane has a dimension of
3Ax3A.

sity of the VOF carrying general bipolar-variant SAM is
S; = 1> sin(2mu).

Figure 7 depicts the cases of rotated bipolar-variant SAM
for o9 =0,7/8,7/4 and w /2 when m = 1, a = 0.5p,,, re-
spectively. It is clear that the SoP and the longitudinal
SAM density S, of the VOF carrying general bipolar-variant
SAM rotate by the same rotation angle ¢y. The transverse
SAM density S, and S, of the tightly focused field also exhibit
anticlockwise rotation. When ¢y = 0, S/ is opposite about x
axis and S; is the same about x axis, while S}, is the same about
y axis and S; is opposite about y axis when ¢y = /2. The
two complex singularities of SAM change into two V points
during the focusing process, which agrees with the above
discussion. More interestingly, the amount of the singularities
keeps topologically invariant in this process, and the positions
of the singularities also rotate along with the rotation angle ¢;.

IV. THEORETICAL EXPLANATION FOR THE FOCAL
EVOLUTION OF BIPOLAR-VARIANT SAM

To theoretically explain the annihilation of longitudinal
SAM density and the appearance of transverse SAM density
in the focusing process, we further analyze the schematic of
the bipolar-variant SAM in input plane, as shown in Fig. 1(d).
We notice that the variant SAMs around the two singular-
ities may counteract with each other in focusing process,
leading to the annihilation of longitudinal SAM density. For
the VOF carrying bipolar-variant SAM, we can derive from
Egs. (1a) and (2) that the electric fields at the central symmet-
ric positions are the complex conjugate of each other, which
satisfies E(p, ¢) = E*(p, w + ¢). To calculate the tightly
focused field originating from the input VOF at central
symmetric positions, we choose to use a point-to-point
theoretical analysis method to analyze the tightly fo-
cused field [45]. In this case, the Richards-Wolf vectorial
diffraction integral in Egs. (5) and (6) can be rewritten

Input plane

Focal lens

Focal plane

FIG. 8. Schematic illustration of the polarization evolution of the
VOF carrying bipolar-variant SAM in the tight focusing process.
Red ellipse: right-handed elliptic (circular) polarization; blue el-
lipse: left-handed elliptic (circular) polarization; green arrow: linear
polarization.
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in cylindrical coordinates as

jk Pm 2r
E(n(pvz):_E/ dp/
0 0

where (p, ¢) are the radial and azimuthal coordinates in the incident plane. (7, ¢) are the radial and azimuthal coordinates in the
focal plane. Q = k[zcos 6 + rsin6 cos(¢ — ¢)], and z = 0 in the focal plane. The incident field is a round field with a radius of
pm = fNA, where NA is the numerical aperture of the focal lens.

Based on the analysis method [45], we can choose two area elements A and B at the central symmetric positions without loss
of generality, as shown in Fig. 8. The incident VOF in area elements A(p, ¢) and B(p, w + ¢) are E4 = cos (u4)€ + j sin (u4)&,
and Ez = cos (u4 )€, — jsin (u4)@,, respectively. In this way, the contribution of the incident fields in the area elements A and B
to the tightly focused field at arbitrary point A’(r, ¢) in the focal plane should be

(E,(cos 0 cos® ¢ + sin® @)+ Eysinpcosp(cosd —1))é, |
(Exsing cos p(cos@ — 1) + Ey(cosé sin® ¢ + cos? ®))ey ¢/? sin /+/cos Od g, ®)
(Excosgsinf + E, singsinf)e,

ik
AE.(A) = —]—[cos (muy) cos Q(cos 6 cos? ©+ sin? @) — sin (mugy ) sin Q sin g cos (cosf — 1)]sinf/~/cosOApAgp, (9a)
T

/ .]k . . . -2 2 .
AE,(A") = ——[cos (muy ) cos O sin ¢ cos ¢(cos @ — 1) — sin (mu, ) sin Q(cos 6 sin” ¢ + cos” ¢)]sinf /~/cosd ApAg, (9b)
T

k
AE(A) = I

From Egs. (9), it can be seen that the x component of
the tightly focused VOF carrying bipolar-variant SAM at
point A’ is in phase with the y component, giving rise to the
annihilation of longitudinal SAM density. Meanwhile, the z
component and x(y) component of the tightly focused field
are always £ /2 out of phase. In this way, the tightly focused
field is elliptically or circularly polarized in the meridional
plane depending on the relative amplitudes of the two com-
ponents, leading to a purely transverse SAM density in the
focal plane. Thus, we can draw the conclusion that the variant
SAMs around the two singularities counteract with each other
in focusing process, leading to the annihilation of longitudinal
SAM and the appearance of transverse SAM. We should state
that this method is valid by choosing area elements in the input
plane to analyze the tightly focused field, because the integral
calculation is essentially summation and the group of area
elements in the input plane is chosen arbitrarily. As the above
conclusions are drawn on the basis of the fact that the incident
VOF is with bipolar-variant longitudinal SAM distribution,
we believe that the purely transverse SAM density in the focal
plane is induced by the bipolar-variant longitudinal SAM. In
addition, similar conclusion can also be drawn for the general
bipolar-variant SAM with Eq. (7), which will not be discussed
in detail here. We should also point out that besides the evo-
lution property of the bipolar-variant SAM in a tight focusing
process, it would also be interesting to explore its transition in
nonlinear interaction or light-matter interaction [46,47].

V. CONCLUSION

To conclude, we have theoretically and experimentally
presented the bipolar-variant SAM carried by the VOF and

cos (muy) sin Q cos ¢ + sin (muy ) cos Q sin @] sin® 0/~ cosOApAgp. (9¢)

(

concentrated on studying the spatial evolution of the bipolar-
variant SAM during the tight focusing process, finding that
the longitudinal SAM density annihilates and the purely trans-
verse SAM density appears in the focal plane. Moreover, we
further studied the SAM evolution of the general bipolar-
variant SAM and found that the amount of singularities
keeps topological invariance when the complex singularities
of SAM change into V points after tight focusing. We reported
three kinds of transitions in the tight focusing process: (i) from
purely longitudinal SAM to purely transverse SAM, (ii) from
hybrid SoP to pure linear SoP in the transverse plane, and
(iii) from complex singularities of SAM to V' points. We be-
lieve the concepts in this paper can inspire ideas in designing
space-variant SAM distribution as well as enriching the family
of VOFs, and the study of evolution properties can provide
insight into optical angular momentum and singular optics.
This paper also provides a way to generate purely transverse
SAM density induced by longitudinal SAM, which may be
applied in optical trapping and manipulation, especially for
optically induced rotations.
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