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Theory of reflectionless scattering modes
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We develop the theory of a special type of scattering state in which a set of asymptotic channels is chosen
as inputs, and the complementary set is chosen as outputs, and there is zero reflection back into the input
channels at specific frequencies. These states define perfectly impedance-matched input wavefronts for arbitrary
finite scattering structures in any dimension. We find that an infinite number of such solutions exist at discrete
frequencies in the complex ω (or energy) plane for any choice of the input-output sets under general conditions.
Our results apply to linear electromagnetic and acoustic wave scattering and also, in many cases, to quantum
scattering. We refer to such states as reflection-zeros (R-zeros) when they occur off the real-frequency axis
and as reflectionless scattering modes (RSMs) when they occur or are tuned to the real-frequency axis and
exist as steady-state harmonic solutions. The specific monochromatic input wavefront necessary is given by
the eigenvector of a filtered scattering matrix with eigenvalue zero. RSMs may be realized either by tuning
parameters of the scatterer which preserve flux conservation (index tuning) or by adding gain or absorption
(gain-loss tuning), which do not. We show that in general only a single continuous system parameter needs to
be tuned to create an RSM from an R-zero for a given choice of input-output channels for both guided wave and
free-space excitation. In addition, a coupled-mode analysis shows that RSMs are the result of a generalized type
of critical coupling. A symmetry analysis of R-zeros and RSMs implies that RSMs of flux-conserving cavities or
structures are bidirectional: the input and output channels can be interchanged and the resulting state will also be
an RSM at the same frequency. RSMs of cavities with gain and/or absorption are generically unidirectional, and
do not satisfy this interchange symmetry. Non-flux-conserving systems with PT symmetry have unidirectional
R-zeros in complex-conjugate pairs, implying that for small enough T breaking their reflectionless states arise
at real frequency, without the need of any parameter tuning. This explains the widely observed existence of
unidirectional unit transmission resonances in one-dimensional PT systems, and their disappearance as a result
of spontaneous PT -symmetry breaking. An alternative type of exceptional point is shown to occur at this
transition, leading to an observable change in the reflection and/or transmission line shape. Numerical examples
of RSMs are given for one-dimensional cavities with and without gain or loss, a one-dimensional PT cavity,
a two-dimensional multiwaveguide junction, and a two-dimensional deformed dielectric cavity in free space.
We outline and implement a general technique for solving such problems, which shows promise for designing
photonic structures which are perfectly impedance matched for specific inputs, or can perfectly convert inputs
from one set of modes to a complementary set.
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I. INTRODUCTION

A. Resonant impedance matching of waves

Resonant scattering of waves is a fundamental process in
classical and quantum physics. At certain input frequencies or
energies, incident waves impinging on an object or inhomo-
geneous region (“the scatterer”) can excite normal modes of
oscillation of the scatterer, leading to strong scattering and rel-
atively long interaction times. The normal modes of any such
open system are resonances, alternatively called quasinormal
modes or Gamow states, which correspond to purely outgoing
solutions of the wave equation with complex frequencies,
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ω = ωr − iγ , where γ = 1/2τ > 0, τ is the dwell time or
intensity decay rate, and Q = ωrτ is the quality factor of the
resonance [1–4]. In general, the resonances are not physi-
cally realizable steady states due to their exponential growth
at infinity, but they determine the scattering behavior under
steady-state (real-frequency) harmonic excitation. However,
in electromagnetic scattering with gain, the resonances can be
realized physically and correspond to the onset of laser emis-
sion [5–7]. This threshold lasing state is a solution of the linear
Maxwell wave equation for a scattering geometry, but with no
incident wave; it can only be realized at discrete frequencies
and with the appropriate amount of gain to balance exactly
scattering and absorption loss.

While every finite structure will support resonances
when excited at wavelengths shorter than the size of the
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structure, there is, to our knowledge, no general theory of
the conditions under which those resonances are accompa-
nied by reflectionless or perfectly impedance-matched input
states under steady-state harmonic excitation. The effectively
one-dimensional (1D) examples found in textbooks and im-
plemented in optical and electronic technology suggest that
parity symmetric lossless scattering structures (e.g., a perfect
Fabry-Pérot resonator, or balanced double barrier systems in
quantum mechanics) do have reflectionless input states at a
frequency equal to or close to the real part of each resonance
frequency, and that, if parity is broken, such states do not
exist. In all branches of wave physics it is common to excite
more complex structures near their resonances in order to
strongly couple waves into or through the structure, and it is
usually highly desirable that this excitation not reflect energy
back to the source. While there has certainly been extensive
work on reducing reflection from many specific structures, to
our knowledge there is little prior theoretical or experimental
work on the necessary and sufficient conditions for the ex-
istence of impedance-matched input states in any geometry
that is not effectively one-dimensional. This question, and the
question of how to construct such states when they exist, are
the focus of the current paper.

Some time ago the necessary and sufficient conditions for
the existence of a certain type of reflectionless state in struc-
tures of arbitrary complexity were established in work by one
of the current authors (and coworkers). These are states which
correspond to the time reverse of the resonances, satisfying the
boundary conditions that there are only incoming waves at a
sufficient distance from the structure. For lossless structures
(or Hermitian Hamiltonians in quantum mechanics) these
states were already well known for many decades, since they
occur at the conjugate of the complex resonance frequencies
(and are not physically realizable for the same reason), but
in 2010 it was pointed out that, just as gain can be added to
a cavity to create a laser at threshold, a lossy material could
be added to the same cavity such that the purely incoming
solution (by time-reversal symmetry) was equivalent to a per-
fectly impedance-matched state at the same (real) frequency,
a phenomenon now known as coherent perfect absorption
(CPA) [8–10]. This time-reversed solution of lasing at thresh-
old is simply the complex conjugate of the outgoing lasing
mode. Importantly, the absorption is perfect only for that
structure-specific wavefront, at that specific frequency. Thus
to achieve CPA for a complex structure one has to synthesize
the appropriate complex incoming wavefront, and adjust the
loss in the cavity to a precise value (the same magnitude and
spatial distribution as the gain of the corresponding laser).
The theory of CPA proves the existence of resonant perfectly
impedance-matched solutions for arbitrarily complex struc-
tures in any dimension, when the input wavefront, frequency,
and loss are appropriately tuned.

However, CPA is just one very special type of reflectionless
input state, one for which all accessible input channels are
filled and no energy is radiated outwards. In this case, all of the
input energy is trapped in the scatterer or cavity and absorbed
in the lossy medium (which we assume is able to dissipate
the power generated without significant nonlinear effects).
An interesting recent work has studied CPA in a disordered
microwave cavity with multiple antenna inputs [11]. The setup

is interesting because the basic source of “absorption” is an in-
ternal antenna and the input channels are the multiple external
antennas. In some parameter ranges where full absorption is
measured, almost all of the energy is detected at the internal
antenna and is not absorbed irreversibly by the structure,
while in other ranges both the internal antenna and the cav-
ity absorption contribute. While these experiments are quite
interesting, for reasons which should become clear below, we
regard them as examples of the more general reflectionless
states defined here, and not true CPA, as outgoing radiation
through the internal antenna is not irreversible energy dissipa-
tion. Of course, more generally wave physicists are interested
in reflectionless states of this kind, in which a subset of the
scattering channels is used as inputs, which then are either
completely transmitted through the structure to some desig-
nated output channels, or possibly are partially absorbed (or
even amplified) in the structure along the way, but nonetheless
radiate energy into the output channels. This general notion of
reflectionless states is addressed in the current paper, which
includes CPA as a special case.

Another relatively recent example of perfectly impedance-
matched states which has been extensively studied is the
perfect transmission resonances of structures with symmetric
absorption and gain distributions (i.e., parity-time symmet-
ric, PT ). PT structures in optics have gotten much recent
attention [12–20]. Specifically, 1D open PT structures ex-
hibit reflectionless states [21–35], which are unidirectional.
Since such structures are not lossless, in general photon
flux is not conserved, so it is possible and in fact gener-
ically true that a structure which supports a reflectionless
state traveling from left to right at a given frequency will
not be reflectionless for a wave incident from the right at
the same frequency. Much of this work is summarized in a
recent review [36]. While these unidirectional reflectionless
resonances are present in all PT structures, they apparently
disappear at sufficiently high frequency for a fixed value of
gain-loss [22–25,37]. The unidirectional reflectionless states
do occur in conjunction with standard scattering resonances,
but in the PT case they are typically substantially shifted in
frequency from the real part of the resonance frequency (see
Fig. 3 below). One-way reflectionless states have also been
studied in non-flux-conserving systems that do not possess
PT symmetry [37–43], including those supporting constant-
intensity waves [44,45].

In the current paper we will show how these previ-
ously known cases—reflectionless states of simple parity-
symmetric structures, perfectly absorbed CPA states, and
unidirectional PT -symmetric reflectionless states—fit into a
more general theory of reflectionless states, which is for-
mulated in the following manner. In any linear scattering
system of finite spatial extent there will be a finite number
of asymptotic scattering channels that are relevant, and we
can choose a subset of the asymptotic channels as the input
channels. Based on this choice, we define a set of states by
the condition that they are scattering solutions for which no
energy is reflected back into the chosen channels at the input
frequency, assuming an appropriate wavefront is chosen for
the input channels. We will show that, generically, a count-
ably infinite set of such reflectionless scattering states exists
at discrete complex frequencies (similar to resonances); we
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will refer to these frequencies and corresponding wavefronts
as reflection zeros or R-zeros. Through parameter tuning or
by imposing symmetry, an R-zero can be moved to a real
frequency to become a steady-state solution that we refer to as
a reflectionless scattering mode (RSM). In this way the RSM
concept is similar to CPA, and shares the attribute that such
RSMs exist in arbitrarily complex systems for the appropriate
input wavefront, if a single parameter is tuned.

But the RSM is more general, because it encompasses
all possible exciting wavefronts and does not require that all
input channels be used. Hence it corresponds to the more
typical situation in which impedance matching is desired
in order to avoid reflection and transmit all or most of the
incident energy through the structure. Moreover the R-zero–
RSM formulation applies to systems that do not naturally
divide into left and right asymptotic regions. Any subset of
the asymptotic channels may be chosen as inputs, with the
complementary set being the outputs, even when the input
and output channels spatially overlap. We will show how, for
any choice of input channels, R-zeros and RSMs can be found
computationally for any specific cavity or structure of interest,
and will give nontrivial examples of RSMs in multichannel
and free-space structures, which are obtained in our method
without searching a large space and using iterative optimiza-
tion. The computational methods are of similar difficulty to
calculating resonances of complex structures, and in many
cases the perfectly matched layer (PML) or complex scaling
method can be used [46,47]. For other important cases (such
as free-space RSMs) the PML method cannot be used, but a
slightly more complicated boundary-matching technique can
be implemented. No particular symmetry of the structure is
required in order for it to have an RSM at a given frequency,
however we will analyze in detail the effect of discrete sym-
metries on R-zeros and RSMs before giving more general
examples.

A recent published work [48] is closely related to the
present one. The authors introduce the concept of reflection-
less modes in the context of waveguides, but only define
reflectionless modes in terms of left to right (or right to left)
transmission and not in terms of arbitrary partitions of all
asymptotic modes, as we do here. They specifically emphasize
and demonstrate that the R-zero spectrum is distinct from the
usual resonance spectrum even when the R-zeros are complex,
and introduce in this context a multimode reflection matrix,
which is a special case of our generalized reflection matrix
defined in Sec. II A below. However the examples shown
do not require finding a nontrivial input state adapted to the
scatterer, as in the more general cases we present below, and
there is no discussion of this crucial point. While their work
has significant overlap with the work presented here, there are
substantial differences. The authors define R-zeros only for
waveguides and, as noted, only for the case of choosing all of
the input modes on one side and all of the output modes on
the other, whereas in our approach any mode on either side
can be chosen as an input and output mode in defining the
impedance-matching problem. With these restrictions, their
notion of reflectionless modes is directly tied to the PML
method, which can only be applied when input and output
modes are spatially separated. Important cases where the PML
method cannot be used to find RSMs are finite-sized scatter-

ers or antennas in free space (see Fig. 6 below), or planar
scatterers illuminated with a finite numerical aperture (where
the input channels consist of a subset of incident angles), or
multimode waveguides with input and output channels oc-
curring in the same waveguide, as for certain types of mode
converters. The tuning of R-zeros to the real axis, which will
be necessary in almost all nontrivial cases, is not discussed
at all in Ref. [48] and no connection is made to the long-
standing notion of critical coupling to avoid reflection. Finally,
there is no discussion of tuning to an RSM exceptional point
(EP), and of the physics at such a point, which differs from
almost all previous work on EPs and sheds light on the PT -
symmetry-breaking transition as we discuss below. The notion
of parameter tuning of R-zeros to achieved generalized form
of critical coupling is central to this paper. We will provide
two methods to find R-zeros in these more general cases,
involving either a filtered scattering matrix or the underlying
wave operator, and derive an explicit connection between the
two methods that also highlights the role of bound states in
the continuum [49]. In the wave-operator approach, incoming
and outgoing boundary conditions for arbitrary choices of
channels can be implemented through the boundary-matching
methods [50] (see Sec. II F 2).

Critical coupling is a longstanding idea in optical and
electromagnetic wave physics [51–53]: when coupling into
a cavity through a single input channel at the frequency of
a well-isolated cavity resonance, zero reflection occurs when
the rate of input coupling equals the rate of loss in the cavity.
The literature is somewhat unclear as to whether it makes a
difference if the loss is radiative or dissipative or a combina-
tion of the two. Many practical photonic devices use critical
coupling, and there are devices which operate in either limit.
The RSM concept introduced here does reduce to critical
coupling for the case of a single input channel coupled to an
isolated resonance and makes it clear that for zero reflection
it does not matter if the loss is radiative or dissipative. How-
ever the RSM theory shows how to achieve zero reflection
with multiple input channels and when resonances overlap
(both aspects are illustrated in Fig. 5 below). It also adds
to the critical coupling condition the additional requirement
that one needs to send in a specific coherent wavefront to
achieve zero reflection, which is not necessary for the case of
a single input channel. Hence the RSM theory can be used to
achieve impedance matching in more complex structures and
geometries, as well as to achieve perfect mode conversion,
and we believe it opens up a promising approach to design
of photonic structures. Moreover, the RSM concept applies
to a wide variety of wave scattering systems, for example
sound waves, waves of cold atoms or condensates, and other
quantum systems with short-range interactions. Unlike lasing
and CPA, which are nonunitary by definition (i.e., do not con-
serve energy flux), steady-state RSMs can be flux conserving
and do not require the availability of absorption or gain as a
design resource. We will discuss engineering of passive RSMs
(without loss or gain) below.

B. Scattering matrix

To make the RSM concept more precise we must now
introduce the starting point of the theory, the scattering matrix
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(S matrix) of an open wave system. The system generally con-
sists of an inhomogeneous scattering region, outside of which
are asymptotic regions that extend to infinity. To support reso-
nance effects the scattering region needs to be larger than the
wavelength of the input waves within the scattering medium.
The asymptotic regions are assumed to be time-reversal in-
variant and to have some form of translational invariance, e.g.,
vacuum or uniform dielectric, or a finite set of waveguides, or
an infinite periodic photonic crystal. We also focus on media
in which the scattering forces are short-range, so that the com-
plications associated with long-range Coulomb or other forces
are absent. This limits the application of the theory for certain
problems in quantum scattering or in plasma scattering but
this simplification holds for the scattering of electromagnetic
and sound waves in almost all cases; for the remainder of this
paper we will develop the theory in terms of classical Maxwell
waves.

A linear and static photonic structure is described by its
dielectric function ε(r, ω), which can be complex-valued, in
which case its imaginary part describes absorption and/or
gain. The assumed linearity allows the theory to concentrate
on scattering at a single real frequency, ω; time-dependent
scattering can be studied by superposing solutions. The trans-
lational symmetry of the asymptotic regions allows one to
define 2N power-orthogonal propagating “channel states”
at each ω. Based on the direction of their fluxes, the 2N
channels can be unambiguously grouped into N incoming
and N outgoing states, which are related by time reversal.
Familiar examples of channels include the guided transverse
modes of a waveguide and orbital angular momentum waves
in free space, with one channel per polarization. In the waveg-
uides, the finite number and width of the waveguides lead
to a finite N for a given ω, whereas for the case of a finite
scatterer or cavity in free space the number of propagating
angular momentum channels is countably infinite. However, a
finite scatterer of linear scale R, with no long-range potential
outside, will interact with only a finite number of angular
momentum states, such that lmax ∼ √

ε̄Rω/c, where ε̄ is the
spatially averaged dielectric function in the scattering region,
and c is the speed of light. Hence for each ω we can reasonably
truncate the infinite-dimensional channel space to a finite,
N-dimensional subspace of relevant channels.

A general scattering process then consists of incident light,
propagating along the N incoming channels, interacting with
the scatterer and then propagating out to infinity along the N
outgoing channels, as illustrated in Fig. 1(a). The partial scat-
tering of a single incoming channel into the outgoing channel
which is its time reverse defines a reflection coefficient, and
scattering into each other channel defines the transmission co-
efficients. In the channel basis, the wavefronts of the incoming
and outgoing fields are given by length-N column vectors α

and β, normalized such that α†α and β†β are proportional to
the total incoming and total outgoing energy flux, respectively.
The N-by-N scattering matrix S(ω), which relates α and β at
frequency ω, is defined by

β = S(ω)α. (1)

In a partitioned (left-right) geometry the elements of the S
matrix are all of the transmission and reflection amplitudes
between the channels; in a general geometry they are just

General Scattering(a) (b)

FIG. 1. (Color) Schematic depicting a general scattering process
(a) and reflectionless process (b). A finite scatterer or cavity interacts
with a finite set of asymptotic incoming and outgoing channels, indi-
cated by the red inward-pointing and blue outward-pointing arrows,
respectively, related by time reversal. These channels may be local-
ized in space (e.g., waveguide channels) or in momentum space (e.g.,
angular momentum channels). (a) In the general case without sym-
metry, all incoming channels will scatter into all outgoing channels.
(b) There exist reflectionless states, for which there is no reflection
back into a chosen set of incoming channels (the inputs), which in
general occur at discrete complex frequencies and do not correspond
to a steady-state harmonic solution of the wave equation. However,
with variation of the cavity parameters, a solution can be tuned to
have a real frequency, giving rise to a steady-state reflectionless
scattering process for a specific coherent input state, referred to as
a reflectionless scattering mode (RSM).

interchannel scattering amplitudes. Below we will define a
generalized reflection matrix from the S matrix in an arbitrary
geometry. In reciprocal systems, the S matrix is symmet-
ric, S = ST [54]. If the scatterer is lossless (i.e., ε is real
everywhere), then any incoming state leads to a nonzero flux-
conserving output, and the S matrix is unitary.

The S matrix, being well defined at all real frequencies
(absent self-oscillating solutions, i.e., lasing), can be extended
to complex frequencies via analytic continuation.

II. GENERAL THEORY OF R-ZEROS AND RSMs

We will now define R-zeros and RSMs for a general
geometry, prove the existence of solutions in the complex-
frequency plane, and analyze the properties of R-zeros and
RSMs based on the existence of different symmetries of the
scattering system.

A. R-zeros and RSMs

R-zeros are specific solutions of the scattering problem,
typically at a complex frequency, for which there is no back-
reflection into a given set of channels. A RSM occurs when
an R-zero is tuned to a real frequency, and is therefore a
specially constrained steady-state solution of the more general
R-zero problem. To define an R-zero problem, we specify Nin

of the incoming channels to be “input channels” which carry
incident flux but no outgoing flux, and are thus reflectionless,
with 0 < Nin < N . The complementary set of Nout = N − Nin

outgoing channels (the “output channels”) carries any out-
bound flux. This is illustrated in Fig. 1(b).
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Let αin denote the Nin-component vector containing the
input amplitudes of such a reflectionless incident field, and
Rin(ω) denote the square Nin-by-Nin “generalized reflection
matrix,” which is the submatrix of the analytically continued
S(ω) defined by the specified input channels, i.e., (Rin )i, j =
Sni,n j , where i, j = 1, 2, ..., Nin and {ni} is the set of Nin chan-
nels. At the complex frequency ωRZ of an R-zero, the absence
of reflection can be expressed as

Rin(ωRZ)αin = 0, (2)

which is the formal definition of an R-zero. In other words,
the R-zero frequencies are those at which Rin(ω) has a zero
eigenvalue, the corresponding eigenvector αin being the reflec-
tionless incident wavefront. More generally, Eq. (2) defines
a nonlinear eigenproblem where ωRZ is the eigenvalue, and
methods for solving general nonlinear eigenproblems [55–59]
may be used to solve it.

Equation (2) can also be solved by finding the roots of the
complex scalar function det Rin(ω):

det Rin(ωRZ) = 0. (3)

Since the generalized reflection matrix can be computed for
any open scattering system using standard methods, Eqs. (2)
and (3) provide universal recipes for solving the R-zero prob-
lem, for each of the 2N − 2 choices of reflectionless input
channels.

We will show in Eq. (16) in Sec. II C that, generically,
near each zero to leading order det Rin(ω) ∝ (ω − ωRZ), so
that the phase angle arg(det Rin ) winds by 2π along a coun-
terclockwise loop around each ωRZ in the complex-frequency
plane. One may regard each R-zero as a topological defect
in the complex-frequency plane with a topological charge of
+1 [60]. As such, R-zeros are robust: when the optical struc-
ture ε(r) is perturbed, ωRZ moves in the complex-frequency
plane but cannot suddenly disappear, similar to topological
defects in other systems [61,62]. For an R-zero to disappear,
it must annihilate with another topological defect of det Rin

with charge −1. We will show in Sec. II C that such a charge
annihilation leads to either a bound state in the continuum
or a single-side resonance, where det Rin is neither zero nor
infinity. When parameters of the system are tuned such that
n > 1 R-zeros meet at the same frequency, they superpose
and form a topological defect with charge +n where det Rin ∝
(ω − ωRZ)n; we will show later that these are EPs of a wave
operator and provide an explicit example in Figs. 3(b)–3(e).

Even though the case of Nin = N leads to a well-defined
Rin = S, we will exclude it from the ensuing discussion since
the corresponding ωRZ is already understood as a zero of the
S matrix [8], and for flux-conserving systems is constrained
to the upper half of the complex-frequency plane, and unlike
other R-zeros cannot be tuned to the real axis (CPA) without
adding loss. The case Nin = 0, corresponding to resonance, is
also excluded, as here Rin and the associated R-zeros are not
defined.

The simultaneous absence of reflection in all input chan-
nels for the R-zero incident wavefront is due to interference:
the reflection amplitude of each input channel i destructively
interferes with the interchannel scattering from all the other
input channels, (Rin )iiαi + ∑

j �=i(Rin )i jα j = 0, which is pre-
cisely Eq. (2). The scattering (“transmission”) into the output

channels is not obtained from solving this equation alone, and
must be determined by solving the full scattering problem at
ωRZ.

While Eq. (2) or Eq. (3) already provides a concrete recipe
for finding R-zeros, we will further analyze det Rin(ω) to shed
light on the existence of R-zeros in the complex-frequency
plane and to reveal their relation to the wave operator and to
resonances in the next two sections.

B. Wave-operator representation of the S matrix

In this section, we introduce a wave-operator representa-
tion of S(ω) and det S(ω), which we will adapt in the next
section to analyze Rin(ω) and det Rin(ω). Throughout this
paper we focus on the Fourier representations of the wave
equation appropriate for the study of harmonic scattering
solutions and will use the term wave operator to refer to
the relevant differential operators in the frequency domain as
defined below. This differs from how the term is typically used
in the mathematical theory of wave scattering, as presented in
Ref. [63].

Consider a wave operator Â(ω) acting on state |ω〉, which
satisfies Â(ω) |ω〉 = 0.

For electromagnetic scattering, 〈r|ω〉 is the magnetic field,
H(r), under harmonic excitation at ω, and the Maxwell oper-
ator at frequency ω is given by

〈r′|Â(ω)|r〉 = δ(r − r′)
{(

ω

c

)2

− ∇ ×
(

1

ε(r)
∇×

)}
. (4)

Divide the system into two regions: the finite, inhomogeneous
scattering region 
 in the interior, and the exterior asymptotic
region 
̄ that extends to infinity, which possesses a transla-
tional invariance broken only by the boundary, ∂
, between

 and 
̄. We separate the operator Â(ω) into three pieces:

Â(ω) = [Â0(ω) ⊕ Âc(ω)] + V̂ (ω). (5)

Â0(ω) acts in the interior region 
, Âc(ω) acts in the exterior
region 
̄, and both are identical to Â(ω) in their respective
domains. The coupling term V̂ (ω) between the two regions is
defined via V̂ (ω) ≡ Â(ω) − [Â0(ω) ⊕ Âc(ω)].

The auxiliary, closed-cavity wave operator Â0(ω) on 
,
subject to Neumann boundary conditions, admits a discrete
spectrum of the form Â0(ωμ) |μ〉 = 0 with eigenvalues {ωμ}.
We use this nonstandard definition of the eigenvalue to be
consistent with the formulation of nonlinear eigenvalue prob-
lems [55–59], where the operator A(ω) depends nonlinearly
on ω, a case which will be relevant shortly in the computation
of resonances and R-zeros. We explicitly do not assume Â0(ω)
to be Hermitian, as one major focus of this paper is to use
absorption or gain to tune the R-zeros frequencies to become
real, creating an RSM. The matrix A0(ω) is naturally defined
by its matrix elements:

A0(ω)μν = 〈μ|Â0(ω)|ν〉. (6)

The auxiliary asymptotic wave operator Âc(ω) on 
̄, sub-
ject to a Neumann boundary condition at its interface with
the scatterer, has a continuum of solutions. It generates the
propagating channel modes via Âc(ω)|ω, n〉 = 0 (n here is an
integer or set of integers which uniquely specifies the asymp-
totic channels for each real frequency, ω). By construction, the
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only nonvanishing matrix elements of V̂ are those between
closed and continuum states, so that the matrix W(ω), not
necessarily square, is given by

W (ω)μn = 〈μ|V̂ (ω)|n, ω〉, (7)

and contains all the information in V̂ (ω).
A general relation [64–67] between the matrices S, A0, and

W, originally developed in the study of nuclear reactions as
the continuum-shell model or shell-model approach [64,68–
75], is

S(ω) = IN − 2π iW†
p(ω)Geff (ω)Wp(ω), (8)

where IN is the N-by-N identity, and the effective Green’s
function Geff (ω) is the inverse of the effective wave operator
Aeff (ω):

Geff ≡ A−1
eff , Aeff ≡ A′

0 − �R,

�R ≡ � − i�, � ≡ πWpW†
p,

�(ω) ≡ p.v.

∫
dω′ Wp(ω′)W†

p(ω′)

ω′ − ω
. (9)

For conciseness we have suppressed and will continue to
suppress the dependence on ω, except when needed for clarity.
The matrix Wp is the full coupling matrix W restricted to
the N propagating channels, while A′

0 is the closed-cavity
wave operator A0 plus a Hermitian modification that includes
the effect of evanescent channel states. The operator �R is the
self-energy, and acts only on the boundary ∂
; � and −i� are
its Hermitian and anti-Hermitian components.

The resonances of the system are the eigenmodes of the
non-Hermitian, nonlinear eigenvalue problem Âeff (ωp)|ωp〉 =
0, with eigenvalues {ωp} that are the complex-valued reso-
nance frequencies, which generally form a countably infinite
set. Note that the frequency dependence of the self-energy
makes the eigenproblem nonlinear. Since � is positive
semidefinite, the self-energy due to openness generally
contributes a negative imaginary part to the resonance fre-
quencies, pushing the poles of Geff (ω) and S(ω) into the lower
half of the complex-frequency plane, exactly capturing the
effect of openness.

A series of manipulations applied to Eq. (8) yields a power-
ful identity for det S(ω). Using the “push-through identity” of
linear algebra [76], we move the interaction matrix Wp across
Geff to obtain S = (1 + iK)/(1 − iK), where the reactance
matrix K ≡ −πW†

p(A′
0 − �)−1Wp [77,78]. Taking the deter-

minant of both sides and dividing numerator and denominator
by det(A′

0 − �), we arrive at

det S(ω) = det (A′
0(ω) − �(ω) − i�)

det (A′
0(ω) − �(ω) + i�)

. (10)

Note that Eq. (10) is not a simple identity of linear al-
gebra: the left-hand side is the standard determinant of an
N-by-N square matrix, while the right-hand side is a ratio
of functional determinants of differential operators on an
infinite-dimensional Hilbert space. See Appendix A1 for more
detail on the derivation of Eq. (10). A related expression was
given in Refs. [79,80].

Equation (10) reveals that the analytically continued
det S(ω) has zeros at a countably infinite set of complex

frequencies {ωz}, which are the eigenvalues of the nonlin-
ear eigenproblem [Â0(ωz ) − 
̂A(ωz )]|ωz〉 = 0, where 
̂A =
�̂ + i�̂; we refer to them as the zeros of the S matrix. CPA
arises when, by tuning the degree of absorption in the sys-
tem, one member of this set reaches a real frequency and
becomes a steady-state solution. As described in the intro-
duction, the time reverse of CPA is threshold lasing (purely
outgoing solutions at real frequency). We can now generalize
that as follows: the time reverse of the state corresponding to
a complex zero of the S matrix is a resonance. For a lossless
scatterer, time-reversal symmetry implies that ωz = ω∗

p, which
is consistent with Eq. (10) since (
̂A(ω))† = 
̂R(ω∗) when
ε(r) is real.

While an eigenvalue of Â0(ω) − 
̂R(ω) typically corre-
sponds to a pole of det S(ω) and an eigenvalue of Â0(ω) −

̂A(ω) to a zero of det S(ω), there is one important excep-
tion. Equation (10) shows that if ωp = ωz is the simultaneous
eigenvalue of both, det S(ω) may be neither zero nor infinite.
Such an exception happens at a bound state in the continuum
(BIC) [49], which contains neither incoming nor outgoing
radiation and exists at a real frequency for passive structures.
A BIC is invariant under time reversal, and does not affect
S(ω) since it is decoupled from far-field radiation. In the
topological-defect picture, a BIC implies that a +1 charge
(S-matrix zero) annihilates with an −1 charge (resonance) on
the real axis.

C. Analytic properties of R-zeros and RSMs

We now adapt this formalism to treat R-zeros and RSMs,
which can be analyzed in a similar fashion through the rela-
tion between the generalized reflection matrix Rin and the S
matrix. Let F be the set of Nin filled input channels, which
fixes F̄ , the set of Nout filled output channels (the remaining
incoming and outgoing channels will carry no flux). Because
the channel ordering in S is arbitrary, for convenience we
permute S such that the Nin input channels correspond to the
upper-left block of S, namely,

S(ω) =
(

Rin(ω) T2(ω)

T1(ω) Rout (ω)

)
. (11)

To extract Rin from S, let us define the filtering matrices F
and F̄, where F : CN → CNin reduces the dimension of the
channel space from N to Nin, i.e., Fi j = δc(i), j where c(i) is the
ith input channel, with i � Nin, j � N , and F̄ reduces from N
to Nout. It follows that

FF† = INin , F̄F̄† = INout , F†F + F̄†F̄ = IN . (12)

With these definitions we have

Rin(ω) = FS(ω)F†. (13)

Using Eqs. (8) and (13),

Rin = INin − 2π iW†
F GeffWF ,

WF ≡ WpF†, WF̄ ≡ WpF̄†. (14)

In analogy to what we did to derive the K-matrix represen-
tation of S, we now push WF through Geff to get Rin =
(INin + iKF )/(INin − iKF ), where KF ≡ −πW†

F Ḡ0WF , and
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Ḡ0 ≡ [A′
0 − � + i�F ]−1. The self-energies restricted to the

input channels are

�R
F (ω) ≡ �F (ω) − i�F (ω),

�F (ω) ≡ p.v.

∫
dω′ WF (ω′)W†

F (ω′)
ω′ − ω

, (15)

�F (ω) ≡ πWF (ω)W†
F (ω),

and similarly for F̄ . Taking the determinant of both sides
of Eq. (14) and applying the same procedure used to derive
Eq. (10), we get

det Rin(ω) = det (A0(ω) − �(ω) − i[�F (ω) − �F̄ (ω)])
det (A0(ω) − �(ω) + i�)

,

(16)
where we have used Eq. (12) to write �F + �F̄ = �. Similar
to Eq. (10), Eq. (16) relates the determinant of an Nin-by-Nin

matrix to a ratio of functional determinants. Note that the
denominator of Eq. (16) is the same as that of Eq. (10) while
the numerators differ, implying that the poles (resonances) of
Rin are generically the same as those of S, while zeros are
different. (More precisely, all poles of Rin are poles of S, but
there can exist special cases for which a pole of S is not a pole
of Rin, see the discussion below).

Equation (16) is a central result of this paper. It relates the
R-zeros to a new effective operator:

ÂRZ(ω) ≡ Â0(ω) − �̂(ω) − i[�̂F (ω) − �̂F̄ (ω)]. (17)

In particular, det Rin(ωRZ) = 0 at an R-zero, so we necessarily
have det ÂRZ(ωRZ) = 0, which defines a nonlinear eigenvalue
problem:

ÂRZ(ωRZ)|ωRZ〉 = 0. (18)

We expect that there exists a countably infinite set of R-zeros
at complex frequencies {ωRZ} that satisfy Eq. (18) for each
choice of input channels F , similar to resonances, which
satisfy Âeff (ωp)|ωp〉 = 0. Like Eqs. (2) and (3), Eq. (18) is
universal and applicable to any open system (with the caveat
of short-ranged interactions) for any choice of reflectionless
input channels. However, numerical solution of Eq. (18) can
often be done more efficiently since ÂRZ varies slowly and
smoothly as a function of the frequency ω. Implementation
details for solving Eq. (18) in different geometries are given
later in Sec. II F and Appendix B, where it is shown that
the construction given here is equivalent to specifying mode-
matched boundary conditions.

A caveat of using Eq. (18) as opposed to Eq. (2) is
that while every R-zero corresponds to an eigenmode of
ÂRZ in rare occasions some eigenmodes of ÂRZ may not
be R-zeros. This can be seen from Eq. (16): det Rin is not
generally zero if both the numerator and the denominator
on the right-hand side are zero, so that we have a simulta-
neous eigenmode of both ÂRZ and Âeff . Such simultaneous
eigenmodes are rare, but the aforementioned BIC [49] is an
example, as pointed out in Ref. [48] in a more specialized
context. In addition, resonances that do not radiate into certain
channels [27,81,82]—sometimes referred to as “single-side
resonances” or “unidirectional BICs”—are also such simulta-
neous eigenmodes; a single-side resonance is a pole S but not

a pole of Rin. BICs and single-side resonances require symme-
try and/or additional parameter tuning beyond the basic RSM
problem [49] since they have both zero incoming and zero
outgoing waves in the dark channels.

Equation (16) provides a rigorous basis for the topological-
charge interpretation given earlier in Sec. II A. A topological
defect of det Rin(ω) with charge +1 is an R-zero and is neces-
sarily an eigenmode of ÂRZ. Meanwhile, a topological defect
of det Rin(ω) with charge −1 is a resonance and is necessarily
an eigenmode of Âeff . When a +1 charge and a −1 charge
annihilate, we have a simultaneous eigenmode of ÂRZ and
Âeff , which is a BIC or a single-side resonance.

We note the important intuition provided by Eqs. (16)–
(18): for the purpose of reasoning about the zeros of Rin,
each input channel acts as an effective “radiative gain” to the
system (because it contributes a negative semidefinite term to
ÂRZ, which then increases the imaginary part of its eigenvalue
ωRZ), and each output channel as an effective “radiative loss.”
The balance of these two terms will determine the proximity
of an R-zero to the real-frequency axis, where it becomes an
RSM. Hence when defining an R-zero problem in which few
input channels scatter to many output channels, we expect the
R-zero frequency to appear in the lower half of the complex
plane for a passive system (similar to resonances). Therefore
to realize a steady-state solution we can either add gain in the
dielectric function of the operator Â0 (gain-loss engineering)
or modify the scattering structure to increase the coupling
of the input channels (index tuning) so as to move the solu-
tion to a real frequency. In the opposite case of many more
input channels than output channels, we expect the R-zero
frequency to appear in the upper half-plane and require adding
absorption or increased coupling to the output channels to
reach the real axis. This argument is merely qualitative, since
the operator in Eq. (17) is the sum of noncommuting terms,
so that the imaginary part of the eigenvalue is not simply the
sum of contributions from each term. However this qualitative
picture is confirmed by the approximate coupled-mode anal-
ysis of Sec. II E and by exact numerical solutions of several
examples (see Figs. 2, 5, and 6).

As noted above, there is an important difference between
the zeros of S and of Rin. Flux conservation means that the
totally absorbed steady-state CPA cannot be realized without
introducing absorption. On the other hand, flux conservation
does not prevent the existence of R-zeros on the real axis
(RSMs) since the incident flux can be redirected to the F̄ out-
put channels. Mathematically, S is unitary for lossless systems
at real frequencies, with unimodular eigenvalues, but Rin is
not, and may have a zero even for real frequency. This is why
RSMs can be achieved via pure index tuning, even though
CPA and lasing cannot; we will give explicit examples later
[Figs. 2(e), 5, and 6].

D. Symmetry properties of R-zeros and RSMs

We now analyze exact properties of R-zeros and RSMs
under time reversal and discrete spatial transformations, in the
presence of symmetries with respect to these transformations.
An earlier work [37] studied the consequences of symmetry
in one dimension, and has some overlap with what follows,
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FIG. 2. Illustration of RSMs and R-zero spectrum for simple
two- and three-mirror resonators of length L in one dimension,
consisting of δ-function mirrors of strengths γ −1

1 , γ −1
2 , and κ−1, as

indicated in the schematic in (a). Throughout, we fix γ2 ≡ c/L. Blue
and red lines 1 → 2 indicate the effect of breaking symmetry by
varying γ1 from γ2 → 2γ2. A bidirectional RSM [as in (b)] splits into
two complex-conjugate R-zeros off the real axis and a reflectionless
steady-state (RSM) no longer exists, as in (c). Adding absorption to
the cavity, indicated by blue and red lines 2 → 3, brings the upper
R-zero to the real axis (but not the lower one), creating a unipolar
left-incident lossy RSM, as in (d). Alternatively, adding a middle
mirror and reducing its κ from ∞ → 2γ2/3 is sufficient to bring both
R-zeros back to the real axis [2 → 4 in (a)], creating a bipolar RSM
at a different frequency from the symmetric Fabry-Pérot resonator
[see (e)], without restoring parity symmetry.

though the present treatment generalizes to any dimension,
and applies to complex R-zeros, not only real RSMs.

1. Time-reversal transformation (T ) and symmetry

The action of time reversal (T ) is to complex conjugate
everything, including the wave operators Â and ÂRZ, and the
field H(r). This interchanges the input and output channels
(F ↔ F̄ ):

T : (ω, ε(r), F ) → (ω∗, ε∗(r), F̄ ). (19)

It follows that if a cavity with dielectric function ε(r) has an
R-zero at frequency ω0 with input channels given by F , then
the cavity with ε∗(r) has an R-zero at frequency ω∗

0 with input
channels given by the complement, F̄ .

The cavity or scatterer is said to have time-reversal sym-
metry when ε(r) = ε∗(r), i.e., when there is no absorption or
gain. In such case, the “two cavities” described above are the
same, and we can conclude that complementary R-zeros come
in complex-conjugate pairs for flux-conserving (passive) cav-
ities. This is true independently of the presence or absence
of spatial symmetries, such as parity. The system can then
be tuned to have an RSM either by index tuning or by gain-
loss tuning. In the former case, the new cavity still exhibits
time-reversal symmetry, so the resulting RSM is bipolar, by
which we mean that a complementary RSM exists at the same
frequency; examples are given in Figs. 2(b), 2(e), 5, and 6. In
the case of gain-loss tuning, the new cavity no longer exhibits
time-reversal symmetry, and we do not expect another RSM
at that frequency; we refer to this as unipolar (this is the
generalization of unidirectional reflectionless states for the 1D
PT cases mentioned above).

In Fig. 2(a) we illustrate the concept of tuning to create an
RSM for the simple case of an asymmetric Fabry-Pérot cavity.
We start with a symmetric Fabry-Pérot cavity, which has both
P and T symmetry (this symmetry class will be discussed in
more detail in Sec. II D 5); it is well known that such a cavity
has equally spaced unit-transmission resonances [83], which
we refer to as bidirectional RSMs [see Fig. 2(b)]. We break
parity symmetry but maintain the T symmetry by making
the mirror reflectivities unequal [Fig. 2(a) solid lines]; as a
consequence there is no longer an RSM for either direction
of incidence at any real frequency [Fig. 2(c)]. However, there
is now a pair of complex-conjugate R-zeros off the real axis,
as demanded by the T symmetry. Here we have made the
left barrier less reflective than the right one, and we observe
that the left-incident R-zero has moved to the upper half-plane
and the right-incident R-zero to the lower half-plane, which is
consistent with the intuition given in Sec. II C.

One way to recover the RSMs without restoring parity
symmetry is to use gain-loss engineering (non-Hermitian tun-
ing). Again the intuitive picture of Sec. II C suggests that
adding absorption will reduce the imaginary parts of the R-
zero frequencies, which can be used to create a left-incident
RSM. A physical argument supporting this conclusion is that
when the mirror reflectivities are equal the prompt reflection
from either mirror is canceled by the total left or right reflec-
tion of waves reaching the interior and internally reflecting
an odd number of times before escaping back in the incident
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direction. When the left mirror is less reflective than the right
one, its prompt reflection is decreased and the internal reflec-
tion backwards is increased, so total destructive interference is
not possible. However, if one adds the right amount of absorp-
tion to the interior, these two amplitudes can again be balanced
and destructive interference in the backwards direction can
be restored with tuning of the frequency. This change has
the opposite effect on a right input wave, making destructive
interference impossible for the same parameters, and leading
to a unipolar left-incident RSM. For a right-incident RSM one
would instead have to add the same amount of gain to the
interior. This physical picture is confirmed by Fig. 2(a) dashed
lines and Fig. 2(d).

Alternatively, we can employ index tuning to create an
RSM, in this case by adding a third lossless mirror in the
interior. We can think of the left region and the interior mirror
as forming a composite mirror such that for some mirror
reflectivity and input frequency left and right escape is again
balanced. Indeed such a three-mirror system does have an
RSM with one-parameter tuning as shown by Fig. 2(a) dotted
lines and Fig. 2(e). Moreover, as the system is flux conserving
and reciprocal, it must be a bipolar RSM. Comparison of
Figs. 2(a), 2(d) and 2(e) illustrates this important difference
between the two types of tuning: for the lossless case, both
left- and right-incident R-zeros maintain their complex conju-
gate relation as the interior mirror is tuned and hence meet on
the real axis.

2. Parity transformation (P) and symmetry

Consider a parity transformation P satisfying P̂2 = 1̂ and
det P = −1. Common examples of parity are reflections (e.g.,
x → −x) and inversion in three dimensions (x → −x, y →
−y, z → −z).

Generally, the action of P is to leave the frequency un-
changed and to map ε(r) → ε(Pr), H(r) → H(Pr), relating
an R-zero–RSM of one structure to that of a structure trans-
formed by P . However, these two R-zeros are generally not
complementary to each other. Therefore, we further require
the input-output channels to have P symmetry, by which we
mean that ε(r) = ε(Pr) in the asymptotic region and that the
input channels are chosen such that F maps to F̄ under P;
we call this a “bisected” partition of the channels. The most
common bisected systems would be those that naturally divide
into “left” and “right” and for which the input channels are
chosen to be all left or all right channels, which generalizes the
well-studied one-dimensional case. But there are also other
possibilities, e.g., a partition into clockwise and counterclock-
wise channels for a finite-sized scatterer in free space. For a
bisected partition F , the action of P is

P : (ω, ε(r), F ) → (ω, ε(Pr), F̄ ). (20)

When an R-zero with a bisected partition is bipolar, we refer
to it as bidirectional; when it is unipolar, we refer to it as
unidirectional.

We say that the cavity or scatterer has P symmetry when
ε(r) = ε(Pr), for which we can say that when the cavity
and the channel partition both have P symmetry R-zeros are
bidirectional, whether or not ωRZ ∈ R. This is in contrast to

the case with T symmetry, where bipolarity only holds for
real-frequency RSMs.

3. Parity-time transformation (PT), symmetry, and
symmetry-breaking transition

The action of the joint parity-time (PT ) operator, i.e.,
performing both P and T transformations simultaneously, is
particularly interesting as it is the case of PT symmetry that
brought recent attention to unidirectional RSMs. We assume
that the asymptotic region has P symmetry and that the parti-
tion F is bisected; hence the action of PT is

PT : (ω, ε(r), F ) → (ω∗, ε∗(Pr), F ). (21)

When the scattering region has PT symmetry, namely, when
ε∗(Pr) = ε(r), such systems either have unidirectional RSMs
with ω0 ∈ R or complex-conjugate pairs of unidirectional
R-zeros of the same directionality with ω0 ∈ C. This is in
contrast to the case of T symmetry alone, which allows real
bidirectional RSMs or complex-conjugate pairs of R-zeros of
opposite polarity or directionality.

This property of the PT case implies something quite
important. Often PT scattering systems are studied by be-
ginning with a flux-conserving system (satisfying both P, T
symmetries separately) and adding gain and absorption an-
tisymmetrically so as to break P and T symmetries while
preserving PT . The initial system has bidirectional RSMs,
i.e., a degenerate pair of left and right RSMs (see discussion
of the P, T case below in Sec. II D 5) but has no other degen-
eracy; thus the left and right RSMs are constrained to remain
on the real axis as unidirectional RSMs when the value of
the gain-loss strength increases. (If, e.g., a left-incident RSM
moved off the real axis immediately, it would lack a second
left-incident RSM as complex-conjugate partner, violating the
condition above.) These unidirectional RSMs are invariant
under the PT transformation, so they are said to be in the PT -
unbroken phase. As the gain-loss strength is further increased,
eventually each RSM may meet another RSM of the same
directionality at a real frequency [see Fig. 3(b) below as an ex-
ample], above which point, generically, the pair of RSMs will
leave the real axis as complex-conjugate pairs of R-zeros, be-
coming inaccessible in steady state. These complex-conjugate
pairs of R-zeros do not exhibit PT symmetry (one maps to
its conjugate partner under the PT transform), so they are
said to be in the PT -broken phase. The above explains the
commonly observed RSMs in 1D systems with PT sym-
metry [13,21–24,26,27] or anti-PT symmetry [84] and their
disappearance at large gain-loss parameters [22–25,37]. It
should be noted that the critical parameters that define the
PT transitions are different for each RSM pair and differ-
ent for each directionality. They are also different from the
transitions where a pair of unimodular eigenvalues of the
S matrix turn into an amplifying one and an attenuating
one [24,85].

This behavior is illustrated for the one-dimensional PT -
symmetric structure shown in Fig. 3(a): an etalon of thickness
L in air where the left half has refractive index n = n1 − in2

and the right half has index n = n1 + in2. For a passive etalon
(n2 = 0), bidirectional RSMs exist at real frequencies ωRSM =
mπc/n1L with m ∈ Z. When the gain-loss strength n2 is
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FIG. 3. RSMs in a PT -symmetric structure. (a) Schematic of
the structure: an etalon in air, with refractive index n = n1 − in2 on
the left and n = n1 + in2 on the right; here n1 = 2. (b) Real part of the
R-zero frequencies (blue solid lines, left-incident; red dashed lines,
right-incident) as the gain-loss strength is increased. For small n2,
the frequencies are real valued. After two RSMs meet at an RSM
EP (highlighted in yellow), they split into two R-zeros at complex-
conjugate frequencies. (c) Spectra of the R-zeros and RSMs,
S-matrix zeros, and resonances in the complex-frequency plane at
n2 = 0.138 44 where two right-going RSMs meet. (d) Streamlines of
the vector field (Re(rL ), Im(rL )), showing +1 topological charges at
R-zeros and RSMs and −1 topological charges at resonances. When
two RSMs meet at an RSM EP, the topological charges add up to +2.
(e) Reflection and transmission spectra at the same n2 as in (c) and
(d); blue and red filled dots mark the RSM frequencies, and the open
blue dot is the real part of complex R-zero, which has already crossed
the threshold.

increased, pairs of RSMs move toward each other in frequency
as shown in Fig. 3(b). As parity and time-reversal symmetries
are individually broken, the right-incident RSMs (for which
rR = 0) and the left-incident RSMs (for which rL = 0) now
occur at different frequencies. But since the system still ex-
hibits PT symmetry, all of these RSM frequencies remain
real-valued. At critical values of n2, a pair of RSMs meet. As
n2 is further increased, the pair of RSMs split into two, leaving
the real-frequency axis as complex-conjugate pairs of R-zeros.
The RSM spectrum in the complex-frequency plane, together
with the S-matrix zeros and poles (resonances), is shown in
Fig. 3(c) for a critical value of n2 where two right-going RSMs
meet. The corresponding reflection and transmission spectra
are given in Fig. 3(e).

We use this example to illustrate the topological prop-
erties of R-zeros–RSMs and resonances. Figure 3(d) shows
the streamlines of the vector field (Re(rL), Im(rL)) in
the complex-frequency plane. Following the discussion in
Sec. II A, we indeed observe that arg(rL) winds by 2π along
counterclockwise loops around each R-zero or RSM (cor-
responding to a +1 topological charge), while it winds by
−2π around each resonance (corresponding to a −1 topolog-
ical charge). When two RSMs meet, they superpose as one
topological defect with charge +2, as highlighted in yellow.
We further discuss such a coalescence of RSMs in the next
section.

4. RSM exceptional points

Non-Hermitian operators have the property that when two
eigenvalues become degenerate (in both their real and imagi-
nary parts) the two associated eigenvectors also coalesce into
one. Such a coalescence is called an EP in parameter space
and has many unique properties [17–20,86,87]. EPs of the
purely outgoing (resonance) wave operator have been widely
studied [88–98], and recently so too have EPs of the purely
incoming wave operator with PT symmetry [99] or uncon-
strained by any symmetry [100].

The R-zero–RSM wave operator ÂRZ of Eq. (17) is non-
Hermitian and shares many similarities with the purely
outgoing (resonance) wave operator Âeff . It is therefore
possible to create RSM exceptional points where multiple
reflectionless states coalesce into one, which is, from a phys-
ical point of view, a kind of EP not previously studied
(to our knowledge). The aforementioned RSM transitions in
PT systems are examples of this. These RSM EPs share
some common features with the perfectly absorbing EPs of
Refs. [99,100]. In particular, there is no self-oscillating insta-
bility (lasing) when the EP reaches the real axis; a steady-state
RSM EP is compatible with linear response. At an RSM EP,
the line shape of the reflection intensity will change from its
generic quadratic form to a quartic, flat-bottomed line shape,
characteristic of a +2 topological charge. An example of this
effect is shown in Figs. 3(d)–3(e), where the RSM EP is
highlighted in yellow. Near an EP of any kind, the complex
eigenvalue typically exhibits a square-root dependence on
system parameters, visible in Fig. 3(b).

Note that RSMs in one-dimensional systems have been
characterized in some works as EPs of an unconventional non-
symmetric scattering matrix [26,36,37,40,101–103]. How-
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TABLE I. Consequences of discrete symmetries for the RSM problem. F is the set of input states. Unipolar means that only one set of input
channels has zero reflection at a given frequency and bipolar means that its complement does too. In this table we assume that the channels are
bisected, i.e., the set of input channels maps to its complement under a parity transformation P . In this case we use the terms unidirectional
instead of unipolar, and bidirectional instead of bipolar. NRSM is the minimum number of system parameters that must be tuned (consistent with
symmetry) to achieve an RSM (i.e., make ωF real), while NEP

RSM parameters are necessary for an exceptional point of RSMs (i.e., degenerate
real ωRZ).

Symmetry ε(x) ωF R → C
type same as pairs with RSM type (ωF ∈ R) NRSM NEP

RSM transition?

None Unipolar 1 3 ✗

T ε∗(x) ω∗
F̄ Bipolar 1 3 ✗

P ε(Px) ωF̄ Bidirectional 1 3 ✗

PT ε∗(Px) ω∗
F Unidirectional 0/1 1

√

P, T ε∗(x), ωF̄ , Bidirectional 0/1 1
√

ε(Px) ω∗
F̄ , ω∗

F

ever, those are nondegenerate RSMs and are not EPs of the
underlying wave operator. Also, in higher dimensions, an EP
of this unconventional nonsymmetric scattering matrix is no
longer a reflectionless state. Therefore, we do not adopt this
convention and reserve the term “RSM EP” for the states
discussed in this section.

5. P and T symmetry and symmetry-breaking transition

The final symmetry class we will discuss is the case of
systems with both P and T symmetries. Here we must make
a further remark for clarity. Up to now we have only discussed
the implications of symmetries of the scatterer or cavity and
its channels, but not the full symmetry of the wave operator for
RSMs. Even if a cavity and leads have P and T symmetry, the
RSM boundary condition breaks P symmetry and the RSM
solutions can have at most PT symmetry, as noted in Ref. [48]
(although they did not discuss cavities with PT symmetry).
The symmetric lossless Fabry-Pérot cavity, discussed briefly
above, is a familiar example of a system with both P and T .
Such a P, T system simultaneously exhibits all of the symme-
try properties given in Secs. II D 1–II D 3. Therefore we can
expect bidirectional RSMs on the real-frequency axis without
any tuning, with flux conservation implying unit transmission
for these RSMs, as is indeed the case for the Fabry-Pérot.
However there is another possibility allowed by the symmetry:
bidirectional complex-conjugate pairs of R-zeros. Such pairs
do not arise for the Fabry-Pérot or other “two-mirror” res-
onators. but we have found that they do exist for multimirror
resonators. In fact starting with a two-mirror 1D resonator
and introducing a third middle mirror we have confirmed that
we can induce a symmetry-breaking transition in which pairs
of bidirectional RSMs meet on the real axis at two degen-
erate EPs, and then move off the real axis as bidirectional
complex-conjugate pairs of R-zeros. Moreover, one can show
that this transition is actually associated with PT -symmetry
breaking, despite the absence of gain or absorption. We will
defer detailed discussion of this interesting case to a future
paper [104].

The different symmetry classes and their properties are
summarized in Table I and Fig. 4. Similar conclusions were
reached for the special case of two-channel structures in quan-
tum transport in Ref. [105].

E. Coupled-mode analysis

The preceding results were derived directly from
Maxwell’s equations and involve no approximation. Mean-
while, in many circumstances an approximate analytic model
will be adequate and desirable for simplicity. In photon-
ics a standard tool is the temporal coupled-mode theory
(TCMT) [51,106–110], which is a phenomenological model
widely used in the design and analysis of optical de-
vices [16,93,111,112]. The TCMT formalism is derived from
symmetry constraints [51,106–109] rather than from first
principles, yet it leads to an analytic relation between the scat-
tering matrix and the underlying Hamiltonian that is similar to
Eq. (8) and is reasonably accurate in many cases. Assuming
harmonic time dependence, a reciprocal cavity or scattering
region supporting M internal resonances and coupled to 2N
external channels (N incoming and N outgoing) can be de-
scribed by [107]

−iωa = −iHeff a + DT α, (22a)

β = S0α + Da, (22b)

where Heff is an M-by-M effective Hamiltonian

Heff ≡ Hclose − i
D†D

2
, (23)

and a is a column vector containing the field amplitudes of
the M resonances. The N-by-M matrix D contains the cou-
pling coefficients between the resonances and the channels;
the mth column of D is essentially the radiation wavefront
of the mth resonance analyzed in the channel basis. The
Hamiltonian matrix Hclose describes a closed system and is
Hermitian in the absence of absorption or gain; (ω − Hclose )
is analogous to A0 in Eq. (6) or A′

0 − � in Eq. (9); the
frequency shifts � due to openness are not separately included
in TCMT. The positive semidefinite matrix D†D/2 is anal-
ogous to � in Eq. (9); its diagonal elements are the decay
rates of the modes due to radiation into channels in the open
environment, and its off-diagonal elements are the dissipa-
tive via-the-continuum coupling rates. The “direct scattering
matrix” S0 = ST

0 is symmetric and describes the “nonreso-
nant” part of the scattering process that varies slowly with
frequency. The distinction between “resonant” and “nonres-
onant” is not always clear; the typical practice in TCMT is
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FIG. 4. (Color) Schematic illustrating the implications of sym-
metry for R-zeros and RSMs. Top: Beginning with the assumption
of the existence of a left-incident R-zero with transmission |t | < 1
at some frequency, ω, there will exist other R-zeros with specific
properties based on the presence of P,T ,PT symmetry (as shown
by arrows). Bottom: The initial state has real frequency (is an RSM),
which exists in steady state; the implications of the various symme-
tries are shown for this case. Note that if ω is real the implications
for the T and (P,T ) are the same: bidirectional unit transmission
reflectionless states.

to use Hclose and D to model one or a few high-quality-factor
resonances in the frequency range of interest, and bundle the
contributions from the further-away and/or low-quality-factor
resonances into S0 in an empirical manner. In a passive system
without absorption or gain, time-reversal symmetry requires
that S0D∗ = −D (Refs. [107,109]); here we assume that
the possible presence of absorption or gain can be modeled
through an anti-Hermitian term in Hclose without breaking the
S0D∗ = −D condition. It follows that the scattering matrix is

S(ω) =
(

IN − iD
1

ω − Heff
D†

)
S0, (24)

where IN is the N-by-N identity matrix. When all contributing
resonances (including the low-quality-factor ones that may
be far away in frequency) are included in Hclose and D, the
direct scattering matrix will be simply S0 = IN [110]. The
similarity between Eqs. (8) and (24) is evident. A formalism
mathematically equivalent to TCMT is also used in quantum
noise theory [113].

From Eq. (24), one may proceed to derive an expression
for the determinant of the generalized reflection matrix sim-
ilar to Eq. (16); we leave such an exercise to the interested
readers, and instead provide an alternative approach here. Let
us define Din ≡ FD, using the filtering matrix F introduced
earlier, as the coupling coefficients into the Nin input channels
defining F , and similarly Dout as the coefficients to the output
channels. Consider S0 = IN . Using Eq. (13), Eq. (24), and the
Woodbury matrix identity [114], we can write the inverse of
the generalized reflection matrix as

R−1
in (ω) = INin + iDin

1

ω − HRZ
D†

in, (25)

where we have defined a matrix

HRZ ≡ Hclose + i
D†

inDin

2
− i

D†
outDout

2
. (26)

The matrix (ω − HRZ) is analogous to ÂRZ(ω) in Eq. (17). At
the frequency ω = ωRZ of an R-zero, det(R−1

in ) = 1/ det(Rin )
diverges, and Eq. (25) shows that such divergence can only
happen when ω is an eigenvalue of HRZ. Therefore, every
R-zero is necessarily an eigenmode of HRZ. Note, however,
that the reverse is not true: not every eigenmode of HRZ is
an R-zero, since it is possible for ||Din(ω − HRZ)−1D†

in|| < ∞
even when ω is an eigenvalue of HRZ; this happens when the
eigenmode a satisfies Dina = 0, which is precisely when it is
a BIC or a one-sided resonance—see discussions at the end of
Sec. II C.

Like ÂRZ, the matrix HRZ can be understood intuitively.
Outgoing radiation into the Nout output channels introduces
an effective radiative loss term −iD†

outDout/2. Incident light
coming from the Nin input channels introduces an effective
“radiative gain” term +iD†

inDin/2.
The case when there is only one dominant resonance in the

frequency range of interest (M = 1) is particularly instructive.
Here, Hclose = ω0 − iγnr is a scalar where γnr is the nonra-
diative decay rate due to absorption or gain, and the R-zero
frequency given by Eq. (26) is

ωRZ = (ω0 − iγnr ) + i(γin − γout ),

γin ≡
∑
n∈F

|dn|2/2, γout ≡
∑
n/∈F

|dn|2/2, (27)

where dn is the coupling coefficient (partial width) of the
mode to the nth channel.

In this single-mode approximation, which is widely used
in the context of high-Q resonant structures, the intuitive
understanding of RSMs as generalized critical coupling is
realized. Since only one resonance is relevant one can speak
of the total coupling into and out of the system as a scalar
quantity. The total in-coupling rate for the input channels acts
as an effective source of gain, while the total decay rate into
the output channels plus the intrinsic absorption in the cavity
act as an effective loss. When these two quantities are equal
(critical coupling), the reflectionless state has a real frequency
and becomes an RSM. Within this approximation there are
no multiresonance pushing or pulling effects or other sources
of real-frequency shifts. Therefore all the different R-zero
boundary conditions simply move the frequency of the corre-
sponding R-zero vertically in the complex plane between the
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purely outgoing solution (resonance) in the lower half-plane
and the purely incoming solution (S-matrix zero) in the upper
half-plane. (The picture is trivially changed in the presence of
absorption in the cavity, as the S-matrix resonance and zero
move rigidly down and are no longer symmetric around the
real axis.) It is straightforward to also show that the RSM in-
cident wavefront αRSM is simply the phase conjugation of the
resonance’s radiation wavefront into the designated channels.
When ω = ωRZ, the nonresonant reflection αRSM is exactly
canceled by the resonant scattering Da back into those chan-
nels. When the frequency is detuned from ωRZ, the reflection
signal rises as a Lorentzian function with the linewidth being
that of the underlying resonance, (γin + γout + γnr ).

The single-resonance scenario is the simplest example
of an R-zero, yet it already explains the impedance-
matching conditions previously found using TCMT in
waveguide branches [115], antireflection surfaces [116], and
polarization-converting surfaces [62]: i.e., that zero reflection
in a passive (γnr = 0) system is achieved at ω0 when the decay
rate into the incident channel γin equals the sum of decay rates
into all outgoing channels γout.

The single-resonance approximation is typically valid
when a cavity has a high-quality factor (Q) and is weakly
coupled to the input-output channels, so that its resonances are
near the real axis and multiresonance effects can be neglected
at most frequencies. However the general RSM theory applies
equally well to low-Q cavities where the simple picture just
described breaks down substantially. Yet the full theory of
RSM guarantees the existence of R-zeros and the possibility
of tuning them to be RSMs, even if the scattering is through
multiple overlapping resonances. An example of both limits
is given in Fig. 5, where we study, using an exact numeri-
cal method, an asymmetric resonant cavity connected to six
single-mode waveguides. The cavity shown in Fig. 5(c) has
constrictions at its waveguide junctions to increase the quality
factors of the resonances. In Fig. 5(a) we show the R-zero
spectrum for this cavity, which has the vertical clustering
bracketed by the resonance and S-matrix zero, as predicted by
the single resonance approximation just discussed. In contrast,
the cavity shown in Fig. 5(d) has the constrictions opened,
which increases the quality factors by a factor of ≈20. For
this case the single-resonance approximation fails, and the
R-zero spectrum [Fig. 5(b)] is spread out in both the real and
imaginary-frequency axes. Strikingly, some R-zeros lie below
the resonances while others lie above the S-matrix zeros in
the complex-frequency plane, something which is forbidden
within the single resonance approximation. Nonetheless, in
both cases, we were able to tune to a real-frequency RSM for
the three-in, three-out boundary condition simply by slightly
varying the constrictions of the outgoing waveguides. As
noted above this shows that the full RSM theory developed
here is a major advance over previous theories based on the
concept of critical coupling through a single resonance and
will work also for open cavities, where multiresonance effects
dominate.

When S0 �= IN , the TCMT analysis above shows
that each ωRZ is an eigenfrequency of HRZ ≡ Heff +
iD†S0F†(FS0F†)−1FD. In the case where FS0F† is not
invertible, we can instead apply Eqs. (25) and (26) to SS−1

0
(instead of directly to S). In this case the “reflectionless” mode

FIG. 5. Asymmetric lossless waveguide junction and resonator
(mean radius R̄) coupled to six single-mode waveguides, with
constrictions at the entrances to the junction. (a) Numerically cal-
culated R-zero spectrum for a weakly coupled, high-Q junction with
well-isolated resonances. The black x and dot are purely outgoing
(resonance) and incoming (S-matrix zero) frequencies, which are
complex conjugates. Colored stars are R-zeros for various choices of
input channels; the legend indicates which channels are inputs, with
the channel labels given in (c). The R-zeros cluster vertically above
the resonance frequency and below the S-matrix zero frequency,
as predicted by single resonance TCMT approximation Eq. (27).
The common width of the constrictions for waveguides {4, 5, 6}
is slightly tuned to make a three-in–three-out R-zero real, creating
an RSM. (b) R-zero spectrum for the same junction but with the
constrictions opened, which lowers the Q of the resonances (note
change in vertical scale). The linewidths of the resonances are now
comparable to their spacing. Due to multiresonance effects, the R-
zeros are spread out along the real and complex frequency axis and
are no longer associated with a single resonance. Nonetheless, by
slightly tuning the constriction width as before, a three-in–three-out
R-zero is again made real (RSM), as in the high-Q case. (c), (d) The
mode profiles of the RSMs for the high-Q (c) and low-Q (d) cases.

will not be so in the sense defined by S, but rather by SS−1
0 ,

which in some cases will actually be a “transmissionless”
mode of S.

F. R-zeros and RSMs as eigenmodes of the wave operator

We have introduced two equivalent equations to solve for
R-zeros and RSMs: Eq. (2) in terms of a generalized reflection
matrix, and Eq. (18) in terms of an effective wave operator.
Both define nonlinear eigenproblems, and both are applicable
to any open system and for each of the 2N − 2 choices of
reflectionless input channels. While Eq. (18) has the caveat
that it can sometimes also yield BICs [48] or one-sided reso-
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FIG. 6. Reflectionless scattering of a monopole scalar wave from a deformed disk dielectric resonator (n = 3) with mean radius R̄, shown
as shaded regions in (a) and (b). The disk boundary is r(θ )/R̄ = 1 + x{0.8528 cos(2[θ − 0.3127]) + 0.8346 cos(3[θ − 0.0079])}, with x =
0.2768. The Monopolar RSM was achieved by tuning the single dimensionless parameter x until a given complex R-zero became real. The
RSM frequency is at ω0R̄/c = 6.4853. (a) The input field only has an m = 0 component (pure monopole). (b) The outgoing field contains no
m = 0 component, and is a coherent superposition of many other m’s. (c) The outgoing flux, carried by each angular momentum channel m,
normalized by the total incident flux. There is no outgoing flux for m = 0 because the structure was shape-tuned to a monopolar RSM. Note
that since we have a purely real index here the RSM we have found must be bipolar, which implies that if we time reversed the complicated
superposition of outgoing multipole radiation the incident wavefront would interfere perfectly to generate monopole-only outgoing radiation.

nances which are not reflectionless (see discussions at the end
of Sec. II C), it is closer to the well-known resonance problem.
In this section we discuss the details of solving for R-zeros
through Eq. (18).

The distinguishing feature of the wave operator ÂRZ,
as defined in Eq. (17), is the specific frequency-dependent
self-energy, formally defined by Eq. (15), that acts on the
surface and imposes the boundary condition as outgoing
for the channels in F̄ and incoming for the channels in
F . Below we describe two implementations, one based on
the PML approach and one based on an extension of the
“boundary-matching” conditions associated with purely out-
going or incoming waves [50,117]. We note that we regard the
boundary-matching approach as more fundamental because it
can be used to solve any R-zero problem, including those for
which the asymptotic channels are not spatially separated (as
in Fig. 6), whereas the PML method cannot. Moreover the
PML method cannot easily handle problems where dielectric
dispersion is important.

1. PML-based implementation of boundary conditions

The PML method, when applicable, typically will allow
easier solution for the R-zeros, as the frequency dependence
drops out of the boundary conditions, mapping the calcula-
tion to a linear eigenvalue problem which is readily solved
by standard diagonalization (full or partial). This mapping is
achieved by using impedance-matched absorbing layers called
Perfectly Matched Layers [46,47], which create an effective
outgoing boundary through an eigenvalue-independent modi-
fication of the bulk wave operator. Note that here we are not
referring to the impedance matching of input waves which
occurs at an R-zero, but the suppression of the reflection
from the fictitious boundary layers which allow one to find
purely outgoing solutions without boundary matching. Since
PMLs always work for purely outgoing boundary conditions
(if dispersion can be neglected), the PML method is the most
commonly used method for finding resonances, at least in

photonics [4]. A fully incoming boundary condition, relevant
for S-matrix zeros and CPA, while less common, can be simi-
larly implemented with a PML through complex conjugation.

A left-to-right R-zero is an eigenmode of the wave oper-
ator with a conjugated PML on the left and a conventional
PML on the right (and vice versa for a right-to-left R-zero);
this type of solution has been demonstrated in the context of
acoustic waveguides in Ref. [48]. The generalization of this
to higher dimensions and a greater number of channels is
straightforward: simply use an appropriate PML or conjugate
PML for the propagating dimension in each of the asymptotic
regions. This approach has been used for all of the examples
in this paper except for the free-space example given below
in Fig. 6, where the method would fail. The RSM problem
for a six waveguide system coupled into a two-dimensional
(2D) chaotic cavity shown in Fig. 5 is an example of a more
complex geometry for which R-zeros and RSMs can be found
using the PML method. Note that PMLs, both conventional
and conjugated, must be used with caution, as they introduce
additional “PML modes” in the eigenvalue spectrum, which
need to be identified and discarded [4].

2. Mode-matching implementation of boundary conditions

For cases in which the asymptotic input channels are not
spatially disjoint from the asymptotic output channels (as well
as for all the cases where they are distinct), we can explicitly
match the continuity conditions channel by channel, assigning
the appropriate incoming or outgoing condition for that geom-
etry. The general matching equation for a scalar field ψ (x) is

ψ (x)|∂
 =
∮

∂


[
GA,N

F (x, x′) + GR,N
F̄

(x, x′)
]∇ψ (x′) · dS′,

(28)
where GA,N

F is the advanced Green’s function subject to a
Neumann condition at the interface with the scattering re-
gion, restricted to the input channels F , and GR,N

F̄
is the

retarded Green’s function restricted to the output channels.
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The surface integral is over ∂
, which separates the scattering
region 
 from the asymptotic regions 
̄. We give the explicit,
frequency-dependent boundary conditions for three geome-
tries (1D systems, 2D strip multimode waveguides, and finite
scatters in 2D free space) in Appendix B.

In Fig. 6, we provide an example for which the mode-
matching approach must be used: a 2D deformed dielectric
resonator in free space, which has been shape-tuned to have
an RSM for monopole input at a given complex frequency,
ω0. The theory here implies that one can perfectly impedance
match a specific superposition of any number of coher-
ent input multipoles to the remaining multipoles. Thus the
scatterer when tuned to the RSM acts as a perfectly multipole-
transforming antenna. In the example shown in Fig. 6, by
tuning a single deformation parameter, we were able to find a
real frequency at which the monopole input was reflectionless,
so that all of the scattered waves were in higher multipoles.
The R-zero nonlinear eigenvalue problem here was solved
using NEP-PACK [118,119]. Through further optimization of
the shape one presumably could enhance the scattered output
into certain desired outgoing channels. Note that the scattering
here is not perturbative and the output is not simply deter-
mined by single scattering from a particular multipole of the
deformation.

The parameter x used to tune to an RSM is the overall
strength of deformation, such that x = 0 yields a circular disk
with no deformation. In the limit that x → 0, continuous rota-
tional symmetry is restored, the angular momentum scattering
channels labeled by m decouple from each other, and the
scattering matrix is diagonal. Therefore for x = 0, the R-zero
frequencies are also S-matrix zeros, which are constrained by
flux conservation to be in the upper half-plane. On the other
hand, as the deformation x is made larger, the m channels
become increasingly mixed, so that the single monopole input
becomes coupled to more and more multipole outputs. The
effective radiative loss will eventually overtake the effective
radiative gain and push the R-zeros into the lower half-plane.
Therefore by continuity there will be a deformation strength
x0 at which the R-zero crosses the real axis, becoming an
RSM.

III. SUMMARY AND CONCLUSIONS

This paper presents a general theory of impedance match-
ing of waves to finite structures of arbitrary geometry in any
dimension, focusing on the case of electromagnetics waves
and assuming short-ranged scattering interactions. The theory
is expressed in terms of tuning complex frequency reflection-
less solutions of the wave equation to the real axis to become
physical steady-state solutions that are perfectly impedance
matched at the input frequency. A generalized reflection ma-
trix is defined which describes a chosen set of input channels,
and its zero eigenvalues and eigenvectors give the frequen-
cies and wavefronts which will lead to zero reflection back
into those channels, with scattering into the complementary
channels as well as possible absorption or amplification in the
structure, depending on the presence of active media within
the scattering region. When these solutions are tuned to real

frequency we refer to them as reflectionless scattering modes.
When the correct RSM wavefront is imposed on the structure,
the total reflection into the chosen channels will exhibit a
quadratic dip to zero with the same linewidth as the usual
resonances (at the same tuning parameters). The framework
given here applies to all linear classical wave scattering,
and to quantum scattering as well, as long as the scattering
potential is short-ranged. Without special symmetries RSMs
will not exist for an arbitrary structure and tuning either by
changing geometric parameters of the cavity or scatterer or
by adding loss or gain is necessary to create them. In the
case of P- and T -symmetric (lossless) scatterers, RSMs do
appear as the bidirectional unit transmission resonances famil-
iar from elementary textbook examples, and the same is true
for PT -symmetric scatterers, but in the latter case they are
unidirectional. In both cases the RSMs can disappear without
breaking the symmetry of the structure above a spontaneous
PT -symmetry-breaking transition that occurs at an EP. These
represent a different type of EP in terms of their physical man-
ifestation, and unlike the widely studied resonant EPs they
can occur on the real axis without generating a self-oscillation
instability.

Our results can be most naturally applied to classical
electromagnetic scattering and acoustic scattering. Our paper
shows that by varying a single continuous tuning parame-
ter the impedance-matched states corresponding to the RSM
boundary conditions can be created. However it must be noted
that impedance matching is only possible for structures with
many radiative channels by exciting the structure with the
appropriate coherent wavefront, which requires full phase and
amplitude control of the illuminating source. Moreover, other
desirable states cannot be engineered by tuning a single pa-
rameter; e.g., similar to Ref. [120], in a three-mode waveguide
junction a state with input in waveguide 1, which is both
reflectionless and only scatters into waveguide 2, and not
into waveguide 3, does not correspond to the RSM boundary
condition. Our theory shows that this cannot be achieved with
single parameter tuning and suggests that it is not guaranteed
to exist if more parameters are tuned. Nonetheless, if such a
state is desired one could search for it by first finding the RSM
with one channel in and two out, and then optimizing further
parameters so as to minimize the scattering into waveguide
3. There are indications in our current results that such an
optimization could be successful and may provide a powerful
tool for design in photonics and acoustics.

Since the theory of RSMs can determine a perfectly
impedance-matched steady state of linear Maxwell electro-
dynamics, it will also determine an impedance-matched state
for quantum electrodynamics, for which all moments of the
reflected flux will vanish at ωRZ. Quantum fluctuations will
arise only due to the finite linewidth of the input field [121].
Therefore the RSM concept can be of interest in quantum
optics too.
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APPENDIX A: DERIVATION OF
DETERMINANT RELATIONS

In this Appendix we derive (10) for an N-channel S matrix,
and (16) for an Nin-input generalized reflection matrix Rin,
using the two identities

(A + BC)−1B = A−1B(IM + CA−1B)−1, (A1)

det(IN − BC) = det(IM − CB), (A2)

for invertible A ∈ CN×N , and arbitrary B ∈ CN×M , C ∈
CM×N , which we now derive.

The first identity is a generalization of the “push-through
identity” [76]

(IN + BD)−1B = B(IM + DB)−1, (A3)

with D ∈ CM×N , and B as before. It is named for its action
on B relative to the inverse, and follows trivially from noting
that B(IM + DB) = (IN + BD)B. This can be generalized for
A, B, C, with A ∈ CN×N invertible by starting with (A +
BC)−1 = A−1(IN + BCA−1)−1. Applying Eq. (A3), with
D = CA−1, we arrive at

(A + BC)−1B = A−1B(IM + CA−1B)−1, (A4)

which proves the first identity.
The second identity can be derived as a special case of

Schur’s determinant formula [122]

det A det(D − CA−1B) = det D det(A − BD−1C) (A5)

where A, B, C are defined as before, and D ∈ CM×M is invert-
ible. The judicious choice A = IN , D = IM gives

det(IN − BC) = det(IM − CB), (A6)

which is what we wanted to show.

1. Evaluating det S(ω)

Applying Eq. (A1) to (A′
0 − � + i�)−1Wp, recalling that

� = πWpW†
p, yields

(A′
0 − � + i�)−1Wp = G′′

0Wp(IN + iπW†
pG′′

0Wp)−1,

(A7)
where G′′

0 = (A′
0 − �)−1. Using this in the full expres-

sion for the S matrix (8) and (9), and factoring out (IN +
iπW†

pG′′
0Wp)−1,

S = (IN − iπW†
pG′′

0Wp)/(IN + iπW†
pG′′

0Wp). (A8)

Taking the determinant and applying Eq. (A2) to the numera-
tor and denominator, we have

det S = det(I − iπG′′
0WpW†

p)

det(I + iπG′′
0WpW†

p)
= det(A′

0 − � − i�)

det(A′
0 − � + i�)

, (A9)

where I is the identity on the (infinite-dimensional) closed-
cavity Hilbert space. This proves Eq. (10).

2. Evaluating det Rin(ω)

We proceed as we did with the S matrix, but starting with
Rin from (14), where F defines the inputs: push WF through

Geff , factor out a common inverse, take the determinant, and
apply (A2).

Writing Geff in (14) in terms of WF and WF̄ , and using the
identity (A1), yields

(Ā0 + i�F )−1WF = Ā−1
0 WF (INin + iπW†

F Ā−1
0 WF )−1,

(A10)
where Ā0 ≡ A′

0 − � + i�F̄ . See (9) and (15) for the defini-
tions of �, �F,F̄ , and WF,F̄ .

Plugging this into (14) and factoring out (INin +
iπW†

F Ā−1
0 WF )−1 gives a K-matrix representation for Rin:

Rin = (
INin − iπW†

F Ā−1
0 WF

)/(
INin + iπW†

F Ā−1
0 WF

)
.

(A11)
Taking the determinant, using the identity (A2), and multi-

plying the numerator and denominator by det Ā0 results in

det Rin = det
(
I − iπĀ−1

0 WF W†
F

)
det

(
I + iπĀ−1

0 WF W†
F

) (A12)

= det(A′ − � + i�F̄ − i�F )

det(A′
0 − � + i�F̄ + i�F )

. (A13)

Finally, using the identities for the filters F and F̄ (12), the
denominator can be simplified by �F + �F̄ = �. This proves
Eq. (16).

APPENDIX B: EXPLICIT FORMS
OF BOUNDARY MATCHING

(1) In one dimension, with the scattering region contained
entirely in |x| < a, the RSM boundary conditions are

left-incident: ψ (±a) = +∂xψ (±a)/i(ω/c), (B1)

right-incident: ψ (±a) = −∂xψ (±a)/i(ω/c). (B2)

(2) For a metallic waveguide with transverse width t in two
dimensions, and with the scattering region contained entirely
in |x| < a, the RSM boundary conditions are

ψ (±a, y) = ∓
∫

dy′KF± (y, y′) ∂xψ (±a, y′) (B3)

where F− is the set of input channels for the left lead, and F+
for the right. The kernel KF is

KF (y, y′) =
∑
m∈F

g−
m(y, y′) +

∑
m/∈F

g+
m(y, y′), (B4)

where

g±
m(y, y′) = ± 1

iβ±
m (ω)

sin

(
mπy

t

)
sin

(
mπy′

t

)
. (B5)

For real ω, the propagation constant is

β±
m (ω) =

√(
ω

c

)2

−
(

mπ

t

)2

± i0+. (B6)

The square-root branch cut is the conventional one along the
negative real axis, such that

√−1 ± i0+ = ±i. It is worth not-
ing that the contribution of each propagating mode to KF has
a sign which depends on whether the mode is designated as
input or output, while the nonpropagating modes all contribute
with the same sign, regardless of the choice of F . For complex
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ω, the construction of the propagation constant βm is more
involved, and beyond the scope of this paper [123].

(3) A finite scatterer in 2D free space, contained entirely
within a radius R, has asymptotic channels specified by angu-
lar momentum m. The R-zero boundary condition is

ψ (R, φ) =
∫ 2π

0
dφ′ ∑

m

eim(φ−φ′ )

2πcF
m(kR)

∂rψ (R, φ′), (B7)

where

cF
m(x) =

{
∂R ln H (2)

m (x), m ∈ F

∂R ln H (1)
m (x), m /∈ F.

(B8)

H (1,2)
m (x) are the Hankel functions of the first and second kind

(outgoing and incoming, respectively) of order m [124].
All of the boundary conditions delineated above

[Eqs. (B1)–(B8)] are specific instances of a general formula
which relates the function at the boundary ∂
 to its normal
derivative via the appropriate Green’s function, subject to a
Neumann condition at the interface with the scattering region,
which is advanced in the input channels F and retarded in the
output channels F̄ :

ψ (x)|∂
 =
∮

∂


[
GA,N

F (x, x′) + GR,N
F̄

(x, x′)
]∇ψ (x′) · dS′.

(B9)
The derivation of this takes us too far from the main thread of
this paper, and will be discussed in a future publication.
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[16] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda,
G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang,
Parity-time-symmetric whispering-gallery microcavities, Nat.
Phys. 10, 394 (2014).

[17] L. Feng, R. El-Ganainy, and L. Ge, Non-Hermitian photon-
ics based on parity–time symmetry, Nat. Photonics 11, 752
(2017).

[18] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H.
Musslimani, S. Rotter, and D. N. Christodoulides, Non-
Hermitian physics and PT symmetry, Nat. Phys. 14, 11
(2018).
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ing rings of exceptional points out of Dirac cones, Nature
(London) 525, 354 (2015).
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