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Scattering electromagnetic eigenstates of a two-constituent composite and their exploitation
for calculating a physical field
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The spectral representation of an electric field in a two-constituent composite medium is revisited. A theory
is developed for calculating the electromagnetic (EM) eigenstates of Maxwell’s equations for such a composite
where the magnetic permeability, as well as the electric permittivity, have different uniform values in the two
constituents. The physical electric field E(r) produced in the system either by a given incident field or by a given
source current density is expanded in this set of biorthogonal eigenstates for any position r. If the microstructure
consists of a cluster of separate inclusions in a uniform host medium, then the EM eigenstates of all the isolated
inclusions can also be used to calculate E(r). Once all these eigenstates are known for a given host and a
given microstructure then the calculation of E(r) only involves performing three-dimensional integrals of known
functions and solving sets of linear algebraic equations.
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I. INTRODUCTION

Eigenstates of Maxwell’s equations in a two-constituent
composite medium were first introduced for the quasistatic
regime in Ref. [1]. They were then exploited for calculating
the macroscopic or bulk effective electric permittivity of a
simple-cubic array of spherical inclusions in an otherwise uni-
form host medium [2]. Lately this theory has been applied to
a discussion of the Veselago lens in the quasistatic limit [3–5].
The theory of such monochromatic eigenstates away from the
quasistatic regime was first expounded in Ref. [6], based upon
an integral equation formulation of Maxwell’s equations.
This was implemented for an isolated spherical inclusion and
for interacting spherical inclusions. Closed form expressions
were derived for the isolated sphere eigenstates as well as for
the interactions between eigenstates of a pair of such inclu-
sions. The expressions for the interactions which appeared in
Appendix B of Ref. [6] were later corrected in Ref. [7]. The
integral equation (2.7) of Ref. [6] may be problematic, due
to the strong singularity of Green’s tensor [Eq. (2.5) of that
paper] when r′ = r [8]. However, in practice, it led to the
same results that are obtained in the current article when the
field sources lie outside of an inclusion. Fortunately, all the
algebraic results of Ref. [6], as well as those of the current
article, were obtained without using that integral equation.

In this paper, we present the basic theory of monochro-
matic eigenstates of Maxwell’s equations in a two-constituent
composite medium without using that integral equation. We
also show how these eigenstates can be used to calculate the
physical electric field produced by a monochromatic source
current density or by a monochromatic incident field. In
contrast with previous discussions, e.g., Ref. [6], where that
source was required to be outside of an inclusion, it can now
be either inside or outside of any inclusion, or even at an
interface. Moreover, the inclusion or inclusions are no longer

required to be finite: Both constituents may now extend out
to infinite distances. A simple example of a composite mi-
crostructure is an isolated spherical inclusion in an otherwise
uniform host medium. When a wave is incident from the host
medium upon this structure, or a field source is present in it,
the conventional approach to calculation of the local electric
field usually requires solution of a new partial differential
equation every time a new situation is discussed. By contrast,
using the closed form eigenstates of this microstructure, any
situation can be treated using only integrals of an eigenfunc-
tion multiplied by the incident field or the field source.

Most naturally occurring materials have a magnetic per-
meability μ that is very close to 1. Even ferromagnetic
and anti-ferromagnetic materials exhibit this property above
megahertz frequencies [9]. However, meta-materials have
been synthesized where μ differs from 1 considerably, some-
times even achieving negative values [10]. This is why a
spectral representation is needed for calculating the electro-
magnetic fields in a composite medium where both the electric
permittivity and the magnetic permeability are nonuniform.
We therefore develop a spectral representation for a two-
constituent composite medium where both of these physical
moduli have different values in the two constituents. Thus the
theory presented in Sec. V assumes that the magnetic perme-
ability, the electric permittivity, and the electric conductivity
are local quantities but have different uniform values in each
constituent.

The advantages of this approach arise from the fact that
the eigenstates depend only upon the microstructure and
upon the electric permittivity and magnetic permeability
of one of the constituents, called the host medium. Once
those eigenstates are known, the physical field produced by
any incident field or source current density can be found by
calculating spatial integrals where the integrand is the product
of an eigenfunction and the incident field or source current.
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An alternative approach which has evolved recently pro-
poses to expand the local physical field of systems like the
one considered here in a set of so-called “quasinormal modes”
[11]. In contrast with the eigenstates defined and described
in the present article those states are not easily normalizable
and apparently defy any rigorous definition [12]. One con-
sequence of the discussion presented in the present article is
that those quasinormal modes are not needed for developing
a useful method for constructing a convergent expansion of
the local physical field in a set of (bi-)orthogonal states in an
appropriate Hilbert space.

In Sec. II, we develop the basic theory of the EM eigen-
states when μ(r) ≡ μ2 has the same value everywhere. In
Sec. III, we show how those eigenstates can be used for
calculating a local physical field. In Sec. IV, we consider the
case where the nonhost constituent is composed of a cluster of
disconnected inclusions in the otherwise uniform host which
fills up all the rest of space. In Sec. V, the similarly basic
theory for the case where both μ(r) and κ (r) are heteroge-
neous is developed. In Sec. VI, we summarize the main results
and discuss some possible future extensions of the approach
presented in this paper. In Appendix, we develop detailed ex-
pressions for the EM eigenstates of an isolated sphere and use
them to calculate closed form expressions for the electric field
produced by a monochromatic point source, when that source
is either outside or inside of the sphere. We also calculate
the scattered field when a plane EM wave impinges upon a
perfectly conducting sphere and compare with a calculation
of that field using a classic approach described in Ref. [13].

II. BASIC THEORY OF THE EM SCATTERING
EIGENSTATES WHEN μ(r) ≡ μ2

In a two-constituent composite medium where the
magnetic permeability equals μ2 everywhere Maxwell’s
monochromatic equations can be reduced to

−∇ × (∇ × E) + k2
2E = u(1)k2

2θ1E − 4π iωμ2

c2
Jex,

u(1) ≡ 1 − κ1

κ2
≡ 1

s(1)
, κi ≡ εi + 4π iσi

ω
, k2

2 ≡ ω2

c2
κ2μ2, (1)

or to

−∇ × (∇ × E) + k2
1E = u(2)k2

1θ2E − 4π iωμ2

c2
Jex,

u(2) ≡ 1 − κ2

κ1
≡ 1

s(2)
, s(2) = 1 − s(1), k2

1 ≡ ω2

c2
κ1μ2, (2)

where θi(r) = 1 for r inside the κi subvolume, hence-
forth denoted as Vi, and vanishes elsewhere, while Jex is a
monochromatic external current density; εi and σi, i = 1, 2,
are the electric permittivity and electric conductivity of the
two constituents. We will usually refer to κi as the (complex)
permittivity.

Scattering eigenfunctions of Maxwell’s equations satisfy
Eq. (1) or Eq. (2) with Jex ≡ 0 and special values of u(1) or
u(2), respectively, and behave as purely outgoing or ingoing
waves at large distances with an amplitude that decreases with

r at large distances. This will be elaborated upon below. The
eigenfunctions E(i)

n and their eigenvalues u(i)
n satisfy

−∇ × (∇ × E(1)
n

) + k2
2E(1)

n = u(1)
n k2

2θ1E(1)
n , (3)

−∇ × (∇ × E(2)
n

) + k2
1E(2)

n = u(2)
n k2

1θ2E(2)
n . (4)

It should be noted that, while the physical field E(r, ω)
depends on the permittivities of the physical constituents κ1,
κ2, every eigenfunction depends upon the permittivities deter-
mined by the eigenvalue. Therefore Eqs. (1) and (2) depend
upon k1 and k2 of the two physical constituents. By contrast,
in Eqs. (3) and (4), we can only choose one of these wave
numbers to have the constituent physical value, while the
other will depend on the appropriate eigenvalue. For example,
if k2 is chosen to have the physical value ω

√
κ2μ2/c then

k1 must be given by k1n = k2

√
1 − u(1)

n . Similarly, if k1 is
chosen to have the physical value ω

√
κ1μ1/c then k2 must

have the value k2n = k1

√
1 − u(2)

n . The asymptotic behavior of
an eigenfunction will depend upon whether ki has the physical
value or the eigenvalue value kin.

It is useful to note that, if the field sources are all at
bounded values of r and when only V1 extends to infinity, then
for r � 1/k1 the physical field E(r) behaves asymptotically as
eik1r/r—this follows from Eq. (2) and from the fact that this
field must exhibit a finite, nonzero total outgoing electromag-
netic (EM) power flux. Similarly, if only V2 extends to infinity
then it follows from Eq. (1) that the asymptotic behavior of
E(r) is as eik2r/r. If both V1 and V2 extend to infinity then
the asymptotic behavior will be as eikir/r when r ∈ Vi and
kir � 1. If the eigenfunctions are required to exhibit a similar
asymptotic behavior then they can be used to expand such a
physical field.

We will now show that eigenfunctions with different eigen-
values are orthogonal. Multiplying the left-hand side (lhs) of
Eq. (3) by another eigenfunction solution E(1)

m of that equation
and integrating over all space leads to∫

dV E(1)
m · [ −∇ × (∇ × E(1)

n

) + k2
2E(1)

n

]
=

∫
dV

{∇ · [
E(1)

m × (∇ × E(1)
n

)]
− (∇ × E(1)

m

) · (∇ × E(1)
n

) + k2
2

(
E(1)

m · E(1)
n

)}
. (5)

The first integral on the right-hand-side (rhs) transforms to
the following surface integral over the closed envelope of the
system: ∮

dS · [
E(1)

m × (∇ × E(1)
n

)]
. (6)

At large distances, i.e., in the radiation zone, these EM fields
have the following properties—see Eq. (16.73) in Ref. [13]:

E(1)
m ⊥ n, E(1)

m (r) = eikir

r
am + O(1/r2), am ⊥ n, (7)

∇ × E(1)
m = ikin × E(1)

m + O(1/r2), (8)

where r ≡ |r|, n ≡ r/|r|, am is an O(r0) vector, and the first
term in the above expressions is of order O(1/r). The wave
number ki is either k1n or k2, depending on whether r is in V1
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or V2. Consequently, at large distances the integrand in Eq. (6)
can be written as

E(1)
m × (∇ × E(1)

n

) = iki
[
E(1)

m × (
n × E(1)

n

)] + O(1/r3)

= ikin
(
E(1)

m · E(1)
n

) + O(1/r3), (9)

where the first term in the last expression is of order O(1/r2)
and is clearly symmetric in E(1)

m and E(1)
n . All the other con-

tributions to the integrand of Eq. (6) are of order O(1/r3) or
smaller and thus yield a vanishing result if the system enve-
lope is taken at r → ∞. Therefore the entire expression on the
rhs of Eq. (5) is also symmetric in E(1)

m and E(1)
n . Consequently

we get that∫
dV E(1)

m · [ −∇ × (∇ × E(1)
n

) + k2
2E(1)

n

]
= i

∮
(dS · n)(k1nθ1 + k2θ2)

(
E(1)

m · E(1)
n

)
+ k2

2

∫
dV

(
E(1)

m · E(1)
n

) −
∫

dV
(∇ × E(1)

m

) · (∇ × E(1)
n

)
.

(10)

The appearance of k1nθ1 + k2θ2 in the surface integral takes
into account that both V1 and V2 can reach out to infinite
values of r ≡ |r|. We note that in the case of a microstructure
with a one-dimensional symmetry, i.e., parallel flat slabs or
parallel cylinders, the asymptotic behavior of the fields will
differ from Eqs. (7) and (8). This was discussed in detail in
Refs. [5,14,15] for the quasistatic regime. A similar situation
occurs when the microstructure has a three-dimensional pe-
riodicity. This was discussed in detail in Ref. [16] for the
quasistatic regime. Such microstructures will not be discussed
here in any detail.

In the cases discussed here, the permittivities often have
an imaginary part. Therefore that imaginary part will always
be positive if κi represents the usual type of lossy medium.
However, sometimes that imaginary part will have the oppo-
site sign. In any case, ki will also have an imaginary part,
the sign of which will depend upon which of the two square
roots is used in obtaining ki = ±

√
k2

i . In this paper, we will
always choose that square root which leads to a non-negative
Im ki. This will ensure that at large distances the scattering
eigenfunctions decay to zero and thus that integrals such as
Eqs. (5) and (10) converge to finite values.

All the volume integrals in Eq. (10) are symmetric in m
and n. From Eqs. (7) and (8), it follows that their integrands
are all proportional to (am · an) e2ikir/r2 at large distances. Be-
cause dV = r2 dr d�, therefore when ki is real these integrals
can only exhibit conditional convergence when taken over all
space. If the permittivities κi have the usual physical kind of
positive real and imaginary parts, corresponding to energy dis-
sipation, then the physical values of Re ki and Im ki will also
be positive. In that case, the factor e2ikir will be exponentially
decreasing as r → ∞ and those integrals will converge ab-
solutely. Moreover, the surface integral will vanish when the
system envelope is at infinity. When κi is purely real then we
can proceed by adding to it a small positive imaginary part iδ.
This regularization will again result in absolutely convergent
integrals. If we then take the limit δ → 0+, the values obtained
for those integrals will tend to well defined finite values.

If κi is complex then its correct square root, used for
calculating the value of ki, is the one which results in a
positive value for Im ki. This means that the wave amplitude
decreases to 0 exponentially at large distances. If Im(κi) > 0
and Re(κi ) > 0, as is always the case if the i constituent is
a physical dielectric material which exhibits dissipation, then
Re ki will always be positive and the factor eikir will be an
outgoing wave. However, when εi represents a material with
gain, i.e., Im (κi ) < 0, then in order for Im ki to be positive
Re ki will have to be negative. The factor eikir will then
represent an incoming wave, the amplitude of which decreases
exponentially to 0 at large distances. Therefore there will be
no outflow of EM energy from the system. Also, the volume
integrals in Eqs. (5) and (10) will then converge to finite values
and the surface integral of Eq. (6) will vanish. The inflow of
energy will be compensated by energy dissipation in the other
constituent. The total energy must remain constant because
the time dependence of all fields is periodic, i.e., ∝ eiωt .

It is worth noting that if V1 does not extend out to infinity
then the asymptotic behavior of the physical field E and the V1

eigenfunctions is proportional to eik2r/r. Similarly, if V2 does
not extend out to infinity then the physical field E and the V2

eigenfunctions behave asymptotically as eik1r/r. If both V1 and
V2 extend out to infinity then the asymptotic behavior of those
functions will be as eikir/r when r is not in Vi.

We also note that, like the eigenfunctions E(i)
n , the eigen-

values u(i)
n usually have complex values. If those values are

translated into special values for κ1n or κ2n, then these too
will be complex valued. Moreover, the imaginary part of
the κin eigenvalue will have the opposite sign to that of the
physical Im(κ ) of any real material. That is because in the
other constituent heat and entropy will be produced. However,
because all the fields have a periodic time dependence ∝ eiωt ,
this positive rate of heat production must be compensated
by a positive rate EM energy radiation or a negative rate of
EM energy production and a consequent negative rate of heat
production inside V1.

From Eqs. (3) and (10), we now get

k2
2u(1)

n

∫
dV θ1

(
E(1)

m · E(1)
n

) = k2
2u(1)

m

∫
dV θ1

(
E(1)

n · E(1)
m

)
= −i

∮
(dS · n)(k1nθ1 + k2θ2)

(
E(1)

m · E(1)
n

)
+k2

2

∫
dV

(
E(1)

m · E(1)
n

)−∫
dV

(∇ × E(1)
m

) · (∇ × E(1)
n

)
.

(11)

Therefore, if u(1)
n �= u(1)

m then∫
dV θ1

(
E(1)

n · E(1)
m

) = 0, (12)

and also∫
dV

(∇ × E(1)
m

) · (∇ × E(1)
n

) = k2
2

∫
dV

(
E(1)

n · E(1)
m

)
.

The last result follows because the surface integral in Eq. (11)
vanishes, as explained above.

When κ1 and k1 retain their physical values but κ2 and
k2 are replaced by the eigenvalue values κ2n ≡ κ1(1 − u(2)

n )
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and k2n ≡ k1

√
1 − u(2)

n similar results are obtained where the
indices 1 and 2 are interchanged:

k2
1u(2)

n

∫
dV θ2

(
E(2)

m · E(2)
n

) = k2
1u(2)

m

∫
dV θ2

(
E(2)

n · E(2)
m

)
= −i

∮
(dS · n)(k1θ1 + k2nθ2)

(
E(2)

m · E(2)
n

)
+ k2

1

∫
dV

(
E(2)

m · E(2)
n

) −
∫

dV
(∇ × E(2)

m

) · (∇ × E(2)
n

)
.

(13)

Therefore, if u(2)
n �= u(2)

m then∫
dV θ2

(
E(2)

n · E(2)
m

) = 0 (14)

and∫
dV

(∇ × E(2)
m

) · (∇ × E(2)
n

) = k2
1

∫
dV

(
E(2)

n · E(2)
m

)
.

Defining the Vi scalar product of two vector fields by

〈F|E〉i ≡
∫

dV θi(F · E) = 〈E|F〉i, (15)

we get that the eigenfunctions E(i)
n form a biorthogonal set

in the Hilbert space of vector functions in the subvolume Vi.
Since the integrand in the scalar product of a complex field
with itself is E2, which is not positive definite in general,
therefore the scalar products 〈E(i)

n |E(i)
n 〉i are not ensured to be

nonzero. Therefore this property needs to be verified explic-
itly in each case. As shown after Eqs. (58) and (59) below,
even when the normalization integrals vanish this does not
prevent using these eigenfunctions for expanding the physical
field.

We now note that all the eigenfunctions with eigenvalues
u(1)

n �= 1, u(2)
n �= 1 will be divergence-free in both V1 and V2,

though not at the V1, V2 interface. In fact, at that interface their
normal component will usually be discontinuous. Therefore
we should be able to exploit E(i)

n for expanding any physical
field E(r) inside Vi if Jex = 0 there. Obviously, where Jex �= 0
the field E(r) will not be divergence-free and we can therefore
not use the eigenfunctions defined there for expanding the
physical field. As we shall show in Sec. III, we will never-
theless be able to use the divergence-free eigenfunctions to
calculate that field everywhere. These eigenstates were first
introduced in Ref. [6] using an approach based upon a Green
tensor.

The eigenstates fall into three classes. (1) All the eigen-
states for which u(1)

n �= 1 or u(2)
n �= 1. In that case, ∇ · E(i)

n = 0
both inside V1 and inside V2.

(2) Divergence-free eigenstates for which u(i)
n = 1 and

κin = 0. Each of these states satisfies ∇ × E(i)
n = ∇ψ (i)

n and
∇2ψ (i)

n = 0 inside Vi for some scalar function ψ (i)
n (r).

(3) Curl-free or longitudinal eigenstates E(i)
n = ∇φ(i)

n for
r ∈ Vi. These vector fields all have eigenvalues s(i)

n = u(i)
n = 1

and κin = 0. Because the magnetic field H(i)
n (r) is given by

H(i)
n = c

iωμ2

(∇ × E(i)
n

)
,

therefore H(i)
n = 0 for r ∈ Vi. Since the tangential component

of H(i)
n and the normal component of B(i)

n = μ2H(i)
n are contin-

uous at the V1, V2 interface, therefore H(i)
n must vanish also for

r /∈ Vi. Because E(i)
n ∝ ∇ × H(i)

n with a finite proportionality
coefficient for r /∈ Vi, therefore E(i)

n will also vanish there.
Since the tangential component of E(i)

n is continuous at the
V1, V2 interface, therefore that component will vanish at that
interface. Consequently each of the functions φ(i)

n must have
a constant value over any connected portion of the V1, V2 in-
terface. Despite this restriction, a great deal of freedom exists
in the construction of these functions. Therefore it should be
possible to construct them so as to be a complete longitudinal
set inside Vi. None of these functions will be divergence-free.
That is because if it were divergence-free then we would have
∇2φ(i)

n = 0 inside Vi and φ(i)
n =const. over any connected por-

tion of the V1, V2 interface. Therefore φ(i)
n would have to equal

that constant over all the interior of that connected portion.
Consequently ∇φ(i)

n would vanish everywhere.
We will assume that the class 1 and class 2 functions com-

prise a complete set of divergence-free eigenfunctions inside
Vi. Thus any square integrable, divergence-free field can be
expanded in this basis inside Vi.

It should be emphasized that the classes 2 and 3 eigenstates
are not quasistatic. All the quasistatic eigenstates, which are
discussed in detail in Ref. [17] and have only real eigenval-
ues u(i)

n > 1, are ω → 0 limits of the class 1 eigenstates. In
that case, the scalar products of Eq. (15) become 〈ψ |φ〉i ≡∫

dV θi(∇ψ∗ · ∇φ).
If Jex = 0 for r ∈ Vi then the physical fields E(r) and H(r)

are divergence-free there. Therefore we only need the classes
1 and 2 eigenfunctions in order to expand the physical fields
there. We shall show below how to represent those fields
everywhere, i.e., in both V1 and V2 and also at the V1, V2

interface, without having to use any class 3 eigenfunctions.
This is desirable because the class 3 eigenfunctions are more
difficult to calculate numerically due to their huge degeneracy,
i.e., they all have the same eigenvalue s(i)

n = u(i)
n = 1.

The simple example of an isolated spherical inclusion in an
otherwise uniform host is discussed in detail in Appendix. In
that case, all the eigenstates can be found essentially in closed
form.

III. USING THE SCATTERING EIGENSTATES TO
CALCULATE A PHYSICAL FIELD

We will usually assume that Jex = 0 in V1, from which it
follows, according to Eq. (2), that ∇ · E = 0 there. We will
also assume that Jex vanishes at sufficiently large distances.
Assuming that the E(1)

n are a complete set of divergence-
free eigenstates in the Hilbert space of divergence-free vector
functions in V1 we first try to expand the local physical field
E(r) inside V1 as

θ1E = θ1

∑
n

A(1)
n E(1)

n . (16)

This expansion is valid if E(r) is square integrable over V1.
This is always the case if E(r) is the physical field produced
by a source term Jex(r) which vanishes inside V1. In order
to determine the expansion coefficients A(1)

n , we consider the
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following two integrals:∫
dV E(1)

n · [−∇ × (∇ × E) + k2
2E

]
= u(1)k2

2

〈
E(1)

n

∣∣E〉
1 − 4π iωμ2

c2

∫
dV

(
E(1)

n · Jex
)

= u(1)k2
2

〈
E(1)

n

∣∣E〉
1 − 4π iωμ2

c2

〈
E(1)

n

∣∣Jex
〉
2, (17)∫

dV E · [−∇ × (∇ × E(1)
n

) + k2
2E(1)

n

]
= u(1)

n k2
2

〈
E

∣∣E(1)
n

〉
1, (18)

where
∫

dV (E(1)
n · Jex ) was replaced by 〈E(1)

n |Jex〉2 because
Jex is nonzero only in V2. The lhs’s of these equations are
equivalent, respectively, to∫

dV
{∇ · [

E(1)
n × (∇ × E)

]
− (∇ × E(1)

n

) · (∇ × E) + k2
2

(
E(1)

n · E
)}

,∫
dV

{∇ · [
E × (∇ × E(1)

n

)]
− (∇ × E) · (∇ × E(1)

n

) + k2
2

(
E · E(1)

n

)}
.

Only the first terms in these expressions differ. Those terms
transform into surface integrals over the closed envelope of
the system, which is assumed to be at large distances. As in
the discussion of the eigenstates, both E and E(1)

n have the
form of Eqs. (7) and (8) there, since they both have the same
asymptotic behavior of eikir/r. Therefore the two integrands
under the surface integral tend to the same value as that
surface is sent to ∞ and the integrals are finite and equal.
Also, they both vanish under the regularization, as explained
before Eq. (11). Consequently the rhs’s of Eqs. (17) and (18)
are equal and we get

4π i

ωκ2

〈
E(1)

n

∣∣Jex
〉
2 = (

u(1) − u(1)
n

)〈
E(1)

n

∣∣E〉
1

= (
u(1) − u(1)

n

)〈
E(1)

n

∣∣E(1)
n

〉
1A(1)

n . (19)

Therefore E(r) has the following expansion in terms of the
eigenfunctions:

θ1E = θ1
4π i

ωκ2

∑
n

〈
E(1)

n

∣∣Jex
〉
2〈

E(1)
n

∣∣E(1)
n

〉
1

E(1)
n

u(1) − u(1)
n

. (20)

It would seem that this result is valid whenever the integrals∫
dV (E(1)

n · Jex ) are finite. The last equation provides an ex-
pansion of E(r) for any r ∈ V1 in terms of a set of integrals
which must be recalculated every time a different source term
Jex is used.

In order to extend this expansion to other values of r we use
Eq. (20) to expand the term u(1)k2

2θ1E on the rhs of Eq. (1). We
then replace the terms u(1)

n k2
2θ1E(1)

n in the resulting sum using
the lhs of Eq. (3). These manipulations result in the following
equation:

(−∇ × (∇× ) + k2
2

)[
E −

∑
n

A(1)
n

u(1)

u(1)
n

E(1)
n

]
= −4π iωμ2

c2
Jex.

(21)

The expression in the square brackets is equal to what we
shall call the “incident field” E01, which is the unique uniform
medium scattering solution of

−∇ × (∇ × E01) + k2
2E01 = −4π iωμ2

c2
Jex. (22)

Using Eq. (19) to get an explicit expression for A(1)
n , we obtain

the following expansion for E(r), which is valid for any r:

E ≡ E01 + Esc1,

Esc1 = 4π i

ωκ2

∑
n

u(1)/u(1)
n

u(1) − u(1)
n

〈
E(1)

n

∣∣Jex
〉
2〈

E(1)
n

∣∣E(1)
n

〉
1

E(1)
n , (23)

where Esc1 is clearly the scattered field. This equation was
already obtained in Ref. [14]. Comparing the last equation
with Eq. (20), we also get the following expansion for E01

inside V1:

θ1E01 = −θ1
4π i

ωκ2

∑
n

E(1)
n

u(1)
n

〈
E(1)

n

∣∣Jex
〉
2〈

E(1)
n

∣∣E(1)
n

〉
1

. (24)

The last result is independent of u(1), as it should be. However,
despite the appearance of u(1)

n and E(1)
n in this expansion, it

really must be independent of them too, since Eq. (22) is
independent of the microstructure. Because of this we can use
a different, simpler, microstructure to calculate E01 inside V1

from Eq. (24). However, in order to exploit the expansion in
Eq. (23) for r /∈ V1, we need to know E01 there. In particular,
we can use an artificial microstructure to calculate E01 using
the last equation. In that microstructure, V2 can be a sphere
that encompasses all the field sources Jex but is otherwise
as small as possible. In that case, the eigenstates are known
in essentially closed form, as shown in Appendix. Conse-
quently Eq. (24) can be used to evaluate E01 in most of the
two physical subvolumes V1 and V2, using the eigenfunctions
and eigenvalues of the artificial microstructure. Equation (23)
looks just like Eq. (20) minus Eq. (24), where these last two
expansions are valid only inside V1. However, we have now
shown that the last equation is valid both inside and outside
V1! This equation is valid irrespective of how singular Jex

happens to be, as long as we are able to calculate E01 and
the scalar products 〈E(1)

n |E01〉1.
We can also express the product E(1)

n · Jex in terms of E01:
by equating the rhs’s of the following equivalent integrals∫

dV E01 · [−∇ × (∇ × E(1)
n

) + k2
2E(1)

n

]
= k2

2u(1)
n

〈
E01

∣∣E(1)
n

〉
1,∫

dV E(1)
n · [−∇ × (∇ × E01) + k2

2E01
]

= −4π iωμ2

c2

〈
E(1)

n

∣∣Jex
〉
2,

we get

− 4π i

ωκ2u(1)
n

〈
E(1)

n

∣∣Jex
〉
2 = 〈

E(1)
n

∣∣E01

〉
1. (25)
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Substituting this result in Eq. (23), we finally get

Esc1 =
∑

n

u(1)

u(1)
n − u(1)

〈
E(1)

n

∣∣E01
〉
1〈

E(1)
n

∣∣E(1)
n

〉
1

E(1)
n

=
∑

n

s(1)
n

s(1) − s(1)
n

〈
E(1)

n

∣∣E01
〉
1〈

E(1)
n

∣∣E(1)
n

〉
1

E(1)
n . (26)

The same expansion was already obtained as Eq. (2.16) of
Ref. [6]. This approach is more efficient than trying to solve
Eq. (28) below numerically each time a different incident field
is applied. We note that Eq. (26) can be used to expand the
scattered field even if the incident field E01 is not produced
by a given external current density Jex. This will be used in
Appendix in order to calculate the scattered field when the
incident field is a simple plane wave.

An alternative method for obtaining Esc1 is to note that
Eq. (1) can be rewritten as

−∇ × [∇ × (E01 + Esc1)] + k2
2 (E01 + Esc1)

= u(1)k2
2θ1(E01 + Esc1) − 4π iωμ2

c2
Jex. (27)

We consequently get the following PDE for Esc1:

−∇ × (∇ × Esc1) + k2
2Esc1 = u(1)k2

2θ1(E01 + Esc1). (28)

We note that the eigenfunctions E(1)
n (r) and eigenvalues

u(1)
n do not depend upon Jex but only upon k2

2 and upon the
microstructure which is characterized by θ1(r). Therefore, if
all the eigenstates are known then Eqs. (20), (23), and (24) are
much simpler and quicker to apply for calculations of E(r)
than brute force numerical solutions of the PDE’s Eqs. (1),
(22), and (28).

Assuming first that V1 is finite and only V2 extends to
infinity, then E(r), E01(r), Esc1(r), and E(1)

n (r) will all behave
asymptotically as eik2r/r.

In order to calculate the full physical field E(r) ≡ E01 +
Esc1, we still need to know the incident field E01. This can be
found by solving the PDE of Eq. (22) in a uniform medium.
An alternative method for calculating the incident field is to
use Eq. (24), where the eigenfunctions E(1)

n (r) are used to
expand θ1E01 in V1, and then use the eigenfunctions E(2)

n (r)
to expand θ2E01 in V2. The problem with this approach is that
E01 is not divergence-free in V2. To overcome this, we define

Ẽ01 ≡ E01 + 4π i

ωκ2
Jex. (29)

From Eqs. (22) and (29), it follows that ∇ · Ẽ01 = 0 both in V1

(where Jex vanishes by assumption) and in V2 (where Jex does
not vanish everywhere).

We now first consider the following two equivalent inte-
grals. (Note that these integrals are only equivalent if E01 is the
incident field produced by a given source which is an external
current density limited to a finite region in space. They are not
equivalent if the incident field is an infinite plane wave. This
will be relevant in Appendix when we consider the scattering
of a plane wave).∫

dV E01 · [−∇ × (∇ × E(1)
m

) + k2
2E(1)

m

]
= k2

2u(1)
m

〈
E(1)

n

∣∣E01
〉
1,

∫
dV E(1)

m · [−∇ × (∇ × E01 + k2
2E01

]
= −4π iωμ2

c2

〈
E(1)

m

∣∣Jex
〉
2,

from which it follows that〈
E(1)

n

∣∣E01
〉
1 = 〈

E(1)
m

∣∣Ẽ01
〉
1 = −4π iωμ2

c2k2
2u(1)

m

〈
E(1)

n

∣∣Jex
〉
2, (30)

because Jex = 0 in V1. Using this result, we can expand Ẽ01 in
V1 as follows:

θ1Ẽ01 = −θ1
4π iωμ2

c2k2
1

∑
m

〈
E(2)

n

∣∣Jex
〉
2

u(1)
m

E(1)
m (r)〈

E(1)
m

∣∣E(1)
m

〉
1

. (31)

Another pair of equivalent integrals are∫
dV E01 · [−∇ × (∇ × E(2)

n

) + k2
1E(2)

n

]
= k2

1u(2)
n

〈
E(2)

n

∣∣E01

〉
2,∫

dV E(2)
n · [−∇ × (∇ × E01 + k2

1E01
]

= −4π iωμ2

c2

〈
E(2)

n

∣∣Jex
〉
2

+(
k2

1 − k2
2

)(〈
E(2)

n

∣∣E01

〉
1 + 〈

E(2)
n

∣∣E01

〉
2

)
,

from which we get〈
E(2)

n

∣∣E01
〉
2 = u(2)

u(2)
n − u(2)

〈
E(2)

n

∣∣E01
〉
1

− 4π iωμ2

c2k2
1

(
u(2)

n − u(2)
) 〈

E(2)
n

∣∣Jex
〉
2.

Using the E(1)
m eigenstates to expand the first term on the rhs of

the last equation and then using Eq. (25) or Eq. (30) to replace
the terms 〈E(1)

m |E01〉1, we finally get〈
E(2)

n

∣∣Ẽ01
〉
2 = 〈

E(2)
n

∣∣E01
〉
2 + 4π iωμ2

c2k2
2

〈
E(2)

n

∣∣Jex
〉
2

= −4π iωμ2

c2k2
2

[〈
E(2)

n

∣∣Jex
〉
2

u(2)
n − 1

u(2)
n − u(2)

+
∑

m

〈
E(1)

m

∣∣Jex
〉
2

〈
E(1)

m

∣∣E(2)

n

〉
1〈

E(1)
m

∣∣E(1)

m

〉
1

u(2)

u(1)
m

]
. (32)

This result can now be used, together with the E(2)
n eigenvec-

tors, to expand Ẽ01 in V2, as we did above in Eq. (31):

θ2Ẽ01 = −θ2
4π iωμ2

c2k2
1

∑
n

E(2)
n (r)〈

E(2)
n

∣∣E(2)
n

〉
2

[〈
E(2)

n

∣∣Jex
〉
2

1 − u(2)

u(2)
n − u(2)

+
∑

m

〈
E(1)

m

∣∣Jex
〉
2

u(2)

u(1)
m

〈
E(1)

m

∣∣E(2)

n

〉
1〈

E(1)
m

∣∣E(1)
m

〉
1

]
. (33)

If Jex is nonzero only in V1 then we cannot use the eigen-
functions E(1)

n to expand the physical field E there, because
∇ · E does not vanish there. We therefore define a new physi-
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cal field, as we did in Eq. (29):

Ẽ ≡ E + 4π i

ωκ2
Jex. (34)

From Eqs. (1) and (2), it follows that ∇ · Ẽ = 0 in both V2

(where Jex now vanishes) and in V1 (where Jex is not zero
everywhere). This field satisfies the following PDE:

−∇ × (∇ × Ẽ) + k2
2 Ẽ = k2

2u(1)θ1Ẽ − 4π i

ωκ1
∇ × (∇ × Jex ).

(35)
The last term in this equation leads to〈

E(1)
m

∣∣∇ × (∇ × Jex )
〉
1 = 〈∇ × E(1)

m

∣∣∇ × Jex
〉
1

= k2
2

(
1 − u(1)

m

)〈
E(1)

m

∣∣Jex
〉
1, (36)

where integration by parts was applied to get the second term,
and another integration by parts, along with the eigenvalue
Eq. (3), was used to get the rhs. By considering the following
two equivalent integrals:∫

dV E(1)
m · [−∇ × (∇ × Ẽ) + k2

2 Ẽ
]

= k2
2u(1)

〈
E(1)

m

∣∣Ẽ〉
1 − 4π i

ωκ1

〈∇ × E(1)
m

∣∣∇ × (∇ × Jex )
〉
1,∫

dV Ẽ · [−∇ × (∇ × E(1)
m

) + k2
2E(1)

m

]
= k2

2u(1)
m

〈
E(1)

m

∣∣Ẽ〉
1,

we obtain〈
E(1)

m

∣∣Ẽ〉
1 = 4π iωμ2

c2k2
1

1 − u(1)
m

u(1) − u(1)
m

〈
E(1)

m

∣∣Jex
〉
1. (37)

Equations (36) and (37) lead to the following expansion for
the rhs of Eq. (35) in V1:

k2
2u(1)θ1Ẽ − 4π i

ωκ1
∇ × (∇ × Jex )

= 4π iωθ1

c2(1 − u(1) )

∑
n

u(1)
n

(
1 − u(1)

n

)
u(1) − u(1)

n

〈
E(1)

n

∣∣Jex
〉
1〈

E(1)
n

∣∣E(1)
n

〉
1

E(1)
n (r).

In the last expression, we now replace k2
2u(1)

n θ1E(1)
n (r) by the

lhs of the eigenvalue Eq. (3). This leads to the following PDE
for Ẽ:

0 = [−∇ × (∇× ) + k2
2

]
×

[
Ẽ − 4π i

ωκ1

∑
n

1 − u(1)
n

u(1) − u(1)
n

〈
E(1)

n

∣∣Jex
〉
1〈

E(1)
n

∣∣E(1)
n

〉
1

E(1)
n (r)

]
.

The expression in the large square brackets must vanish,
therefore

Ẽ ≡ E + 4π i

ωκ1
Jex

= 4π i

ωκ1

∑
n

1 − u(1)
n

u(1) − u(1)
n

〈
E(1)

n

∣∣Jex
〉
1〈

E(1)
n

∣∣E(1)
n

〉
1

E(1)
n (r). (38)

We emphasize that, just as in the case of Eqs. (26) and (23),
the last expression is valid for all values of r, i.e., inside

both V1 and V2. This is so despite the fact that only the V1

eigenfunctions appear in the expansion.
If only V1 extends to infinity we would have to expand

the physical field using the E(2)
n eigenfunctions, because only

they have the correct asymptotic dependence on r at large
distances, i.e., eik1r/r. To that end we would have to repeat the
entire discussion presented above using the E(2)

n eigenfunc-
tions instead of the E(1)

m eigenfunctions. A better alternative
is to switch the names of the two constituents. By doing that
we would return to the kind of system treated in the previous
discussions.

If both V1 and V2 extend out to infinity, then we will need
to use the E(1)

m eigenfunctions to expand E in the asymptotic
regions of V2 and the E(2)

n eigenfunctions to expand E in the
asymptotic regions of V1. Here too we can switch the names of
the two constituents in such a way that the relevant infinitely
extending sub-volume is always V2.

A case where only one of the subvolumes V1 or V2 extends
to infinity is discussed in the Appendix. In that example, the
microstructure is a single isolated spherical inclusion in an
otherwise uniform background. The field source treated there
is a current density localized at a single point Jex = Jδ3(r −
r0), where r0 can be either inside or outside of the sphere.

If Jex is nonzero in both constituents then we can write it as
Jex = J(1)

ex + J(2)
ex , where J(i)

ex = 0 in Vi. We then calculate the
physical fields E(i) produced, separately, by J(i)

ex . The result for
E(r) is then the sum of those two fields E = E(1) + E(2).

If Jex(r) happens to be a two-dimensional (2D) surface
current at the V1, V2 interface, where E(1)

n (r) is discontinuous,
then integrations like

∫
dV (E(1)

n · Jex ) can be carried out as
follows: We first take Jex(r) to have a smooth symmetric shape
centered at the interface, and then let that shape tend to a one-
dimensional (1D) Dirac delta function at the interface. The
calculation of the physical field then proceeds by calculating
E(1) from J(1), which is one half of the 1D δ function in V2,
and then E(2) from J(2), which is one half of the 1D δ function
in V1.

IV. EM EIGENSTATES AND THE SCATTERED FIELD OF A
CLUSTER OF INCLUSIONS

As in the previous section, we assume that μ ≡ μ2 every-
where and that only κ is heterogeneous. We also assume that
Jex is nonzero only in V2.

If the subvolume V1 of the κ1 constituent is made of a
cluster of nonoverlapping inclusions, then we can write

θ1(r) =
∑

a

θa(r), (39)

where θa(r) = 1 if r is in the volume Va of the inclusion a
and vanishes elsewhere. We now try to expand the eigenstates
E(1)

n (r) of the V1 subvolume in those of the individual isolated
inclusions Eaα (r):

θa(r)E(1)
n (r) = θa(r)

∑
α

A(n)
aα Eaα (r), A(n)

aα ≡
〈
Eaα

∣∣E(1)
n

〉
a〈

Eaα

∣∣Eaα

〉
a

.

(40)
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Here we used an isolated inclusion scalar product defined by

〈F|E〉a ≡
∫

dV θa(r)[F(r) · E(r)] = 〈E|F〉a. (41)

We then calculate the following difference:∫
dV Eaα · [− ∇ × (∇ × E(1)

n

) + k2
2E(1)

n

]
−

∫
dV E(1)

n · [− ∇ × (∇ × Eaα ) + k2
2Eaα

]
.

As argued following Eq. (9), this difference vanishes. Using
Eq. (3) and its isolated inclusion version

−∇ × (∇ × Eaα ) + k2
2Eaα = uaαk2

2θaEaα, (42)

we then get

u(1)
n

∫
dV θ1

(
Eaα · E(1)

n

) = uaα

∫
dV θa

(
E(1)

n · Eaα

)
.

From Eqs. (39)–(41), we then get

u(1)
n

∑
bβ

A(n)
bβ

∫
dV θb(Eaα · Ebβ )

≡ u(1)
n

∑
bβ

A(n)
bβ 〈Ebβ |Eaα〉b = uaαA(n)

aα 〈Eaα|Eaα〉a. (43)

Here we used the fact that the eigenstates Eaα (r) form
a biorthogonal set in the volume Va of the inclusion
a according to the isolated inclusion scalar product de-
fined in Eq. (41). Equation (43) is an infinite set of
homogeneous linear algebraic equations for the expan-
sion coefficients A(n)

aα . This only has nonzero solutions
for special values of u(1)

n . Thus this is a matrix eigen-
value problem with matrix M̂, eigenvalues s(1)

n ≡ 1/u(1)
n , and

eigenvectors A(n)
bβ :

s(1)
n A(n)

aα =
∑
bβ

Maα,bβA(n)
bβ , Maα,bβ ≡ 1

uaα

〈Eaα|Ebβ〉b

〈Eaα|Eaα〉a
. (44)

Note that when a and b are different inclusions the scalar
product in the numerator of the last quotient is between
eigenfunctions of two different isolated inclusions where the
integration is over the volume of just one of those inclusions.
These off-diagonal elements of M̂ represent the interactions
between pairs of eigenstates of different inclusions. When a =
b then Maα,bβ vanishes unless also α = β. This is then a diag-
onal element of M̂ which is just one of the isolated inclusion
eigenvalues. The matrix eigenvalue equation must be solved
numerically. That, however, is simpler than solving Eq. (3)
numerically once the eigenstates of the isolated inclusions
are known. This procedure becomes practical if the isolated
inclusions all have similar simple shapes, such as spheres or
circular cylinders or parallel slabs. In those cases, the isolated
inclusion eigenstates, as well as the off-diagonal elements of
the matrix M̂, can be calculated in closed analytical forms
[6,7,14,15,18].

We now assert that the quotient 〈Eaα|Ebβ〉b/uaα is symmet-
ric under the transposition of aα and bβ. Using Eq. (42) to

substitute for θbEbβ , we get

1

uaα

〈Eaα|Ebβ〉b

= 1/k2
2

uaαubβ

∫
dV Eaα · [− ∇ × (∇ × Ebβ ) + k2

2Ebβ
]

= 1/k2
2

uaαubβ

∫
dV

{∇ · [Eaα × (∇ × Ebβ )]

− (∇ × Eaα ) · (∇ × Ebβ ) + k2
2 (Eaα · Ebβ )

}
.

As shown in the discussion of Eq. (5), the last integral is
symmetric in Eaα and Ebβ , which proves our assertion. If the
isolated inclusion eigenfunctions are all normalized to 1, i.e.,
〈Eaα|Eaα〉a = 1, then M̂ is a symmetric matrix. Consequently
its right and left eigenvalues are the same, as are its right and
left eigenvectors. If we define the scalar product of two vectors
Aaα , Baα by

〈A|B〉 ≡
∑
aα

AaαBaα = 〈B|A〉,

then clearly two eigenvectors of M̂ that have different eigen-
values un �= um must be orthogonal. Thus these eigenvectors
constitute a biorthogonal set.

If the need arises to find the E(1)
n eigenstates outside V1,

when V1 is a cluster of nonoverlapping inclusions, then we
can proceed as follows: having found the V1 eigenvectors A(n)

aα ,
we can use Eq. (40) to rewrite Eq. (3) as

0 = [−∇ × (∇× ) + k2
2

][
E(1)

n −
∑
aα

A(n)
aα

u(1)
n

uaα

Eaα

]
.

From this it follows that

E(1)
n (r) =

∑
aα

A(n)
aα

u(1)
n

uaα

Eaα (r), (45)

and that this is valid for all r. This can now be used to
represent E(1)

n (r) in V2.
If they are square integrable there, then the fields Esc1 and

E01 can also be expanded in the isolated inclusion eigenfunc-
tions for r ∈ Va as

θaEsc1 = θa

∑
α

〈Eaα|Esc1〉a

〈Eaα|Eaα〉a
Eaα,

(46)
θaE01 = θa

∑
α

〈Eaα|E01〉a

〈Eaα|Eaα〉a
Eaα.

We now calculate the following difference:∫
dV Eaα · [−∇ × (∇ × Esc1) + k2

2Esc1
]

−
∫

dV Esc1 · [−∇ × (∇ × Eaα ) + k2
2Eaα

]
.

As argued following Eq. (9), this difference vanishes. Using
Eqs. (28) and (42), we compare the following equivalent
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integrals ∫
dV Eaα · [−∇ × (∇ × Esc1) + k2

2Esc1
]

=
∫

dV ∇ · [Eaα × (∇ × Esc1)] −
∫

dV (∇ × Eaα ) · (∇ × Esc1) + k2
2

∫
dV (Eaα · Esc1)

= u(1)k2
2 (〈Eaα|E01〉1 + 〈Eaα|Esc1〉1),∫

dV Esc1 · [− ∇ × (∇ × Eaα ) + k2
2Eaα

]
=

∫
dV ∇ · [Esc1 × (∇ × Eaα )] −

∫
dV (∇ × Esc1) · (∇ × Eaα ) + k2

2

∫
dV (Esc1 · Eaα )

= uaαk2
2〈Eaα|Esc1〉a.

In this way, we get

u(1)
∑
bβ

〈Eaα|Ebβ〉b

〈Ebβ |Ebβ〉b
(〈Ebβ |E01〉b + 〈Ebβ |Esc1〉b)

= uaα〈Eaα|Esc1〉a.

If 〈Ebβ |Ebβ〉b = 1, then this can be rewritten as

1

u(1)
〈Eaα|Esc1〉a =

∑
bβ

Maα,bβ (〈Ebβ |Esc1〉b + 〈Ebβ |E01〉b).

(47)

This is an infinite set of inhomogeneous linear algebraic equa-
tions for the scalar products 〈Ebβ |Esc1〉b which can be used to
expand Esc1 inside V1.

Another way to calculate the infinite dimensional vector
A(sc1) of expansion coefficients A(sc1)

aα ≡ 〈Eaα|Esc1〉a, knowing
the infinite dimensional vector A(01) of expansion coefficients
A(01)

aα ≡ 〈Eaα|E01〉a, is to first rewrite the previous equation
and Eq. (44) in symbolic forms as (recall that s(1) ≡ 1/u(1))

s(1)A(sc1) = M̂(A(sc1) + A(01)), s(1)
n A(n) = M̂A(n).

The equation for A(sc1) can be solved as

A(sc1) = M̂

s(1) − M̂
A(01) =

∑
n

s(1)
n

s(1) − s(1)
n

〈A(n)|A(01)〉
〈A(n)|A(n)〉 A(n).

Thus, in order to calculate the expansion coefficients A(sc1)
aα

we only need to sum over the eigenvalues and eigenvectors
of M̂, using the appropriate physical value of s(1) ≡ 1/u(1) ≡
κ2/(κ2 − κ1).

In order to expand Esc1 outside V1, we substitute the r ∈ V1

expansions of Esc1(r) and E01(r) on the rhs of Eq. (28) to get

0 = (−∇ × (∇×) + k2
2

)
×

[
Esc1 −

∑
aα

u(1)

uaα

〈Eaα|Esc1〉a + 〈Eaα|E01〉a

〈Eaα|Eaα〉a
Eaα

]
. (48)

Because the differential equation −∇ × (∇ × E) + k2
2E = 0

in all space has no nonzero solutions that decay to 0 when
r → ∞, therefore the square brackets in Eq. (48) must vanish.
We thus get the following expansion for Esc1(r):

Esc1 =
∑
aα

u(1)

uaα

〈Eaα|Esc1〉a + 〈Eaα|E01〉a

〈Eaα|Eaα〉a
Eaα. (49)

This is valid for all r, both inside and outside V1. The form of
the last expansion differs from that in Eq. (46), which is valid
only inside V1. This is due to the fact that in the latter equation
each eigenfunction Eaα is used only inside its inclusion a. By
contrast, in Eq. (49) each of those eigenfunctions is used for
all values of r. Thus every isolated inclusion eigenfunction
Eaα (r) is used also for r’s that lie inside other inclusions or
outside any inclusion.

The above discussion is valid when the field source lies
in V2, i.e., not inside any of the inclusions a. However, when
the field source lies in V1, i.e., inside one or more of those
inclusions, then we need to switch the indices 1 and 2 and
proceed as explained near the end of Sec. III. In that case,
there is usually no simple way to calculate the V1 eigenstates,
where V1 is now the complement of the inclusions volume.
However, we can still use the approach described in Eqs. (34)–
(38) to expand the physical field in the V1 eigenfunctions even
though it is not divergence-free there.

V. EM EIGENSTATES WHEN BOTH κ AND μ ARE
HETEROGENEOUS AND THEIR EXPLOITATION FOR

EXPANDING A PHYSICAL FIELD

When the values of μ as well as those of κ differ
in the two constituents, the computation of the scattering
eigenstates of Maxwell’s equations in a two-constituent com-
posite and their exploitation for expanding a physical field
become more complicated. Those equations are first reduced
to the following partial differential equations (PDE’s) for the
local electromagnetic fields E(r) and H(r):

−∇ × (∇ × E) + k2
2E + v∇ × [θ1(∇ × E)] = uk2

2θ1E − 4π iωμ2

c2
Jex, (50)

−∇ × (∇ × H) + k2
2H + t∇ × [θ1(∇ × H)] = wk2

2θ1H − 4π

cκ2
∇ × [(1 + tθ1)Jex], (51)
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where

κi ≡ εi + 4π iσi

ω
, k2

i ≡ ω2

c2
κiμi, u ≡ 1 − κ1

κ2
, t ≡ 1 − κ2

κ1
= u

u − 1
, v ≡ 1 − μ2

μ1
, w ≡ 1 − μ1

μ2
= v

v − 1
.

Here θ1(r) = 1 for r inside the volume V1 of the No. 1
constituent and θ1(r) = 0 elsewhere, while Jex is a monochro-
matic external current density; εi, σi, and μi, i = 1, 2, are
the electric permittivity, electric conductivity, and magnetic
permeability of the two constituents. Note that in this section
we omit the upper index of u(1), s(1), etc. [see Eqs. (1) and (2)],
since we only present expressions for the case where Jex = 0
in V1.

When the solution of Eq. (50) is known then the solution of
Eq. (51) can be obtained by using one of Maxwell’s equations.
namely,

∇ × E(r) = iωμ(r)

c
H(r). (52)

Likewise, the solution of Eq. (50) can be obtained from that
of Eq. (51) by

∇ × H(r) = − iωκ (r)

c
E(r) + 4π

c
Jex(r). (53)

When both κi and μi can have complex values, the asymp-
totic behavior of E(r) and H(r) at large distances needs to be
reconsidered. In any electromagnetically passive material EM
energy can only be dissipated, never created. Nevertheless,
materials where EM energy gain occurs can be synthesized
by embedding atoms or molecules or quantum dots which are
in excited states and can emit EM energy by jumping to a
lower quantum state. In a homogeneous medium, a plane wave
characterized by a wave vector k is always an eigenstate. As
was shown many years ago by Victor Veselago, the direction
of energy propagation can then be either along k or along −k
[19].

When the physical EM fields are produced by a source
Jex(r) with a finite spatial extent then one expects that energy
must propagate away from that source, at least at large dis-
tances. However, the most important property of those fields
is that they must decay to 0 when |r| → ∞. Therefore the
asymptotic behavior of those fields will be

E = eikir

r
a, Imki > 0, a ⊥ n,

k2
i = κiμi

ω2

c2
, r ∈ Vi, |kir| � 1.

This will sometimes result in Reki < 0, e.g., when both κi

and μi have a large negative real part and a small positive
imaginary part. That is the case when such a material is “left
handed” and therefore exhibits “negative refraction” [20].

Eigenstates of Eqs. (50) and (51) will have to exhibit the
same kind of asymptotic behavior, namely, decay to 0 when
|r| → ∞. Therefore they too will sometimes have Reki < 0.
In that case, they would be incoming rather than outgoing
waves.

We now define two special sets of scattering eigenstates.
These are solutions of Eq. (50) or Eq. (51) when there are no
sources, i.e., when Jex ≡ 0, which are exponentially decaying

waves at large distances. Such nonzero solutions exist only
for special values, i.e, eigenvalues, of the various moduli
u, v, t, w. Because such solutions do not exist when all of
those moduli have permissible physical values, the eigenval-
ues will necessarily be unphysical. This means that the special
values of some of the parameters κi and μi which correspond
to those eigenvalues will have negative imaginary parts. The
energy gains resulting from these values will exactly compen-
sate for the energy losses from the other values, and also from
radiation losses due to outgoing waves, so that the total EM
energy of any eigenstate is conserved in time.

The two sets of eigenstates are solutions of the following
equations:

−∇ × (∇ × E(u)
n

) + k2
2E(u)

n = unk2
2θ1E(u)

n , (54)

−∇ × (∇ × E(v)
m

) + k2
2E(v)

m = −vm∇ × [
θ1

(∇ × E(v)
m

)]
.

(55)

As in the preceding sections, these sets of eigenfunctions will
be used to expand E(r) and H(r).

The solutions of Eq. (54) were already discussed in
Sec. II—see Eqs. (3)–(12). In order to identify the solutions
of Eq. (55), we could follow a procedure similar to that of
those equations. Instead of that we note that it follows from
Eq. (53) that, for r ∈ V1, we can write

− iωκ1m

c
E(v)

m = ∇ × H(w)
m ,

where H(w)
m is an eigensolution of Eq. (51) when Jex ≡ 0 and

t = 0, and where wm is the special value of w, i.e., the eigen-
value. That equation has the same form as Eq. (54), therefore
H(w)

m (r) ≡ E(u)
m (r) and wm = um. Note that κ1m = κ2(1 − um).

Consequently, for r ∈ V1, we get

E(v)
m = − c

iωκ1m
∇ × E(u)

m , vm = wm

wm − 1
= um

um − 1
.

We note that, in contrast with the states E(u)
n , the states E(v)

m
are not an orthogonal set in terms of the usual scalar product
as defined in Eq. (15). However, from Eq. (52), it follows that,
for r ∈ V1, we have

∇ × E(v)
m = iωμ1m

c
H(w)

m = iωμ1m

c
E(u)

m , (56)

where μ1m = μ2(1 − wm). Therefore we get

〈∇ × E(v)
m

∣∣∇ × E(v)
n

〉
1 = −ω2μ2

1m

c2

〈
E(u)

m

∣∣E(u)
n

〉
1,

and this vanishes if un �= um, i.e., if vn �= vm. Thus the set of
eigenfunctions E(v)

m is an orthogonal set if 〈∇ × E|∇ × F〉1 is
taken to be the scalar product.
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We now assume that Jex = 0 inside V1. The physical field is then divergence-free there. We therefore expand it there in a
series of the eigenfunctions, E(u)

n or E(v)
m , which are also divergence-free there:

θ1E = θ1

∑
n

AnE(u)
n , θ1E = θ1

∑
m

BmE(v)
m . (57)

In order to calculate the expansion coefficients An, we proceed as in the discussion following Eq. (16):

0 =
∫

dV
{
E(u)

n · [−∇ × (∇ × E) + k2
2E

] − E · [−∇ × (∇ × E(u)
n

) + k2
2E(u)

n

]}
=

∫
dV E(u)

n ·
{
−v∇ × [θ1(∇ × E)] + uk2

2θ1E − 4π iωμ2

c2
Jex

}
− unk2

2

∫
dV θ1

(
E · E(u)

n

)
= (u − un)k2

2

〈
E(u)

n

∣∣E〉
1 − v

〈∇ × E(u)
n

∣∣∇ × E
〉
1 − 4π iωμ2

c2

∫
dV

(
E(u)

n · Jex
)

= (u − un)k2
2

〈
E(u)

n

∣∣E(u)
n

〉
1An − v

∑
p

Ap
〈∇ × E(u)

n

∣∣∇ × E(u)
p

〉
1 − 4π iωμ2

c2

∫
dV

(
E(u)

n · Jex
)
. (58)

This is a system of inhomogeneous linear algebraic equations for An with a matrix that is symmetric.
A similar procedure is implemented to calculate Bm:

0 =
∫

dV
{
E(v)

m · [−∇ × (∇ × E) + k2
2E

] − E · [−∇ × (∇ × E(v)
m

) + k2
2E(v)

m

]}
= −v

〈∇ × E(v)
m

∣∣∇ × E
〉
1 + uk2

2

〈
E(v)

m

∣∣E〉
1 + vm

〈∇ × E(v)
m

∣∣∇ × E
〉
1 − 4π iωμ2

c2

∫
dV

(
E(v)

m · Jex
)

= −(v − vm)Bm
〈∇ × E(v)

m

∣∣∇ × E(v)
m

〉
1 + uk2

2

∑
p

Bp
〈
E(v)

m

∣∣E(v)
p

〉
1 − 4π iωμ2

c2

∫
dV

(
E(v)

m · Jex
)
. (59)

This too is a system of inhomogeneous linear algebraic equations for Bm with a matrix that is symmetric.
Note that in deriving the last two equations, we applied the following algebraic transformation:∫

dV F · {∇ × [θ1(∇ × E)]} = −
∫

dV ∇ · {F × [θ1(∇ × E)]} +
∫

dV θ1(∇ × F) · (∇ × E).

On the rhs the first integral transforms to a surface integral over the system envelope which vanishes, while the second integral
can be written as 〈∇ × F)|(∇ × E〉1.

We note that Eqs. (58) and (59) are solvable even if the (biorthogonal) normalization terms 〈E(u)
n |E(u)

n 〉1 or 〈∇ × E(v)
m |∇ ×

E(v)
m 〉1 happen to vanish!

We now possess two expansions for E(r) which are valid inside V1. In order to get an expansion that is valid everywhere we
process Eq. (50) as follows. The term uk2

2θ1E is represented using the first expansion in Eq. (57). The term v∇ × [θ1(∇ × E)]
is represented using the second expansion in Eq. (57). In the resulting sums over eigenstates, the terms unk2

2θ1E(u)
n and −vm∇ ×

[θ1(∇ × E(v
m ))] are then replaced by the expressions on the lhs’s of Eqs. (54) and (55), respectively. This leads to the following

PDE for E(r): [− ∇ × (∇× ) + k2
2

][
E −

∑
m

v

vm
BmE(v)

m −
∑

n

u

un
AnE(u)

n

]
= −4π iωμ2

c2
Jex.

Defining E01(r) as the uniform medium scattering solution of
Eq. (22), namely,

−∇ × (∇ × E01) + k2
2E01 = −4π iωμ2

c2
Jex,

we then get

E = E01 +
∑

m

v

vm
BmE(v)

m +
∑

n

u

un
AnE(u)

n . (60)

In this way, we get the final result for the physical field E when
both κ and μ are heterogeneous and Jex �= 0 only in V2.

If Jex �= 0 only in V1 then the entire discussion of this
section can be repeated switching the roles of the two
constituents.

If Jex is nonzero in both constituents then we can write it as
a sum Jex = J(1)

ex + J(2)
ex , where J(i)

ex �= 0 only in Vi, and solve
separately for E(1) and E(2), as explained in the paragraph
before last of Sec. III. The result for E(r) is then the sum of
those two fields E = E(1) + E(2).

VI. SUMMARY AND DISCUSSION

We have presented a detailed general theory of the EM
eigenstates of the full Maxwell equations in a two-constituent
composite medium where both the local electric permittivity
κ (r) and the local magnetic permeability μ(r) have different
uniform values in the two constituents. These eigenstates were
shown to allow an expansion of any physical local field so-
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lution E(r) of Maxwell’s equations in such a system. Those
fields are always square integrable in any finite volume that
does not include the field sources. In the case where μ(r) is
uniform, Eq. (26) provides such an expansion for the scat-
tered field Esc1(r) ≡ E(r) − E01(r) which is valid everywhere
when the field E(r) results from an incident field E01(r). If the
physical field is produced by a source current density Jex(r),
then Eq. (23) gives the scattered field Esc1(r) for any r without
having to first calculate E01(r).

These expressions allow calculation of the physical field
E(r) and the scattered field Esc1 without having to solve
Maxwell’s equations anew every time a different source cur-
rent density Jex(r) or incident field E01(r) is introduced
or every time the physical value of κ1 is changed. What
needs to be done is to calculate all the EM eigenstates for
the given microstructure and the given values of κ2 and
k2

2 . That can be time consuming for complex microstruc-
tures, but the eigenfunctions and eigenvalues only depend
upon κ2, k2

2 , and the microstructure. Moreover, as shown in
Sec. IV, when the microstructure is made of many identical
inclusions the computation of the eigenstates can be greatly
simplified.

In contrast with some previous published derivations
[6,15,18], the calculations described here did not require the
introduction of Green’s tensor for solving Eqs. (1) and (3).
This enabled us to avoid having to deal with difficulties aris-
ing from the singularity of that tensor when its two position
vectors coincide [8].

For an isolated inclusion that is simply shaped, i.e., a
sphere [6,7] or circular cylinder [15] or flat slab [14], all
the eigenstates can be found in essentially closed analytical
form. The interactions between pairs of eigenstates of such
different similarly shaped inclusions can also be obtained in
closed form [6,14,15]. The eigenstates of a cluster of such
inclusions can then be found by finding the eigenvectors of an
appropriate infinite dimensional discrete matrix with diagonal
elements that are the isolated inclusion eigenvalues and off-
diagonal elements that are the interactions.

In practice, only a small number of eigenstates are usually
required in order to get accurate results from the expansions
for E(r), especially when the subvolume V1, where Jex ≡ 0,
does not extend to infinity. This is so because those expansions
are not finite-convergence-radius series in powers of a volume
fraction Vi/V , but are uniformly convergent series in a hope-
fully complete set of bi-orthogonal eigenstates of Maxwell’s
equations.

In the case where both κ (r) and μ(r) are nonuniform a
briefer theory was presented in Sec. V. Expansions for E(r)
then appear in Eqs. (57) and (60).

We would like to stress that there is no need to invoke the
concept of “quasinormal modes” [11] in order to get useful
expansions for the physical field E(r). As we have shown, true
normalizable eigenstates can be defined rigorously and calcu-
lated either analytically, for isolated simply shaped inclusions,
or numerically for clusters of identical inclusions or for more
complicated microstructures.

For spatially periodic microstructures, the eigenfunctions
are Bloch-Floquet functions. Those too can be calculated us-
ing efficient, robust computational techniques. This will be
described elsewhere.
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APPENDIX: EIGENFUNCTIONS OF AN ISOLATED
SPHERE AND THEIR APPLICATION FOR CALCULATING

A PHYSICAL FIELD

The sphere is assumed to be centered at the origin. The
classes 1 and 2 eigenfunctions are then the vector spherical
harmonics (VSH) where the radial part is constructed from a
spherical Bessel function of kir, as described in Ref. [6]. The
microstructure under discussion is invariant under rotations
about the origin. This means that Maxwell’s equations are also
invariant under these rotations. Therefore the eigenfunctions
of those equations can be chosen to also be eigenfunctions
of the operators of total angular momentum for the EM field
[21]:

J ≡ L + S, L ≡ −i(r × ∇), S ≡ ie×,

where e is a unit vector. Therefore these eigenfunctions are
constructed from vector multipole fields (VMF) of two types
(see Eq. (A13) below and Ref. [21] for a definition of the
vector spherical harmonics (VSH) YJlM (�)):

E(iE )
nlm (r) = f (iE )

nl (r)Xlm(�), (A1)

H(iM )
nlm (r) = f (iM )

nl (r)Xlm(�), (A2)

Xlm(�) ≡ Yllm(�) ≡ L̂Ylm

[l (l + 1)]1/2

≡ − i(r × ∇Ylm)√
l (l + 1)

, (A3)

where the E superscript signifies that this is a transverse
electric field, i.e., perpendicular to r, while the M superscript
signifies that this is a transverse magnetic field, and where
i = 1 or i = 2 signifies that these are V1 or V2 eigenfunctions.
The function Ylm(�) is the regular spherical harmonic.

The outside of the sphere is defined to be the subvolume V2,
while the inside of the sphere is defined to be V1. The radial
functions then have the following forms:

f (F )
nl (r) =

{
A(F )

nl jl (k1r) for r < a,

B(F )
nl h(1)

l (k2r) for r > a,
, (A4)

k1

k2
=

(κ1

κ2

) 1
2
, (A5)

where F stands for either 1E or 2E or 1M or 2M, jl and h(1)
l

are the spherical Bessel functions, and ki is the wave number
in the subvolume Vi. Because the eigenvalues are special val-
ues of u(1) or u(2), therefore κ1 and k1 will have special values.
Because the physical field E(r) will behave asymptotically as
eik2r/r, therefore we will only use the V1 eigenfunctions E(1M )

nlm

and E(1E )
nlm , which also exhibit the same asymptotic behavior,

when trying to expand E(r).
The continuity condition on the tangential components of

E(1E )
n (r) is easily obtained using the fact that Xlm ⊥ r. In this
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way, we get

A(1E )
nl jl (k1nl a) = B(1E )

nl h(1)
l (k2a). (A6)

The continuity condition on the tangential components of
H(1E )

n (r) = c/[iωμ(r)][∇ × E(1E )
n (r)] is most easily obtained

by noting that

r × [∇ × φ(r)Xlm] = − ∂

∂r
[rφ(r)]Xlm. (A7)

This leads to

A(1E )
nl

[
jl (k1nl a) + k1nl a j′l (k1nla)

]
= B(1E )

nl

[
h(1)

l (k2a) + k2ah(1)′
l (k2a)

]
.

When this equation is divided by Eq. (A6) and the quotient is
simplified, we get the following equation for the eigenvalues
u(1E )

nl :

y j′l (y)

jl (y)

∣∣∣∣
y=k1nl a≡k2a[1−u(1E )

nl ]1/2
= xh(1)′

l (x)

h(1)
l (x)

∣∣∣∣∣
x=k2a

. (A8)

The continuity condition on the tangential components of
H(1M )

n (r) is easily obtained using the fact that Xlm ⊥ r. In this
way, we get

A(1M )
nl jl (k1nl a) = B(1M )

nl h(1)
l (k2a). (A9)

The continuity condition on the tangential components of
E(1M )

n (r) = ic/[ωκ (r)][∇ × H(1M )
n (r)] is most easily obtained

by using Eq. (A7) once again to get

A(1M )
nl

κ1nl

[
jl (k1nl a) + k1nl a j′l (k1nla)

]
= B(1M )

nl

κ2

[
h(1)

l (k2a) + k2ah(1)′
l (k2a)

]
.

When this equation is divided by Eq. (A9) and the quotient is
simplified we get the following equation for the eigenvalues
u(1M )

nl : (
1

y2
+ j′l (y)

y jl (y)

)
y=k1nl a≡k2a[1−u(1M )

nl ]1/2

=
(

1

x2
+ h(1)′

l (x)

xh(1)
l (x)

)
x=k2a

. (A10)

Note that we allowed κ2 and k2 to retain their physical
values and let κ1nl and k1nl represent the eigenvalues. We note
that the eigenstates of the isolated sphere are known spherical
Bessel functions and only the eigenvalues usually need to be
calculated by numerical solution of one of Eqs. (A8) or (A10).

Because of the spherical symmetry, the eigenvalues u(F )
nl

have much degeneracy—they are independent of m. We can
therefore reorganize the biorthogonality properties of the
eigenstates as follows [6]. First of all we now define the scalar
product in the more standard way as

〈E|F〉i ≡
∫

dV θi(E∗ · F) = 〈F|E〉∗i .

Second, the left eigenfunction that is conjugate to any of the
right eigenfunctions is defined by

C[ fnl (r)Xlm(�)] ≡ f ∗
nl (r)Xlm(�),

C[∇ × fnl (r)Xlm(�)] ≡ ∇ × f ∗
nl (r)Xlm(�),

i.e., only the radial part is complex-conjugated. As shown in Eq. (A4) the functions fnl (r) are the spherical Bessel functions
jl (kr) or h(1)

l (kr). Therefore [see Eq. (5.9.19) in Ref. [21]]

∇ × fl (kr)Xlm = i

(
l

2l + 1

)1/2( d

dr
− l

r

)
fl (kr)Yl l+1 m + i

(
l + 1

2l + 1

)1/2( d

dr
+ l + 1

r

)
fl (kr)Yl l−1 m

= −ik

[(
l

2l + 1

)1/2

fl+1(kr)Yl l+1 m −
(

l + 1

2l + 1

)1/2

fl−1(kr)Yl l−1 m

]
, (A11)

where fl can be any spherical Bessel function. From this, it follows that

{C[∇ × fl (kr)Xlm(�)]}∗ = ik

[(
l

2l + 1

)1/2

fl+1(kr)Y∗
l l+1 m −

(
l + 1

2l + 1

)1/2

fl−1(kr)Y∗
l l−1 m

]
. (A12)

The functions Yll±1m(�) are special cases of the general VSH (see Eqs. (5.9.18)–(5.9.20) and (5.9.10) in Ref. [21])

YJlM (�) =
∑
mq

Ylm(�)eq(lm1q|l1JM ), (A13)

where eq are the complex unit vectors

e0 ≡ ez, e±1 ≡ ∓ 1√
2

(ex ± iey)

and (lm1q|l1JM ) is a Clebsch-Gordan coefficient (CG).
It follows from these definitions that, when J , l , M

are integers, then Y∗
JlM (�) = (−1)l+1−J−MYJl −M (�).

Therefore Y∗
ll±1 m(�) = (−1)mYll±1 −m(�) and X∗

lm(�) =
(−1)1−mXl −m(�).

Three special cases of Eq. (A13) that will interest us later
are Yllm, which was already defined earlier in Eq. (A3), and
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Yl l±1 m. In particular, when l = 1 then

Y10m(�) = em√
4π

,

Y11m(�) ≡ X1m(�) = em × n√
6π

− 1√
60

[(e0 × n)Y2m(�)

− (e1 × n)Y2m−1(�) − (e−1 × n)Y2m+1(�)].

The VSH satisfy the following general orthogonality rela-
tions [21]: ∫

d�[X∗
lM (�) · Xl ′M ′ (�)] = δll ′δMM ′ ,∫

d�[Y∗
JlM (�) · YJ ′l ′M ′ (�)] = δJJ ′δll ′δMM ′ .

Thus only the radial functions are relevant for ensuring the
nontrivial biorthogonalty of the eigenfunctions.

Equation (A8) can be rewritten as

y jl−1(y)

jl (y)
= xh(1)

l−1(x)

h(1)
l (x)

. (A14)

We now restrict our discussion to the case where x ≡ k2a �
1. In that case,

xh(1)
l−1(x)

h(1)
l (x)

∼= x2

2l − 1
� 1.

If also y � 1 then

y jl−1(y)

jl (y)
∼= 2l + 1 = O(1).

There is therefore no solution to Eq. (A14) with y � 1. Solu-
tions do exist whenever y is close to a zero of jl−1(y), denoted
by yn l−1. This requires |y| = O(1) � |x|, therefore

1 − u(1E )
nl ≡

(
k(1E )

nl

k2

)2

≈ y2
n l−1

x2
= O

(
1

|k2|2a2

)
� 1,

jl−1
(
k(1E )

nl a
) ≈ (k2a)2

(2l − 1)yn l−1
jl (ynl−1) � 1.

Similarly, Eq. (A10) can be rewritten as(
jl−1(y)

y jl (y)
− l

y2

)
y=k2a(1−u(1M )

nl )1/2

=
(

h(1)
l−1(x)

xh(1)
l (x)

− l

x2

)
x=k2a

.

(A15)

We again restrict our discussion to the case where x ≡ k2a �
1. The rhs of the last equation then becomes

1

2l − 1
− l

x2
� 1.

If also y � 1 then Eq. (A15) becomes

l + 1

y2
≈ 1

2l − 1
− l

x2
,

which has the unique solution

y2

x2
= 1 − u(1M )

nl = − l + 1

l
+ O(|k2a|2)

⇒ u(1M )
nl

∼= 2l + 1

l
= O(1).

These eigenvalues are the same as the quasistatic eigenvalues
of Refs. [1,2,17]. They will be assigned the value of n = 0.
All the other solutions of Eq. (A15) will have y near a zero of
jl (y), denoted by yn l , therefore |y| = O(1) � |x|. This leads to

u(1M )
nl = 1 − y2

x2
= O

(
1

|k2|2a2

)
� 1,

jl
(
k(1M )

nl a
) = − (k2a)2

ynl
jl−1(ynl ) � 1.

These large eigenvalues will be assigned values of n �= 0.
While the zeros of jl (y) are usually only available numer-

ically (with the exception of yn0 = nπ ), some of the sums
over them can be found in closed form by exploiting different
expansions of jl (y)—see, e.g., Eqs. (9.5.10) and (10.1.2) of
Ref. [22]: ∑

n

1

y2
nl

= 1

2(2l + 3)
, (A16)

∑
n

1

y4
nl

= 2l + 7

8(2l + 3)2(2l + 5)
. (A17)

The 1E eigenfunctions are

E(1E )
nlm = A(1E )

nl jl
(
k(1E )

nl r
)
Xlm(�), r < a

E(1E )
nlm = B(1E )

nl h(1)
l (k2r)Xlm(�), r > a,

where (k(1E )
nl )

2

k2
2

≡ κ
(1E )
nl
κ2

= 1 − u(1E )
nl ≈ y2

n l−1

k2
2 a2 .

Using Eq. (A11) with fl (kr) = jl (k
(1M )
nl r) when r < a and

fl (kr) = h(1)
l (k2r) when r > a we now get expressions for the

1M eigenfunctions E(1M )
nlm :

E(1M )
nlm ≡ ic

ωκ (r)

(∇ × H(1M )
nlm

)
= ck(1M )

nl

ωκ
(1M )
nl

A(1M )
nl

[(
l

2l + 1

)1/2

jl+1
(
k(1M )

nl r
)
Yll+1 m(�) −

(
l + 1

2l + 1

)1/2

jl−1
(
k(1M )

nl r
)
Yll−1 m(�)

]
, r < a,

E(1M )
nlm = ck2

ωκ2
B(1M )

nl

[(
l

2l + 1

)1/2

h(1)
l+1(k2r)Yll+1 m(�) −

(
l + 1

2l + 1

)1/2

h(1)
l−1(k2r)Yll−1 m(�)

]
, r > a,

where (k(1M )
nl )

2

k2
2

≡ κ
(1M )
nl
κ2

= 1 − u(1M )
nl ≈ y2

n l

k2
2 a2 when n �= 0, while (k(1M )

0l )
2

k2
2

≡ κ
(1M )
0l
κ2

= 1 − u(1M )
0l ≈ − l+1

l .
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The normalization properties of the V1 eigenfunctions become

1 =
∫

r< a
dV

[
CE(1E )

nlm

]∗ · E(1E )
nlm = [

A(1E )
nl

]2
∫

r<a
dV [ jl (rynl−1/a)]2|Xlm|2 = [

A(1E )
nl

]2
∫

r<a
r2 dr [ jl (rynl−1/a)]2

= [
A(1E )

nl

]2
{

r3

2
([ jl (rynl−1/a)]2 − jl−1(rynl−1/a) jl+1(rynl−1/a))

}a

0

, (A18)

1 =
∫

r<a
dV

[
CE(1M )

nlm

]∗ · E(1M )
nlm

=
(

ck1n

ωκ1n

)2 ∫
r<a

dV
[
A(1M )

nl

]2
[

jl+1
(
k(1M )

nl r
)( l

2l + 1

)1/2

Y∗
l l+1 m(�) − jl−1

(
k(1M )

nl r
)( l + 1

2l + 1

)1/2

Y∗
l l−1 m(�)

]

×
[

jl+1
(
k(1M )

nl r
)( l

2l + 1

)1/2

Yl l+1 m(�) − jl−1
(
k(1M )

nl r
)( l + 1

2l + 1

)1/2

Yl l−1 m(�)

]

= (k2a)2μ2

y2
nlκ2

[
A(1M )

nl

]2
∫

r<a
r2dr

{
l

2l + 1

[
jl+1

(
k(1M )

nl r
)]2 + l + 1

2l + 1

[
jl−1

(
k(1M )

nl r
)]2

}

= (k2a)2μ2

y2
nlκ2

[
A(1M )

nl

]2 a3

2

[
l

2l + 1

(
j2
l+1(ynl ) − jl (ynl ) jl+2(ynl )

) + l + 1

2l + 1

(
j2
l−1(ynl ) − jl−2(ynl ) jl (ynl )

)]
, n �= 0, (A19)

1 =
∫

r<a
dV

[
CE(1M )

0lm

]∗ · E(1M )
0lm

= − lμ2

(l + 1)κ2

(
A(1M )

0l

)2

2l + 1

∫
r<a

r2dr
[
l j2

l−2(ik2r
√

(l + 1)/l ) + (l + 1) j2
l−1(ik2r

√
(l + 1)/l )

]
≈ (−1)l−1 μ2a3

κ2

(
l + 1

l

)l−2 [
A(1M )

0l

]2
(l + 1)

[(2l + 1)!!]2
(k2a)2l−2. (A20)

These expressions determine the normalization coefficients A(1E )
nl and A(1M )

nl . The other V1 normalization coefficients B(1E )
nl and

B(1M )
nl are obtained by using Eqs. (A6) and (A9), respectively. These eigenfunctions will be used to expand the physical field

when that field is divergence-free.
From Eqs. (A18)–(A20), (A6), and (A9), we get the following results for the normalization coefficients of the E(1E )

nlm and E(1M )
nlm

eigenfunctions when |k2|a � 1 [recall that ynl is the n-th zero of jl (y)]:

A(1E )
nl ≈

(
2

a3

)1/2 1

jl (yn l−1)
, (A21)

B(1E )
nl ≈ i

(
2

a3

)1/2 (k2a)l+1

(2l − 1)!!
, (A22)

A(1M )
n �=0 l ≈

[
2κ2

a3μ2

]1/2 ynl

k2a

1

jl−1(ynl )
, (A23)

B(1M )
n �=0 l ≈ −i

[
2κ2

a3μ2

]1/2 (k2a)l+2

(2l − 1)!!
, (A24)

A(1M )
0l ≈ (−i)l−1

[
κ2

(l + 1)μ2a3

]1/2 (2l + 1)!!

(k2a)l−1

(
l

l + 1

) l−2
2

, (A25)

B(1M )
0l ≈ −

(
κ2

(l + 1)μ2a3

)1/2 l + 1

l

(k2a)l+2

(2l − 1)!!
. (A26)

Note that the sign used when calculating the square root of (A(F )
nl )

2
to get A(F )

nl was chosen arbitrarily. This does not affect the
final results for the physical fields.
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From these results, we can write the following closed form expressions for the eigenfunctions when k2a � 1:

E(1E )
nlm ≈

(
2

a3

)1/2 jl (ryn l−1/a)

jl (yn l−1)
Xlm, r < a, (A27)

E(1E )
nlm ≈ i

(
2

a3

)1/2 (k2a)l+1

(2l − 1)!!
h(1)

l (k2r)Xlm, r > a, (A28)

E(1M )
n �=0 lm ≈

(
2

(2l + 1)a3

)1/2 1

jl−1(ynl )
[l1/2 jl+1(rynl/a)Yll+1m(�) − (l + 1)1/2 jl−1(rynl/a)Yll−1m(�)], r < a, (A29)

E(1M )
n �=0 lm ≈ −i

(
2(2l + 1)

a3

)1/2 (k2a)l+2

(2l + 1)!!

[
l1/2h(1)

l+1(k2r)Yll+1m(�) − (l + 1)1/2h(1)
l−1(k2r)Yll−1m(�)

]
, r > a, (A30)

E(1M )
0lm ≈ (−i)l

(
2l + 1

(l + 1)a3

)1/2( l

l + 1

) l−1
2 (2l − 1)!!

(k2a)l−1
[l1/2 jl+1[ik2r

√
(l + 1)/l]Yll+1m(�)

− (l + 1)1/2 jl−1[ik2r
√

(l + 1)/l]Yll−1m(�)], r < a, (A31)

E(1M )
0lm ≈ −

(
2l + 1

(l + 1)a3

)1/2 l + 1

l

(k2a)l+2

(2l + 1)!!

[
l1/2h(1)

l+1(k2r)Yll+1m(�) − (l + 1)1/2h(1)
l−1(k2r)Yll−1m(�)

]
, r > a. (A32)

We now turn to the problem of calculating the local physical field E(r) when the incident field E01(r) is a plane wave
traveling along z axis in the No. 2 constituent with right/left-handed circular polarization when m = 1 or m = −1, namely (see
Eq. (16.139) in Ref. [13]):

E01(r) ≡ −m
√

2 emeik2z =
∞∑

l=1

il
√

4π (2l + 1)

×
{

jl (k2r)Xl m − im

[(
l

2l + 1

)1/2

jl+1(k2r)Yl l+1 m −
(

l + 1

2l + 1

)1/2

jl−1(k2r)Yl l−1 m

]}
. (A33)

The scalar products between this field and the various eigenfunctions become〈
E(1E )

nlm

∣∣E01
〉
1 = il

√
8π (2l + 1)a3

(k2a)l

y2
n l−1(2l − 1)!!

, (A34)

〈
E(1M )

n �=0 lm

∣∣E01
〉
1 = mil−1

√
8π (2l + 1)a3

(k2a)l+1

y2
nl (2l − 1)!!

, (A35)

〈
E(1M )

0lm

∣∣E01
〉
1 = mil

(
4π (l + 1)a3

2l + 1

)1/2 (k2a)l−1

(2l − 1)!!
. (A36)

When these results are used in Eq. (26), along with the explicit forms of the eigenfunctions from Eqs. (A27)–(A32) and the
various eigenvalues we find that these eigenfunctions contribute to Esc1 outside the sphere as follows. When κ1, and therefore
u(1) ≡ 1 − κ1/κ2, are finite, the eigenstates E(1E )

nlm and E(1M )
n �=0 lm contribute terms of order (k2a)2l+3 and (k2a)2l+4, respectively, to

Esc1, while E(1M )
n=0 lm contribute terms of order (k2a)2l+1. However, when κ1 and u(1) are infinite then E(1E )

nlm ∝ (k2a)2l+1, E(1M )
n �=0 lm ∝

(k2a)2l+2, and E(1M )
n=0 lm ∝ (k2a)2l+1. Therefore, when u(1) is finite only E(1M )

n=0 l=1 m makes an important contribution to the series in
Eq. (26). However, when u(1) is infinite then E(1M )

n=0 l=1 m and E(1E )
nl=1 m for all values of n make important contributions to that series.

This leads to the following closed form approximation for the scattered field when r > a:

Esc1 ≈ m
∑

l

il κ1 − κ2

lκ1 + (l + 1)κ2

√
4π (l + 1) (k2a)2l+1

(2l + 1)!! (2l − 1)!!

[√
l h(1)

l+1(k2r)Yl l+1 m(�) − √
l + 1 h(1)

l−1(k2r)Yl l−1 m(�)
]

+ m
∑
ln �=0

il

y2
nl

κ1 − κ2

κ1(k2a)2 − κ2y2
nl

4
√

π (k2a)2l+5

(2l + 1) [(2l − 1)!!]2

[√
l h(1)

l+1(k2r)Yl l+1 m(�) − √
l + 1 h(1)

l−1(k2r)Yl l−1 m(�)
]

+
∑

ln

il−1 κ1 − κ2

κ1(k2a)2 − κ2y2
n l−1

4
√

π (2l + 1)

[(2l − 1)!!]2

(k2a)2l+3

y2
nl−1

h(1)
l (k2r)Xlm(�), m = ±1. (A37)

In this result, the first sum is over the E(1M )
n=0 lm eigenstates,

the second sum is over the E(1M )
n �=0 lm eigenstates, and the third

sum is over the E(1E )
nlm eigenstates. Clearly, if (k2a)2 � κ2/κ1

then at any value of l only the terms in the first sum are

063508-16



SCATTERING ELECTROMAGNETIC EIGENSTATES OF A … PHYSICAL REVIEW A 102, 063508 (2020)

important. However, if (k2a)2 � κ2/κ1 then those terms in the
first and third sums have similar orders of magnitude, namely
they are ∝(k2a)2l+1, while the terms in the second sum are
much smaller, namely they are ∝(k2a)2l+3. In the case of
a perfectly conducting sphere, when κ1 → ∞, the first and
third sums in this equation have the same form as the classic
expression for the scattered electric field when a plane wave
impinges upon such a sphere which is much smaller than
the wavelength 2π/k2—see Eq. (16.141) of Ref. [13]. The
second sum does not appear in the latter equation, probably
because every l-term contributes negligibly compared to the
corresponding terms in the other sums. Note that the value of
m = +1 or m = −1 signifies that the incident plane wave E01

was right/left-hand circularly polarized. Note also that when
1 − u(1) ≡ κ1/κ2 is equal to 1 − u(1M )

0l ≡ −(l + 1)/l then the

scattered field due to the E(1M )
0lm eigenstate, i.e., the l term in

the first sum on the rhs of Eq. (A37) diverges. This occurs
when u(1) equals the eigenvalue u(1M )

0l ≡ (2l + 1)/l . That is
the quasistatic order-l electric multipole resonance of the iso-
lated sphere at s = s(1M )

0l ≡ l/(2l + 1).
When |k2/k1| � |k2a|2 � 1 we can write the following

approximate expression for Esc1, where only the first and third
sums and only the l = 1 terms are kept and the well known
result

∞∑
n=1

1

n2
= π2

6

was used to sum over 1/y2
n0 = 1/(nπ )2:

Esc1 ≈
(

4π

3

)1/2

(k2a)3 h(1)
1 (k2r)X1m(�) + i m

√
8

3
(k2a)3

[√
2πh(1)

2 (k2r)Y12m(�) − h(1)
0 (k2r)em

]
, m = ±1. (A38)

When the incident field is produced by an externally given current density which is nonzero only outside the sphere, then we
can use the eigenfunctions of Eqs. (A27)–(A32) to calculate their overlap integrals with Jex(r). We will assume that these source
currents are a point source, namely, Jex(r) = J0δ

3(r − r0) where r0 is outside the sphere. In that case, we find

〈
E(1E )

nlm

∣∣Jex
〉
2 = i

(
2

a3

)1/2 (k2a)l+1

(2l − 1)!!
h(1)

l (k2r0)(X∗
lm(�0) · J0), (A39)

〈
E(1M )

n �=0 lm

∣∣Jex
〉
2 = i

(
2(2l + 1)

a3

)1/2 (k2a)l+2

(2l + 1)!!

([√
lh(1)

l+1(k2r0)Y∗
ll+1m(�0) − √

l + 1h(1)
l−1(k2r0)Y∗

ll−1m(�0)
] · J0

)
, (A40)

〈
E(1M )

n=0 lm

∣∣Jex
〉
2 =

(
(2l + 1)

(l + 1)a3

)1/2 l + 1

l

(k2a)l+2

(2l + 1)!!

([√
lh(1)

l+1(k2r0)Y∗
ll+1m(�0) − √

l + 1h(1)
l−1(k2r0)Y∗

ll−1m(�0)
] · J0

)
. (A41)

Using these results in Eq. (23) leads to the following approximate expression for Esc1:

Esc1 = 8π i

ωκ2a3

∑
nlm

κ1 − κ2

κ1(k2a)2 + κ2y2
nl−1

(k2a)2l+6

[(2l − 1)!!]2

1

y2
nl−1 − (k2a)2

h(1)
l (k2r0)(X∗

lm(�0) · J0)h(1)
lm (k2r)Xlm(�)

− 8π i

ωκa3

∑
n �=0 lm

{
(k2a)2l+8

(2l − 1)!! (2l + 1)!!

κ1 − κ2

κ1(k2a)2 − κ2y2
nl

1

y2
nl − (k2a)2

× [(
l1/2h(1)

l+1(k2r0)Y∗
ll+1 m(�0) − (l + 1)1/2h(1)

l−1(k2r0)Y∗
ll−1 m(�0)

) · J0
]

× [
l1/2h(1)

l+1(k2r)Yll+1 m(�) − (l + 1)1/2h(1)
l−1(k2r)Yll−1 m(�)

]}
− 4π i

ωκ2a3

∑
lm

(k2a)2l+4(l + 1)

[(2l + 1)!!]2

κ1 − κ2

lκ1 + (l + 1)κ2

× [(
l1/2h(1)

l+1(k2r0)Y∗
ll+1 m(�0) − (l + 1)1/2h(1)

l−1(k2r0)Y∗
ll−1 m(�0)

) · J0
]

× [
l1/2h(1)

l+1(k2r)Yll+1 m(�) − (l + 1)1/2h(1)
l−1(k2r)Yll−1 m(�)

]
. (A42)

Here too, when |k2a|2 � |κ2/κ1| � 1 then only the third sum, which represents the contributions of the E(1M )
n=0 lm eigenstates, is

important. However, when |κ2/κ1| � |k2a|2 � 1 then that sum as well as the first sum, which represents the contributions of the
E(1E )

nlm eigenstates, are important.
Another case worth discussing is when the physical field is produced by a given external current density Jex(r) that is nonzero

only inside the sphere, i.e., for r < a. This case was not treated previously using the EM eigenstates. In that case, we use Eq. (38)
to expand the divergence-free physical field Ẽ ≡ E + [4π i/(ωκ2)]Jex in the divergence-free E(1)

n eigenfunctions. In order to do
that we need the following overlap integrals of E(1)

n and Jex.
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Again we assume that Jex(r) = δ3(r − r0), where now r0 < a:〈
E(1E )

nlm

∣∣Jex
〉
1 =

(
2

a3

)1/2 jl (r0yn l−1/a)

jl (yn l−1)
(X∗

lm(�0) · J0), (A43)

〈
E(1M )

n �=0 lm

∣∣Jex
〉
1 = −

(
2

(2l + 1)a3

)1/2 1

jl−1(yn l )
([l1/2 jl+1(r0yn l/a)Y∗

ll+1 m(�0) − (l + 1)1/2 jl−1(r0yn l/a)Y∗
ll−1 m(�0)] · J0),

(A44)

〈
E(1M )

n=0 lm

∣∣Jex
〉
1 = −i

(
2l + 1

a3

)1/2( r0

a

)l−1
(Y∗

ll−1 m(�0) · J0). (A45)

Using these results, along with Eqs. (A27)–(A32), in Eq. (38), we get

Ẽ(r) ≈ 8πk2

κ1ωa3

∑
n �=0 lm

y2
nl

κ1(k2a)2 − κ2y2
nl

1

jl−1(ynl )

(k2a)l+2

(2l + 1)!!
([ jl+1(r0ynl/a)Y∗

ll+1 m(�0) − jl−1(r0ynl/a)Y∗
ll+1 m(�0)] · J0)

× [
h(1)

l+1(k2r)Yll+1 m�) − h(1)
l−1(k2r)Yll+1 m�)

]
− 4πk4

2

ωκ1

∑
lm

(l + 1)3/2

lκ1 + (l + 1)κ2

(k2r0)l−1

l (2l − 1)!!
(Y∗

ll−1 m(�0) · J0)
[
h(1)

l+1(k2r)Yll+1 m(�) − h(1)
l−1(k2r)Yll+1 m(�)

]
+ 8πk2

κ1ωa3

∑
nlm

y2
nl−1

κ1(k2a)2 − κ2y2
nl−1

(k2a)l+1

(2l − 1)!!

jl (r0ynl−1/a)

jl (ynl−1)
(X∗

lm(�0) · J0)h(1)
l (rynl−1/a)Xlm(�). (A46)

Here only the second sum, which represents the contribution of the E(1M )
n=0 lm eigenstates and is independent of the sphere radius

a, is important, irrespective of the values of κ1 and κ2. Because r0 < a and |k2a|2 � 1, the most important contribution comes
from the l = 1 term in that sum, and it is independent of the precise location of the point source r0. To see this note that
Y10m(�0) = em/

√
4π is independent of �0.

For the sake of completeness we note that the class 3 eigenfunctions are now ∇φnlm, where φnlm(r) is a scalar spherical
harmonic Ylm multiplied by a radial function fnlm(r) that vanishes at r = a. Returning to the notation where V1 is the inside of
the sphere while V2 is its outside, we find that the V1 normalized radial function fnlm(r) is proportional to the spherical Bessel
function jl (ynl r/a) as follows:

fnlm(r) = ±
(

2

a

)1/2 jl (ynl r/a)

ynl jl−1(ynl )
, r < a. (A47)

Similarly, the class 3 normalized V2 radial eigenfunctions are

gnlm(r) = ±i

(
2

a

)1/2 fl (xnl r/a)

xnl fl−1(xnl )
, r > a, (A48)

where fl (z) can be either jl (z) or the spherical Bessel function of the second kind nl (z), which is real for real z and tends to 0
when z → ∞. xnl is the n-th zero of fl (z). Integrands where any of these eigenfunctions appears at r > a require a multiplicative
factor e−δr, δ > 0 for convergence of the integral. At the end of the calculation the limit δ → 0+ needs to be taken.
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