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Discrete spectrum radiation from a charged particle moving in a medium with Maxwell’s fish-eye
refraction-index profile
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Radiation from a charged particle moving in a medium with a Maxwell’s fish-eye refraction index profile is
considered. It is shown that the radiation spectrum has a discrete character. The main emitted wavelength is
proportional to the refractive profile’s radius and has a dipole character in a regular medium. A Cherenkov-like
threshold velocity is established. A cardinal rearrangement of angular distribution in a lossless medium is
predicted. This behavior is caused by the total internal reflection in a lossless medium as opposed to photons’ at-
tenuated total reflection in the regular medium. A lossless medium ensures that both directed and monochromatic
emission can serve as a light source in the corresponding regions.
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I. INTRODUCTION

Recently the interest in the Maxwell’s fish-eye [1] refrac-
tion index profile has increased dramatically. The reasons are
its possible use in cloaking phenomena [2], perfect imag-
ing [3–6], quantum optics with single atoms and photons [7],
optical resonators [8,9], etc. Earlier we showed [9] that apart
from the spherical symmetry, Maxwell’s fish eye possesses
an additional symmetry. The extended symmetry leads to ad-
ditional integrals of motion. In the geometrical optics limit,
all the photon trajectories are closed and their parameters are
expressed through the integrals of motion [9]. To detect a
cloak in Maxwell’s fish-eye medium, it was suggested [10] to
use the radiation induced by the motion of a charged particle.
Consideration was realized by exploring the dyadic Green’s
functions [11]. It was revealed that the emitted radiation is a
mix of Cherenkov and transition radiations.

As apposed to the research regarding light propagation in
Maxwell’s fish-eye medium, much less attention has been
paid to light generation problems in that particular medium.
However, it turns out that radiation emitted by a charged
particle when it passes through such a medium possesses
unique properties as well (see below). In the present paper,
we consider the spectrum and angular distribution of radia-
tion from a charged particle moving in Maxwell’s fish-eye
refraction profile medium. Instead of dyadic Green’s function,
we utilize the exact Green’s function of the scalar Helmholtz
equation [12–14]. This approach allows us to obtain complete
analytical expressions for radiation intensity that reveal phys-
ical results.

II. INITIAL RELATIONS

We start from Maxwell’s equations for the field Fourier
components:

∇ × E(r, ω) = iω

c
B(r, ω),
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∇ × H(r, ω) = 4π

c
j(r, ω) − iω

c
D(r, ω),

∇ · D = 4πρ(r, ω), ∇ · B = 0,

B(r, ω) = μ(r, ω)H(r, ω),

D(r, ω) = ε(r, ω)E(r, ω). (1)

where ρ and j are the charge and current densities associated
with the moving particle. We proceed with the calculations
using vector potential A and scalar potential φ instead of
E and B. From Eq. (1) those can be introduced in the
following way:

B = ∇ × A, E − iω

c
A = ∇φ. (2)

By substituting the expressions for E and B into the second
equation in Eq. (1), we get to the following equation:

∇ × 1

μ
∇ × A = 4π

c
j − iω

c
ε(∇φ + iω

c
A). (3)

From Eq. (3), assuming that μ(r, ω) is a slowly varying
function in the space and using the property of a double curl,
we obtain

∇2A + ω2

c2
ε(r)μ(r)A

= −4π

c
μj + ∇(∇ · A) + iω

c
ε(r)μ(r)∇φ. (4)

We take the gauge condition for an inhomogeneous medium
in the following form:

∇(∇ · A) + iω

c
ε(r)μ(r)∇φ = 0 (5)

and eventually find the equation for the vector potential

∇2A + ω2

c2
ε(r)μ(r)A = −4π

c
μj. (6)
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FIG. 1. Geometry of the problem. Observation point is far from
the charge and from the core of the refraction profile.

Note that although the condition (5) is similar to the Lorenz
gauge condition for inhomogeneous media, it does not result
in completely decoupled equations for vector and scalar po-
tentials. However, our choice of the gauge condition leads
to a less complex equation for the vector potential, which is
more important when examining problems regarding radia-
tion. Note also that when deriving Eq. (6) we assume the slow
variance only for μ(r) but not for ε(r). This means that our
consideration is correct for quite a large class of materials
(particularly all nonmagnetic mediums μ = 1). Also note that
the form of the equation for A can be changed depending on
the gauge condition we choose [15]. The point is that in an
inhomogeneous medium the Lorenz gauge condition acquires
different forms [15]. Again here we choose the one that leads
to the simplest equation for the vector potential.

It follows from Eq. (6) that the radiation vector potential
associated with the external source is directed similarly to
current density j, which is assumed to be directed along z;
see Fig. 1. Therefore the radiation potential can be expressed
through Green’s function of the scalar Helmholtz equation

Azr (R) = −4π

c

∫
drG(R, r)μ(r) jz(r). (7)

This equation represents a particular solution of Eq. (6) asso-
ciated with an external source. To obtain the general solution,
one should add also the solution of a homogeneous equation.
However, when examining the far-field radiation, it is the par-
ticular solution (7) that gives the main contribution. Green’s
function satisfies the equation

[
∇2 + ω2

c2
n2(R)

]
G(R, r) = δ(R − r), (8)

where n(r) = √
ε(r)μ(r) is the refraction index of the

medium. We choose it in the form (see Fig. 1)

n(r) = 2n0ρ
2

r2 + ρ2
, r < R1

1, r > R1. (9)

Green’s problem (8) is exactly solved [12,13]:

Gν (R, r) = − 1

4π cos(πν)

√
(R2 + ρ2)(r2 + ρ2)

|R − r|
√

R2r2 + 2ρ2Rr + ρ4
sin

{
(ν + 1/2) arccos

[
−1 + 2ρ2(R − r)2

(R2 + ρ2)(r2 + ρ2)

]}
, (10)

where

ν =
−1 +

√
1 + 4n2

0k2ρ2

2
. (11)

Here k = ω/c and ν �= m + 1/2,−m − 3/2 (m ∈ N ). At these specific values, as it is seen from Eq. (10), Green’s function is
divergent and one needs another expression [13]:

G̃m+1/2(R, r) = (−)m 1

4π2

√
(R2 + ρ2)(r2 + ρ2)

|R − r|
√

R2r2 + 2ρ2Rr + ρ4

(
cos

{
(m + 1) arccos

[
−1 + 2ρ2(R − r)2

(R2 + ρ2)(r2 + ρ2)

]}

× arccos

[
−1 + 2ρ2(R − r)2

(R2 + ρ2)(r2 + ρ2)

]
+

sin
{
(m + 1) arccos

[ − 1 + 2ρ2(R−r)2

(R2+ρ2 )(r2+ρ2 )

]}
2(m + 1)

)
. (12)

The current density corresponding to the particle with
charge e moving along the z axis with velocity v has
the form j(r, t ) = evδ(x)δ(y)δ(z − vzt ). The corresponding
Fourier component which determines the Fourier component
of the radiation vector potential will have the following form:

j(r, ω) = ev
v

δ(x)δ(y)eik0z, (13)

where k0 = ω/v. Using the expressions for Green’s func-
tions Eqs. (10) and (12) and the expression for the current
density (13), one can find radiation potential and radiation
intensity.

III. RADIATION POTENTIAL

First, we determine the radiation potential in the
region R < R1:

A(R) = −4π

c

∫
r<R1

drG(R, r)μ(r) j(r), R < R1. (14)

Here A ≡ Az, j ≡ jz. According to Green’s theorem, in
Eq. (14) should also appear an additional surface integral
over the sphere of radius R1. However, for large R1 � ρ,
this surface term falls faster than 1/R1, therefore it does
not give a contribution to the radiation potential. As is seen
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from Eq. (10) Green’s function has singularities at the points
ν = m + 1/2. In order to overcome this difficulty we assume
a small imaginary part for n0 and correspondingly for ν. As is
noted in Ref. [13] the expression (10) is correct for complex
values of ν. For these discrete values ν the integral (14) can
be calculated analytically [16]. We present the results for
ν = 1/2 + iIm[ν1/2] and ν = 3/2 + iIm[ν3/2], Im[ν] � 1:

A1/2(R) = −4e

c

i sgn(v)K0(k0ρ)

sinh(π Im[ν1/2])

ρ√
R2 + ρ2

,

A3/2(R) = − 8ie sgn(v)

c sinh(π Im[ν3/2])

ρ√
R2 + ρ2

× [(k0ρ)K0(k0ρ) − K1(k0ρ)], R < R1 (15)

where K0,1 are the modified Bessel functions of second
kind [16] and a nonmagnetic medium (μ ≡ 1) is assumed (see
below). When obtaining Eq. (15) in the limit R, R1 � ρ we
extend the integral limits in Eq. (14) to infinity and neglect
all the terms smaller 1/R. Note that the radiation potential
depends only on the module of the vector R. Nonisotropic
terms are possible for nondiscrete values of ν; however, they
are small in terms of the parameter 1/R. In order to find the
radiation intensity, one should know the radiation fields in the
vacuum region that matches the solutions given in Eq. (15).

In the absence of external sources, the isotropic solution of
Eq. (6) is chosen in the form

Av (R) = C
eikR

R
, R > R1. (16)

The constant C should be found from the boundary conditions.
Since there is not any current on the sphere R1 (R1 �= ẑR1), the
magnetic field is finite, and correspondingly we have (see, for
example, Ref. [15])

n × A1 = n × A2, (17)

where n is unit vector normal to the boundary surface. In
our case, this leads to the equation Av (R1) = A1/2(R1). Using
Eqs. (15) and (16) one finds

C1/2(R1) = − 4ie sgn(v)

c sinh(π Im[ν1/2])
ρK0(k0ρ)e−ikR1 . (18)

When obtaining Eq. (18) we assumed that R1 � ρ. One can
also find C3/2 and other values of C for Re[ν] = m + 1/2
in an analogous manner. For the nondiscrete values of ν,
C can be found numerically (see Fig. 2). As follows from
Fig. 2 one can expect any significant radiation emission only
at frequencies for which ν = m + 1/2.

IV. RADIATION INTENSITY

To find the radiation intensity, one should know the electric
and magnetic fields far from the charge outside of the medium
area R > R1 � ρ (see Fig. 1). Recall that the radiation vector
potential is directed along the z axis and A ≡ Az. Therefore
from Eq. (16) the magnetic field B = ∇ × A at the observa-
tion point R is given by the expressions

Bx(R) = C
ikRyeikR

R2
, By(R) = −C

ikRxeikR

R2
, Bz ≡ 0.

(19)

un
its

FIG. 2. |C(R)| dependence on R for different values of ν when
n0 = 5, β = 0.9. Straight lines mean that |A(R)| ∼ 1/R. The ampli-
tude of the radiation is negligible for ν �= m + 1/2.

Here we keep only the terms which are proportional to
O(1/R) that give a contribution to the radiation intensity. The
magnetic field energy density follows from Eq. (19):

UB = |B|2
8π

= |C|2 k2 sin2 θ

8πR2
. (20)

The electric field energy density in the vacuum is equal to the
magnetic field energy density, and the radiation intensity is
determined through the electromagnetic field energy density
as I (θ ) = cR2U , where U = 2UB. Using Eqs. (18) and (19)
for the radiation intensity at Re[ν] = 1/2, we have

I1/2(θ ) = 4e2

πc

k2ρ2K2
0 (k0ρ)

sinh2(π Im[ν1/2])
sin2θ. (21)

It follows from Eq. (11) that for n2
0 = ε + iIm[ε], Im[ε] �

ε, and ν = 1/2 + iIm[ν1/2]:

kρ =
√

3

2
√

ε
, Im[ν1/2] = 3Im[ε]

8ε
. (22)

Substituting Eq. (22) into Eq. (21), we finally obtain

I1/2(θ ) = 3e2

πc

K2
0

( √
3

2β
√

ε

)
sinh2

( 3πIm[ε]
8ε

) sin2θ, (23)

where k = k0β and β = v/c. Here we present a peak inten-
sity corresponding to the wavelength λ = 4π

√
ε/3ρ (Re[ν] =

1/2). Similar expressions can be written for smaller peak
intensities Re[ν] = 3/2, etc. Intensities for nondiscrete fre-
quencies are significantly smaller (see Fig. 1). It is well
known [16] that the modified Bessel function K0 is exponen-
tially small for large values of the argument. Therefore from
Eq. (23) we can state that for the existence of radiation, the
following condition should be satisfied:

β >

√
3

2
√

ε
. (24)

This is the analog of Cherenkov condition [17] for the
Maxwell’s fish-eye profile. Note that the radiation considered
here is the mix of Cherenkov and transition radiations; see also
Ref. [10]. As follows from Eq. (24), the radiation emission
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condition in the Maxwell’s fish-eye profile is weaker than the
ordinary Cherenkov condition in the homogeneous medium
with refraction index

√
ε, β > 1/

√
ε. However, it is stronger

than the Cherenkov condition for the homogeneous medium
with refraction index 2

√
ε. It is interesting that the condition

obtained for totally inhomogeneous medium is very similar to
the Cherenkov condition for the homogeneous medium.

As is seen from Eq. (23), the angular distribution of the in-
tensity is like that of dipole radiation. Moreover, the maximum
intensity is reached in the directions normal to the particle
velocity.

Finally we present the radiation intensity for the impedance
match medium μ(r) = ε(r) = n(r) (see Ref. [4]):

I i
1/2(θ ) = 9e2

πc

K2
1

( √
3

2β
√

ε

)
εβ2 sinh2

( 3πIm[ε]
8ε

) sin2θ. (25)

Comparing with the nonmagnetic medium case Eq. (23) one
can see that the main difference is the additional particle
energy dependence (∼1/β2).

Lossless medium: Nonisotropic radiation

The main difference is happening at the discrete frequencies ν = m + 1/2. In this case, the radiation potential is determined
through the generalized Green’s function (12). Our estimates show that the radiation potential at large distances R � ρ

behaves as

Ã1/2(R) ∼ 8e sgn(v)

πc

∫ R1

−R1

dz
(z2 − ρ2 − 4ρ2z cos θ/R)eik0z√

[(z − R cos θ )2 + R2 sin2 θ ](z2 + ρ2)[(z + ρ2 cos θ/R)2 + ρ4 sin2 θ/R2]

arccos
ρ2 − z2 − 4ρ2z cos θ/R

z2 + ρ2
. (26)

Unfortunately this integral cannot be taken analytically, and
we are forced to use some numerical estimations. Never-
theless we will try to collate analytic and numerical results
and make qualitative predictions of radiation properties in
different cases. The second term in Eq. (12) for Re[ν] = 1/2
has an isotropic character and is analogous to the regular
case in Eq. (10). It is obvious that at small angles θ → 0,
the main contribution to the integral (26) gives the pole at
z = −ρ2 cos θ/R. Conversely, the contribution of the pole z =
R cos θ at large distances is negligible because of the oscilla-
tions eik0z in the integral. We present the results of numerical
estimates of the integral Eq. (26) in Figs. 3 and 4. As follows
from Fig. 3 at large distances the potential behaves as ∼1/R.
However, the amplitude is different for different observation
angles, contrary to the case in the previous paragraph.

(a
rb

. u
ni

ts
)

FIG. 3. R dependence of radiation potential given by Eq. (26) for
different angles. Here we take the observation point on the cutting
boundary R ≡ R1.

The radiation potential in the lossless medium is highly
anisotropic. It follows from Fig. 3 that at large observation
angles the potential is significantly smaller. The maximum
potential is reached at small angles from the particle trajec-
tory. Modifying the imaginary part of n0, one can observe
a transition from highly directed to isotropic radiation po-
tential. As is shown above, the isotropic radiation potential
leads to a dipole-like radiation intensity. However, in the loss-
less medium the radiation potential is highly directed. Note
that the R dependence for all angles is ∼1/R; see Fig. 3.
The straight lines in Fig. 3 represent the radiation potentials
for different values of Im[n0] calculated via Eq. (15). The
U -shaped curve is obtained for the lossless medium using gen-
eralized Green’s function (12) and (26). The actual radiation
potential is determined by the curve below the straight lines.

un
its

FIG. 4. Angular distribution of radiation vector potential.
Straight lines are the potentials for the media with losses for different
values of refraction index imaginary part.
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Therefore one can distinguish three different regimes of ra-
diation depending on the losses of the medium (Im[n0]); see
Fig. 4.

Physically, the above-mentioned transition from one angu-
lar distribution to another can be understood in the following
way. The vector potential of a moving charge in the vacuum

behaves like A0(R) ∼ K0(
√

k2
0 − k2R|sin θ |). This means that

it is concentrated around the direction of the particle’s velocity
because for large arguments K0 falls exponentially. This alone
is not a photonic field yet. When one adds a nonhomogeneous
medium these pseudophotons scatter, becoming real photons.
In the Maxwell’s fish-eye medium without losses, photons
are totally reflected from layers with a decreasing refraction
index. Because of the total internal reflection, those remain
around the charge. When the losses are taken into account,
photons evanescently penetrate through the layers and even-
tually result in the isotropic angular distribution for large
enough losses, as seen in Fig. 3. This transition is similar
to the phenomenon of attenuated total reflection; see, for
example, Ref. [18].

V. CONCLUSION AND DISCUSSION

We have considered the radiation from a charged particle
moving through a medium with Maxwell’s fish-eye refraction
index profile. The spectrum of radiation has a discrete charac-
ter. The main emitted wavelength is proportional to the radius
of refraction profile λ = 4π

√
ε/3ρ. In the regular medium

(with losses) the radiation has a dipole character, whereas in
the lossless medium it is highly directed. In the intermediate
regime with moderate losses radiation will be nonisotropic.

So far we assumed that the particle trajectory along z
passes through the origin. If the trajectory is at some distance
d from the origin, then the corresponding current density is
determined as

j(r, ω) = e
v
v
δ(x − dx )δ(y − dy)eik0z. (27)

Similar calculations show that all expressions keep their form
except ρ in the argument of the Bessel function (21), where
one should substitute it with

√
ρ2 + d2 where d2 = d2

x + d2
y .

So for the main emitted wavelength λ = 4π
√

ε/3ρ, one has

Id
1/2(θ ) = 3e2

πc

K2
0

(√
3
4ε

+k2d2

β

)
sinh2

( 3πIm[ε]
8ε

) sin2θ. (28)

Correspondingly, the Cherenkov condition acquires the form

β >

√
3

2
√

ε

√
1 + d2

ρ2
. (29)

This condition means that the impact distance should be
smaller than the emitted wavelength d < λ/2π .

In the anisotropic case the radiation potential depends on
not only the ratio d/λ as in the isotropic case but also d/ρ.
Therefore here the restriction on the impact parameter is
stronger, d/ρ � 1.

Note that Maxwell’s fish-eye millimeter scale systems al-
ready exist in two dimensions [19] as well as in three [20].
Therefore they can be used for the generation of radiation in
microwave and terahertz regions. As is seen from Eq. (19),
radiation intensity does not depend on the cutting parameter
R1 (except in the lossless medium case). This means that real
systems with the Maxwell’s fish-eye profile can have a size of
order radius ρ [19,20].
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