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Non-Hermitian analysis of surface creeping waves in optical microcavities:
Nature of external resonances
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Undiscovered properties of surface creeping wave states given by complex angular momentum poles, so-
called Regge poles (RPs) in optical microcavity scattering, are transparently elucidated on the frameworks of
non-Hermitian physics. In particular, we analytically show that the nature of external resonances (ERs) given by
complex wave numbers is equivalent to surface creeping wave RPs. Moreover, by obtaining the full structural
characteristics of RPs for different polarizations, it is found that notable nontrivial RPs in transverse-magnetic
polarization arise owing to the classical Brewster angle. Finally, we explicitly demonstrate the emergence of
non-Hermitian degeneracies incorporating different classes of RPs.
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I. INTRODUCTION

Non-Hermitian physics is one of the active research fields
today, as generic realistic physical systems are open systems
[1–5]. Under the canonical Sommerfeld radiation condition
[6], this openness gives rise to decaying states described
in terms of complex-valued eigenvalues. These conventional
states are dominantly confined inside the system and are re-
ferred to as internal resonances (IRs). Up to date, they have
been widely proven to form non-Hermitian degeneracies, so-
called exceptional points (EPs) [7–16], at which eigenvalues,
as well as corresponding eigenstates, coalesce simultaneously.
Besides these traditional IRs, recently, another exotic class of
resonances, so-called external resonances (ERs), was discov-
ered in optical systems [17–19]. More strikingly, it was shown
that IRs and ERs can merge to form EPs as well [19].

In contrast to IRs, very little is known about ERs; par-
ticularly, their physical substantiation is still controversial,
since their wave functions almost vanish inside the system
and quickly diverge outside the system. This extreme diver-
gence in space is, however, an artificial consequence of a
rapid exponential decay of waves in time [20,21], which can
be interpreted as a retardation effect [20]; waves, ψ (t, r) ∼
eikr rekire−iωr t e−ωit , fulfilling the Sommerfeld radiation condi-
tion, spatially diverge when r → ∞ and temporally converge
to zero when t → ∞, since ω = ck ⇐⇒ ωr + iωi = c(kr +
iki ), where {ωr, ωi, kr, ki} ∈ R+, i = √−1, and c is the speed
of light. Because of those inherent ambiguities, ERs have
been underestimated significantly more than they deserve,
even after the interactions between IRs and ERs were explic-
itly clarified [18,19]. Working out these unresolved questions
in depth, in this paper we will show that the nature of
ERs is the surface creeping wave, which is accessible by
employing the complex angular momentum (CAM) of the
Sommerfeld-Watson transformation [22–26]. In the course of
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demonstrations, profound structural properties of CAMs, as
well as the emergence of EPs of CAMs, will be unveiled.

Complex angular momentum poles of a scattering matrix
[27–29] are essentially equivalent to the familiar ener-
getic poles and are called Regge poles (RPs) [30–33]. The
energy-dependent variations of RPs are referred to as Regge
trajectories (RTs) [34]. Because CAMs have not been well
explored from the viewpoint of non-Hermitian physics, many
faces of their intrinsic characteristics in this aspect are still
not well understood. Originally, the CAM approach was
proposed to overcome the slow convergence of the partial-
wave sums given by a Mie series [27–29] for creeping
microwaves around the Earth [35]. So far, the CAM technique
has been successfully applied to a great variety of research
fields, such as electromagnetic waves [36,37], quantum field
theories [38,39], acoustics [40–42], black hole and gravita-
tional waves [43–46], surface polaritons [47,48], fundamental
particle waves [49,50], and Aharonov-Bohm effects [51].
Alongside these foundational topics, there are fresh trials to
use CAMs for communication signals of wearable devices
around a human body [52] or the remote sensing of target
objects [53].

II. PRINCIPLES OF SCATTERING AND RESONANCE

We first begin with discussions of the ordinary scatter-
ing of a two-dimensional optical microdisk excited by an
incident plane wave. As shown in Fig. 1, general incident
fields result in reflection, transmission, and creeping sur-
face waves. Moreover, since the size of our microdisk is
in the Mie regime, forward scattering is dominant. Assum-
ing time harmonics, e−iωt , we solve the time-independent
wave equation −∇2ψ = n(
r)2k2ψ for optical fields, where
k = kr − iki is the vacuum wave number for {kr, ki} ∈ R+,
and n(
r) the position-dependent refractive index. Here, kr and
ki correspond to the frequency and the decay rate of fields,
respectively. From now on, a dimensionless wave number kR
scaled by a disk radius R is used.
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FIG. 1. A schematic of plane-wave scattering impacting on a
dielectric disk with a wave number kR ≈ 44 and an impinging angle
θ = 0. In this illustration, a refractive index is set to be n = 2.4
inside the disk, r < R, and n = 1 otherwise. A geometric optically
inaccessible shadow region is in between the two horizontal straight
lines.

By means of a Jacobi-Anger expansion [27–29], optical
fields in and outside of a microdisk can be given by partial-
wave sums as follows:

ψr<R(r, θ ) =
∞∑

m=−∞
imAmJm(nkr)eimθ ,

ψr>R(r, θ ) =
∞∑

m=−∞
im

[
Jm(kr) + SmH (1)

m (kr)
]
eimθ , (1)

where Jm, H (1)
m , Am, and Sm are the mth-order Bessel function

of the first kind, the Hankel function of the first kind, a trans-
mission coefficient, and a scattering coefficient, respectively.
For the regularity of the transmitted fields at the origin r = 0,
only Jm is taken for r < R. Imposing the dielectric boundary
condition at the disk boundary r = R for θ ∈ [0, 2π ),

∂αψr<R(R) = N 2∂αψr>R(R) and ψr<R(R) = ψr>R(R),

we can fix the coefficients Am and Sm as follows:

Am = 2i/(πkR)

Jm(nkR)H ′(1)
m (kR) − N J ′

m(nkR)H (1)
m (kR)

,

Sm = − Jm(nkR)J ′
m(kR) − N J ′

m(nkR)Jm(kR)

Jm(nkR)H ′(1)
m (kR) − N J ′

m(nkR)H (1)
m (kR)

. (2)

Here, ∂α ≡ 
α · 
∇, and 
α is an outward-unit normal vector of
the disk boundary. The prefactor N is selected according to
the field polarization: N = n for transverse magnetic [TM:
ψ = (0, 0, Ez )] polarization and N = 1/n for transverse elec-
tric [TE: ψ = (0, 0, Hz )] polarization.

FIG. 2. Total scattering cross section as a function of kR for
(a) TM and (b) TE polarization obtained by Mie sums (thick black)
and by RPs (thin orange) for n = 2.4. The thin gray oscillating
curves around σ/R = 0 represent the RP contributions only. The thin
red lines at σ/R = 4 stand for the background integral contribution
σg/R = 4 (see text).

Having computed the scattering coefficient Sm, we can
deduce the scattering amplitude,

f (θ, kR) = 1 − i√
πkR

∞∑
m=−∞

Sm(kR)eimθ , (3)

by comparing the asymptotic far fields,

ψ (r, θ ) = ψincident + ψscattered ∼ ei
k·
r + f (θ, kR)
eikr

√
r
,

to Eqs. (1) with H (1)
m (kr) ≈ (1 − i)/

√
πk(−i)meikr/

√
r for

r → ∞. Given the scattering amplitude, the total scattering
cross section,

σ/R =
∫ 2π

0
| f (θ, kR)|2dθ = 4

kR

∞∑
m=−∞

|Sm(kR)|2, (4)

can be obtained, as shown in Fig. 2. In the figure, we can
identify the characteristic structures of sharp peaks imprinted
on the bold fluctuations that are induced by resonances corre-
sponding to poles of Sm(kR) such that

Jm(nkR)H ′(1)
m (kR) = N J ′

m(nkR)H (1)
m (kR). (5)

Resonances kR ∈ C as solutions of Eq. (5) are located in
the fourth quadrant, {Re(kR) > 0, Im(kR) < 0}, and are clas-
sified into two groups [17–19,36,37]: IRs for |Re(kR)| �
|Im(kR)| and ERs for |Re(kR)| � |Im(kR)|. In Fig. 3, we can
clearly discern ERs from IRs by their considerably larger
values of |Im(kR)| than those of IRs. Note that in quantum
mechanical terminologies, IRs and ERs are called Fashbach
and shape resonances [54,55], respectively.

III. SURFACE CREEPING WAVES: NATURE OF
EXTERNAL RESONANCE

In this section, we demonstrate the fact that the nature
of ER in optical microdisks is the surface creeping wave.
To this end, we construct asymptotic (i.e., |kR| � 1) kR’s
for ERs expressed in terms of angular momentum m. This
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FIG. 3. Wave numbers as solutions of Eq. (5) for integer values
of m with n = 2.4. (a) Real and (c) imaginary parts of wave numbers
for TM polarization, and (b), (d) for TE polarization. Solid dots (•)
and open circles (◦) mark the internal and external resonances. Thin
solid curves are the asymptotic results of Eq. (6) for the TM case and
of Eq. (7) for the TE cases. The thick solid curve in (b) represents the
Brewster modes of Eq. (12).

can be achieved perturbatively from the poles of the perfect-
electric-conductor (PEC) scattering that are well interpreted
as creeping waves [27–29,56–58].

The poles of the PEC scattering obey the Dirichlet bound-
ary condition [H (1)

m (kTM
PECR) = 0] for TM and the Neumann

boundary condition [H ′(1)
m (kTE

PECR) = 0] for TE polarization,
respectively. Now, suppose that kR’s of Eq. (5) for TM are
at the vicinity of kTM

PECR such that kR → kTM
PECR + δ for |δ| �

|kTM
PECR|, then the asymptotic kR’s can read [54]

kER-TM
l,m R ≈ kTM

PECR + δ ≈ m + αlm
1
3 + βlm

− 1
3

− i√
n2 − 1

+ iαlm− 2
3

3(n2 − 1)
3
2

(n > 1), (6)

with J ′
m(z)/Jm(z) ≈ i

√
1 − m2/z2 [24–26]. Here, αl =

2−1/3e−i2π/3κl , β = 2−2/3e−i4π/33κ2
l /10, and −κl is the lth

zeros of the Airy function of the first kind, i.e., Ai(−κl ) = 0
[59]. It is emphasized that although Ref. [54] claimed that
Eq. (6) is applicable to the TE case too, actually, it is valid for
the TM case only. Instead, the correct asymptotic kR’s for TE
polarization can be obtained near kTE

PECR of the PEC scattering,
obeying the Neumann boundary condition by means of the
similar procedures implemented in Ref. [54], as follows:

kER-TE
l,m R ≈ kPEC

TE R + δ ≈ m + αlm
1
3 + β lm

− 1
3

+ i
[
α2

l (1 − 3n2) + 2β l (n
2 − 1)

]
4α2

l n2(n2 − 1)
− i

√
n2 − 1

2αl n2m− 2
3

− i
[
(n2 − 1)2

(
3α2

l − 2β l

)2 − 2α4
l

]
8α3

l n2(n2 − 1)
3
2 m

2
3

(n > 1), (7)

FIG. 4. Schematic illustration of the integral contours. For the
integral of Watson transformation in Eq. (9), the original contour en-
closing normal poles {×; νN ∈ Z} is deformed to enclose the Regge
poles {•; νR ∈ C} in the sense of Cauchy’s residue theorem.

where αl = 2−1/3e−i2π/3κ l , β l = (κ2
l 3/10 − κ l/5)2−2/3

e−i4π/3 [59], and −κ l is the lth zeros of the derivative of the
Airy function of the first kind, i.e., Ai′(−κ l ) = 0.

In Fig. 3, a definite agreement between the direct numerical
solutions of Eq. (5) (open circles) and the results of Eqs. (6)
and (7) (thin solid curves) is well proved. Each of the first
three terms on the right-hand side (RHS) in Eqs. (6) and
(7) are the same ones that correspond to the creeping wave
modes in PEC scattering, whereas the remaining terms are
the dielectric corrections. In-depth detailed explanations as-
sociated with this dielectric correction can be found, e.g., in
Ref. [25]. Because this dielectric correction arises due to the
wave transmission toward the inside of the optical microcavity
from the surface, it disappears as n → ∞. Therefore, it is
consistent with the results of Ref. [17]: ERs converge to zeros
of Hm(z) for TM polarization and to those of H ′

m(z) for TE
polarization, respectively. Note that Eqs. (6) and (7) are valid
when the refractive index is not too close to unity and fail in
the limit n → 1.

IV. POLARIZATION-DEPENDENT REGGE POLES AND
REGGE TRAJECTORIES

Now, we explicitly calculate the creeping wave RPs
corresponding to kER

l,mR. Applying the Sommerfeld-Watson
series-to-integral transformation [27–29]

∞∑
m=−∞

g(m) = 1

2π i

∮
C

πg(ν)e−iνπ

sin(νπ )
dν (8)

to Eq. (3), we obtain the integral representation of the scatter-
ing amplitude as

f (θ, kR) = − i + 1

2
√

πkR

∮
C

Sν (kR)eiν(θ−π )

sin(νπ )
dν. (9)

The contour C encloses the normal poles: νN ∈ Z of
sin(νNπ ) = 0 on the real axis, and it is easy to recover the
original Mie series sum in Eq. (3) by the residue theorem
[60], taking these poles into account. In Fig. 4, we can see the
positions of the normal poles and the contour of the integral
enclosing these poles. The integrand in Eq. (9) has another
family of singularities [30–32]: νR ∈ C satisfying Eq. (5), i.e.,
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FIG. 5. RPs for TM [(a), (c)] and TE [(b), (d)] polarization
on the upper-half CAM plane, [Re(ν ), Im(ν )], at Re(kR) = 30.
Open circles (◦) mark the poles obtained numerically by Eq. (5),
crosses (+) Eqs. (6) and (7), and squares (�) Eqs. (10) and (11),
respectively. Gray dashed arrowed curves in (a) and (b) are the
schematic representations of the deformed integral contour enclos-
ing RPs (cf. Fig. 4). Among type-IV poles shown in (a) and (b),
the ones corresponding to the first and second zeros of the Airy
functions and their derivatives are exemplified by labeling l = 1, 2.
(c) and (d) are the magnification of (a) and (b) clarifying type-I,
type-II, and type-III poles, separated by the vertical dashed lines of
|Re(νR )| = Re(kR). Around this border, while RPs of TM polariza-
tion continue smoothly, those of TE are strongly pulled upward due
to the Brewster angle, which corresponds to a near but slightly lower
value of the vertical lines (see text).

SνR → ∞. They are exemplified by open circles in Figs. 5(a)
and 5(c) for TM polarization and Figs. 5(b) and 5(d) for
TE polarization when kR = 30 and n = 2.4. The positions
of these complex poles and the deformed integral contour
enclosing them can be found in Fig. 4.

A. Classification of Regge poles

These singularities are the very RPs and are categorized
into four different classes [24–26,61]: (i) type I, highly
confined states; (ii) type II, relatively well-confined states;
(iii) type III, almost integer values in the second quadrant;
and (iv) type IV, creeping wave states. The two former
poles (≡IR-RPs) are associated with IRs while the last one
(≡ER-RPs) with ERs. Note that a clear interpretation of type-
III poles is still missing to the best of our knowledge. To
examine the equivalency between ERs and ER-RPs, we obtain
the values of m (now, it is ν ∈ C) in Fig. 5 by solving Eqs. (6)
and (7) for kR = 30, n = 2.4, and l = 1, 2, 3, . . .. As these
values exactly coincide with numerical ones, now it is evident
that ERs are indeed the creeping wave modes. Note that nu-
merical Bessel functions with complex orders are computed
by using the algorithm recently developed in Ref. [62].

B. Regge trajectories of different polarizations

The energy- (wave-number-) dependent RPs are called
Regge trajectories, and they are of critical interest since they

FIG. 6. Real and imaginary parts of RTs obtained numerically
by Eq. (5) for TM [(a), (c)] and TE polarization [(b), (d)] when
n = 2.4. The inset in (b) is the zoom of the avoided crossing between
type-II and type-IV poles of Brewster modes. The examples of the
strong- and the weak-coupling pairs are respectively marked by the
symbols (�,�) and (+,©) in (b) and (d). Type-IV poles obtained
numerically by Eq. (5) and by Eqs. (6) and (7) for l = 1, 4, and 7 are
exemplified by the bold solid and bold dashed curves, respectively.
All other curves of type I, II, and IV in (a)–(d) are numerically
obtained by Eq. (5). The special RTs corresponding to the Brewster
mode νB in Eq. (12) are indicated by the arrows in (b) and (d).

deliver crucial information on the distinctive characteristics
of different types of RPs [24–26,30]. Typically, ER-RPs con-
verge to “zero” as kR → 0, while IR-RPs to the negative
real-valued integers, via type-III RPs. We have confirmed that
this prediction is concretely valid in our case as well, and
the partial structure of RTs in the first quadrant is shown
in Fig. 6. In the figure, the clear agreement between RTs
computed numerically and by Eqs. (6) and (7) is affirmed
once again. Despite the fact that the agreement between the
asymptotic expressions in Eqs. (6) and (7) and the numerical
solutions of Eq. (5) is already evident, to demonstrate the
explicit functional form of RPs in terms of kR and n > 0, we
derive them as follows:

νR-TM
l,kR ≈νTM

PEC + δTM ≈ kR + cl (kR)
1
3 + dl (kR)−

1
3

+ i√
n2 − 1

+ 2−3
(
5 + 25c3

l

)
cl

(
1 − 4

√
2c

3
2
l

)(
n2 − 1

) (kR)−
1
3 , (10)

νR-TE
l,kR ≈νTE

PEC + δTE ≈ kR + cl (kR)
1
3 + dl (kR)−

1
3

+ i24c3
l(

5 + 25c3
l

)
n2

√
n2 − 1

− i24c2
l

√
n2 − 1(

5 + 25c3
l

)
n2

(kR)
2
3 . (11)

Here, the coefficient is given as cl = qleiπ/3/21/3 and dl =
q2

l e2iπ/3/(25/315), where ql is the lth zeros of the Airy func-
tion of the first kind, Ai(−ql ) = 0 for TM polarization, and
cl = qleiπ/3/21/3 and dl = e2iπ/3[21/3/ql + q2

l /(22/33)]/10,
where ql is the lth zeros of the derivative of the Airy function
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of the first kind, Ai′(−ql ) = 0 for TE polarization, respec-
tively. Again, each of the first three terms on the RHS in
Eqs. (10) and (11), respectively, stand for the angular momen-
tum zeros of the Hankel function of the first kind and their
derivatives for fixed kR, H (1)

νTM
PEC

(kR) = 0 and H ′(1)
νTE

PEC
(kR) = 0

[57,63], while the remaining terms correspond to the dielectric
corrections δTM/TE. The essential deriving procedures are all
the same as before in obtaining Eqs. (6) and (7), but differently
for ν (or m), i.e., around the zeros of the angular momentum
m, not kR.

Deforming the integral contour to include RPs and to ex-
clude the normal poles (see Fig. 4), we can reproduce the
same scattering cross section which was previously given
by Eq. (4). Taking into account the contribution of RPs to-
gether with that of the background integral [61,64], which
asymptotically converges to σg/R ≡ 2 × (2R)/R as kR → ∞
(extinction paradox [61,65–70]), the excellent reproduction is
found in Fig. 2. Although some small discrepancies arising
due to the numerical instability, e.g., of Bessel functions ex-
pressed in terms of complex angular momenta, are observed
in Fig. 2, still, their overall agreement is reasonably good.
Note that the contour deformation does not have a prior fixed
form and is selected differently according to the given circum-
stances [61,71,72].

After a more careful inspection of RTs, it is revealed
that there are additional special RPs of type IV in the
TE case differently from the TM case. These special RPs
(≡Brewster-RPs) are related to the Brewster angle θB =
sin−1[1/(1 + n2)1/2] and can be approximated through the
semiclassical relation Re[νB] ≈ nkBR sin θB [20] as

Re[νB] ≈ kBR/
√

1 + n−2. (12)

The thick curves in Figs. 3(b) and 6(b) respectively show kBR
and νB for n = 2.4. Since these curves coincide with those of
Eq. (7) [and (11); not shown to avoid overflow information of
the figure] for l = 1, it turns out that the first ER-RP for TE
polarization is associated with the Brewster angle. It should
be emphasized that the first ER-RPs, i.e., the lowest damping
pole having the smallest absolute value of the imaginary part
of the poles, are the most crucial ones [43–46]. In general, they
are nicely approximated by zeros of the Airy function at |ν| ≈
|kR|, such that |ν − kR| � |kR|1/3 [25,27–29]. Taking the first
two terms in Eq. (10) or (11) depending on the considered
polarization, we can obtain the explicit form of the real and
imaginary parts of ER-RPs, as follows:

νl ≈ kR + (kR)
1
3

2
4
3

ql + i

(
1√

n2 − 1
+

√
3

2
ql

)
, (13)

where ql ∈ R is the lth zero of the Airy function of the first
kind, Ai(−ql ) = 0 for TM polarization and the derivative of
it, Ai′(−ql ) = 0 for TE polarization. Since the imaginary part
of νl grows as ql increases for fixed values of {kR, n} ∈ R,
the lowest damping pole corresponds to the first, i.e., l = 1,
zero of the Airy function of the first kind and its derivative,
i.e., Ai(−q1) = 0 and Ai′(−q1) = 0. These poles are the ones
near the critical angle, θc = sin−1[1/n] [61,73]. However, as
our results indicate, it turns out that the first ER-RPs in the TE
case are Brewster-RPs near the Brewster angle that θB �= θc.

FIG. 7. Type-IV RPs for TM [(a), (b)] and TE [(c), (d)] polariza-
tion as functions of a complex-valued refractive index, n = nr + ini,
for which {n : 1.5 � nr � 5, ni = 0} in (a) and (c), and {n : nr =
2.4, 0 � ni � 2} in (b) and (d). The thin solid curves are obtained
numerically by Eq. (5) and the thin dashed ones analytically by
Eqs. (10) and (11), respectively. The solid circles (•) mark type-IV
RPs, which are the same ones previously shown in Figs. 5(a) and
5(b). Due to the occurrence of interactions among RPs, Eqs. (10)
and (11) fail to reproduce the numerical results on the left-hand side
of the arrowed curves in (b) and (d), as the imaginary part of the
refractive index increases. Note, for the same reason, as nr → 1, a
relatively large (but still in good agreement) discrepancy between
the numerical results and Eqs. (10) and (11) of the first ER-RP for
TE is observed in (c).

To demonstrate the general applicability of Eqs. (10) and
(11) for a different material property, i.e., different values
of the refractive index, we obtain ER-RPs as a function of
the refractive index in Fig. 7. In Figs. 7(a) and 7(c), we can
confirm the robust agreement between the numerical results
obtained by Eq. (5) and the analytic ones by Eqs. (10) and
(11) over a wide range of the refractive index, when the
imaginary part of the refractive index is set to zero (i.e., a
general passive medium without accountable absorption or
pumping). On the other hand, it turns out that when a nonzero
imaginary part of the refractive index is introduced, strong
deviations between the numerical and the analytic calcula-
tions are brought about, as this imaginary part increases [see
Figs. 7(b) and 7(d)]. Since it was proven that the internal-
external mode interactions in the kR ∈ C plane could rather
easily take place when the refractive index has a nonzero
imaginary value [19], we can attribute this large deviation
to the interactions among RPs, particularly between IR-RPs
and ER-RPs. In other words, as the imaginary part of the
refractive index increases, ER-RPs can couple with IR-RPs
at the specific value, and because some of the ER-RPs turn
into IR-RPs after this interaction, they do not follow Eqs. (10)
and (11), which are derived for ER-RPs. Nevertheless, we
can confirm the concrete validity of Eqs. (10) and (11) before
those interactions take place, as we can see on the right-hand
side of the arrowed curves in Figs. 7(b) and 7(d).
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FIG. 8. (a) Real and (b) imaginary parts of RPs for the TE polarization as functions of [Re(kR), nr], where nr ∈ R is the real part of the
refractive index with a fixed imaginary part ni = 0. EPs at which IR-RPs (thick solid) and Brewster-RPs (thick dashed) coalesce are marked
by solid circles (•). RTs for nr = 2.4 are given by thin gray curves, and the strong-coupling pairs are marked by pairs of symbols (�,�).
Intensities and phases [Arg(·]) of the selected wave functions corresponding to poles marked by Au,d, Bu,d, and EP in (a) and (b) are examined
in the right-hand panels with the same labels.

V. NON-HERMITIAN DEGENERACY OF REGGE POLES

As a final remark, we clarify the emergence of EPs in
RPs. To this end, we compute all RPs directly by numerically
solving Eq. (5). In Figs. 6(b) and 6(d), we can see several
consecutive interactions between Brewster-RPs and IR-RPs
exhibiting strong couplings: avoided crossings in Re[νR] and
crossings in Im[νR]. As the real part of the refractive index
increases, these couplings switch into weak ones: avoided
crossings in Im[νR] and crossings in Re[νR]. The transition
point of the two coupling regimes is EP at which Re[νR]
and Im[νR] coalesce simultaneously. The branch cut curves
over those coupling regimes in the Riemann surface in Fig. 8
reveal clear second-order EPs for several pairs of RPs. In
the figure, the wave functions for the poles in the weak-
and strong-coupling regimes are obtained by applying Eq. (8)
to Eq. (1). A coalescence of the wave functions at EP is
transparently demonstrated by their identical phase plots in
the figure. On the other hand, typical pairs of ER-RPs and

FIG. 9. (a) Real and (b) imaginary parts of RPs for the TE polar-
ization as functions of [Re(kR), ni], where ni ∈ R is the imaginary
part of the refractive index for a fixed real part nr = 2.4. EPs at which
IR-RPs (thick solid) and ER-RPs (thick dashed) coalesce are marked
by solid circles (•). RTs for ni = 0 are given by thin gray curves, and
the weak-coupling pairs are marked by pairs of symbols (+,�).

IR-RPs are initially in the weak-coupling regime and transit
to the strong one via EPs, when the imaginary part of the
refractive index increases, as shown in Figs. 9(a) and 9(b).
It is emphasized that the overall transitions across the strong
and weak couplings of pairs of IR-RPs and ER-RPs are gen-
eral phenomena regardless of the polarization, although we
have focused on the TE case just to deal with the special
Brewster-RPs. The exemplifying lowest ten parameter values
obtained for EPs coalescing two different pairs of RPs are
summarized in Table I: Pair-A←Brewster-RPs and IR-RPs;
Pair-B←general ER-RPs and IR-RPs.

VI. CONCLUSION

Through our findings presented so far, it has been proven
that a surface creeping wave is the nature of ERs and can
form EPs. Despite the focus of the present works having been
mainly on optical microdisks, we believe our conclusions can

TABLE I. Sets of the parameter values [nr, ni; Re(kR)] for EPs
coalescing (Pair A) Brewster-RPs and IR-RPs and (Pair B) general
ER-RPs and IR-RPs. The parameter values of pair A correspond to
EPs marked by solid circles (•) in Fig. 8, and the ones of pair B
correspond to EPs marked by solid circles (•) in Fig. 9, respectively.

Pair A Pair B

Index nr ni Re(kR) nr ni Re(kR)

1 2.609 0.0 1.683 2.4 0.942 3.733
2 2.857 0.0 3.483 2.4 1.231 4.996
3 2.975 0.0 5.172 2.4 1.407 6.055
4 3.053 0.0 6.792 2.4 1.533 7.030
5 3.106 0.0 8.393 2.4 1.633 7.933
6 3.145 0.0 9.974 2.4 1.709 8.846
7 3.171 0.0 11.567 2.4 1.771 9.674
8 3.197 0.0 13.119 2.4 1.822 10.585
9 3.223 0.0 14.631 2.4 1.872 11.441
10 3.249 0.0 16.105 2.4 1.910 12.265

063503-6



NON-HERMITIAN ANALYSIS OF SURFACE CREEPING … PHYSICAL REVIEW A 102, 063503 (2020)

be extended immediately to the extensive other physical sys-
tems. More importantly, we expect that our results shed light
on various aspects of scattering and resonant problems re-
lated to openness. Therefore, we hope to settle many puzzling
phenomena in the fields of non-Hermitian quantum chaos by

understanding more deeply the surface creeping waves propa-
gating around the noncircular boundaries of chaotic systems.
To start, we would deal with the effects of surface creeping
waves on quantum or wave states in classically chaotic sys-
tems in the future.
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