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Rotating azimuthons in dissipative Kerr media excited by superpositions of Bessel beams
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We report the existence of persistently rotating azimuthons in media with self-focusing Kerr and absorption
nonlinearities. The nonlinear loss is balanced by power influx from the peripheral reservoir stored in a slowly
decaying tail of the field. The azimuthon modes are excited by a superposition of two Bessel beams with opposite
vorticities, ±s, and slightly different conicities. The excited mode exhibits vorticity in its center opposite to that
of the input Bessel-beam superposition, due to spontaneous inversion of the topological charge in the course of
the azimuthon formation. Unlike azimuthons in loss-free media, number N of rotating intensity maxima and s
are not mutually independent, being related by N = 2s. The robustness of the rotating azimuthons is enhanced
in comparison to similar static dissipative patterns. They can be excited in almost any transparent material, in the
range of intensities for which the nonlinear absorption, induced by multiphoton absorption, is relevant. Close to
the ionization threshold, the rotating azimuthons are similar to recently observed helical filaments of light in air
and CS2.
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I. INTRODUCTION

Solitons, solitary vortices [1,2], necklace-shaped clusters
[3,4], and azimuthons [5,6] are increasingly sophisticated,
self-trapped light modes in nonlinear optical media, which
have been predicted and experimentally realized over the
course of the past decades [7]. In particular, soliton clus-
ters and azimuthons feature propagation-invariant or nearly
invariant intensity patterns that rotate uniformly as they prop-
agate in transparent media, and they require a stabilizing
mechanism to arrest the collapse instability brought about by
the self-focusing Kerr nonlinearity. Such a mechanism may
be provided by saturation of the Kerr nonlinearity [3,5,8].
Many of these solitary structures have dissipative-soliton
counterparts, which are supported by the balance between
gain and losses, which occurs in laser cavities, in addi-
tion to the balance between the diffraction and self-focusing
[9–12].

Relaxing the condition of strong localization, one can con-
sider weakly localized states similar to Bessel beams [13–15],
whose total norm (integral power, in terms of optics) di-
verges at r → ∞, where r is the radial coordinate in the
two-dimensional plane, perpendicular to the propagation axis,
z. Unlike dissipative solitons, stationarity of such states is
supported not through the balance of loss and gain, but rather
due to the compensation of nonlinear dissipation, induced by
multiphoton absorption in the optical material (which may
generate weak plasma) and influx of power stored, in an
indefinitely large (diverging) amount, in the weakly decaying
tail of the quasi-Gaussian beam [13–16].

Similarly to the above-mentioned conservative systems,
nonlinear dissipative Bessel beams with embedded vorticity
have been predicted [17,18] and experimentally observed to
induce tubular filamentation [19]. A remarkable fact is that
the dissipative nonlinear Bessel vortex beams can be stable
in self-focusing media with the pure-cubic (Kerr) nonlinearity
due to the stabilizing action of the nonlinear absorption [20].
More recently, launching arbitrary superpositions of Bessel
beams with the same cone angle but different embedded
vorticities has been shown to excite propagation-invariant
(stationary) dissipation patterns of rather arbitrary shapes, the
so-called “dissipatons” [21].

In this work, which is motivated, in part, by recent experi-
ments exhibiting helical filamentation of light beams [22,23],
we predict the existence of what we call rotating dissipative
azimuthons. These modes propagate steadily, with a constant
rotation velocity, in nonlinearly absorbing Kerr media, be-
ing excited by superpositions of two Bessel vortex beams
with opposite vorticities and slightly different conicities. Such
coherent superpositions of Bessel beams can be readily gen-
erated in the experiment. In the linear approximation, their
propagation was theoretically studied in Refs. [24–26].

Unlike soliton clusters and azimuthons in conservative sys-
tems, number N of rotating high-intensity peaks (“hot spots”)
and vorticity s at the center of the dissipative azimuthon
are not independent integers, but are related by N = 2s,
which can be explained analytically (see below). The rotating
azimuthons exhibit a mixed linear-nonlinear behavior, resem-
bling in some aspects the linear propagation of superpositions
of Bessel beams with opposite vorticities and different cone
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angles, while in other respects they are similar to soliton
clusters. Namely, their quasilinear peripheral field imposes
the same angular velocity of rotation as that induced by the
Bessel-beam superposition; see Eq. (6) below. However, the
vorticity at the center of the azimuthon acquires a topological
charge opposite to that of the input superposition of the Bessel
wave functions as a result of the topological-charge inversion
in the course of the formation of the azimuthon, which can
be explained by a trend to minimization of the Hamiltonian
of the model’s conservative part. As a result, the dissipative
azimuthon rotates in the direction opposite to the azimuthal
gradient of the phase associated with the vorticity at the center,
in the same way as soliton clusters do.

We also report a gyroscopic effect in the spontaneous
formation of dissipative azimuthons, viz., that the rotation ac-
celerates the formation of the spinning steady-shape patterns,
in comparison to similar nonrotating steady ones (“dissipa-
tons”), which arise when cone angles of the two Bessel beams
are equal in the input state. We also observe enhanced stability
of the rotating dissipative azimuthons, as compared to dissi-
pative Bessel vortex beams and static dissipatons. In the case
of instability, the rotating dissipatons feature richer dynamics,
including the formation of persistently pulsating azimuthons.

Basic results, produced by systematic numerical simula-
tions of the model, are reported in Sec. II. The gyroscopic
effect and a detailed analysis of the stability of the rotating
dissipative azimuthons are presented in Secs. III and IV,
respectively. The paper is concluded in Sec. V, while the
Appendix presents specific details of the numerical algorithms
used in the paper.

II. DISSIPATIVE AZIMUTHONS EXCITED BY
SUPERPOSITIONS OF BESSEL BEAMS WITH

OPPOSITE TOPOLOGICAL CHARGES

We consider the propagation of monochromatic light
beams along the z axis, E = A exp(−iωt + ikz), with carrier
frequency ω and propagation constant k = nω/c, where c is
the speed of light in vacuum, and n is the linear refractive in-
dex. The nonlinear Schrödinger equation (NLSE) that governs
the paraxial propagation of field envelope A is [17]

∂zA = i

2k
∇2

⊥A + ikn2

n
|A|2A − β (M )

2
|A|2M−2A, (1)

where ∇2
⊥ ≡ ∂2

r + (1/r)∂r + (1/r2)∂2
ϕ is the transverse Lapla-

cian, which is written here in polar coordinates (r, ϕ) in the
transverse plane (all simulations were performed, in parallel,
in both the Cartesian and polar coordinates; see the Ap-
pendix), n2 > 0 is the nonlinear refractive index, and β (M ) >

0 is the multiphoton absorption coefficient of order M.
In the context of filamentation, one can consider a more

accurate model in which A is a function of time, and including
material dispersion for pulsed beams and plasma-defocusing
effects. Actually, the material dispersion may be neglected
for propagation distances smaller than the dispersion length,
as confirmed by the theoretical and experimental studies of
the filamentation with Bessel beams [18,19]. In terms of our
simulations displayed in Figs. 1 and 2, dispersion effects in
air would become relevant at the dispersion length z ≈ 250 m
for typical pulses with temporal duration 100 fs. Therefore,
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FIG. 1. Results of simulations of Eq. (1) with parameters cor-
responding to the high-intensity light propagation in air at the
carrier wavelength 800 nm (n ≈ 1, n2 = 3.2 × 10−19 cm2/W, M =
8, β (8) = 1.8 × 10−94 cm13/W7 [16]). (a) The input intensity profile,
given by Eq. (3), and measured in units of TW/cm2, with s = 1,
θ1 = 0.25◦, θ−1 = 0.26◦, and a2

1 = 20 TW/cm2 (the respective peak
intensity is 27.04 TW/cm2). The corresponding scaled parameters in
Eqs. (10) and (14) are M = 8, α = 0.85 and η = −0.02, b1 = 0.87.
(b) The transverse intensity profile of the quasistationary rotating
azimuthon, measured at the propagation distance z = 114 cm (the
peak intensity of the profile is 24.25 TW/cm2). Numerical evaluation
of its angular velocity yields 	 = −1.75 ± 0.01 deg/cm, where the
sign corresponds to the clockwise direction. This value is in close
agreement with 	 = −1.758 deg/cm given by Eq. (6) from the
linear theory. (c) The nearly constant peak intensity and NLL (the
nonlinear-loss rate), defined as per Eq. (7) (black and red contin-
uous lines), vs the propagation distance, z. Dashed lines represent
a nonrotating pattern for the same parameters, except that the two
cone angles are equal to 0.255◦. (d) The corresponding static pattern
(	 = 0), not yet completely formed, at z = 100 cm.

the dispersion is negligible for distances of ≈1 m presented
in this work. In particular, it was theoretically and experimen-
tally shown that the filamentation dynamics of Bessel beams
is correctly captured by the monochromatic model with A
multiplied by an invariant temporal pulse shape, as the key
ingredients that determine the filamentation are diffraction,
Kerr self-focusing, and multiphoton absorption, while plasma
defocusing plays a secondary role [18,19].

In the absence of the Kerr and multiphoton absorption
terms, Eq. (1) is satisfied by Bessel beams carrying vorticity
with any integer topological charge s. In the form explicitly
representing the paraxial approximation, they are A(r, ϕ) ∝
Js(kθsr) exp(isϕ) exp(iδsz), where Js is the Bessel function of
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FIG. 2. Results for the setting with the same parameters as in
Fig. 1. (a) The transverse intensity profile, measured in TW/cm2, of
the superposition of the Bessel beams in the input given by Eq. (3),
with s = 1, θ1 = 0.26◦, θ−1 = 0.24◦, and a2

1 = 20 TW/cm2. The
corresponding scaled parameters in Eqs. (10) and (14) are M = 8,
α = 0.88 and η = 0.04, b1 = 0.87, respectively. (b) The intensity
profile of the azimuthon produced by the propagation over distance
z = 100 cm. The counterclockwise angular velocity is 	 = 3.40 ±
0.08 deg/cm from the numerical simulations and 	 = 3.447 deg/cm
from Eq. (6). See the supplemental material [28] for the excitation
of the azimuthon from (a) to (b). Panels (c) and (d) display the
azimuthal phase profiles along a circle of small radius r for the input
Bessel-beam superposition (3), and for the azimuthon established by
the propagation, respectively. See the supplemental material [28] for
the transformation from (c) to (d) in the course of the propagation,
with the phase unwrapped in [0, 2π ].

order s, θs > 0 is the cone angle, and

δs = −kθ2
s /2 < 0 (2)

is the contribution to the propagation constant associated
with the conical geometry of the Bessel beam. In the linear
regime, Eq. (1) is actually satisfied by any superposition of
Bessel beams with arbitrary topological charges, amplitudes,
and cone angles. In particular, superpositions with different
cone angles produce propagation-invariant intensity patterns
that rotate in the course of the propagation [24,25]. Rotatory
polarization patterns in free space, emulating the optical ac-
tivity of the effective medium, have also been demonstrated
in superpositions of orthogonally polarized Bessel beams with
different cone angles [26].

In nonlinear regimes, starting from Refs. [27] for the
pure-Kerr medium, and Refs. [13,14], which included more
general nonlinearities and dissipative nonlinear terms, undis-
torted and unattenuated propagation in the form of nonlinear
Bessel beams was demonstrated experimentally. A linear
Bessel beam launched in the nonlinear medium spontaneously

transforms into an appropriately deformed beam. Subse-
quently, similar results have been demonstrated for vortical
Bessel beams, which were also shown to transform into
propagation-invariant nonlinear counterparts [17–19]. The ex-
istence of fully stable nonlinear Bessel vortex beams in media
with pure-cubic Kerr nonlinearity has been established in
Ref. [20], where the stabilizing mechanism was provided
by nonlinear absorption. In a more recent study, arbitrary
superpositions of Bessel beams with different topological
charges and amplitudes but identical cone angles, launched
into the medium with nonlinear absorption [21], were shown
to excite propagation-invariant “dissipatons,” which are nearly
arbitrary structures composed of vortices and bright spots
where the power is continuously dissipated. In those studies,
stationarity propagation in media with nonlinear absorption
was enabled by a feeding mechanism provided by power
influx from the reservoir with an indefinitely large capacity,
maintained by the slowly decaying quasilinear tails of non-
linear Bessel vortex beams and dissipatons. This mechanism
is not possible for strongly localized dissipative solitons with
convergent integral power, which should be maintained by
intrinsic gain.

Searching for steady states in the rotating frame, we look
for solutions to Eq. (1) with input

A(r, ϕ, z = 0) = as[Js(kθsr) exp (isϕ)

+ J−s(kθ−sr) exp (−isϕ)], (3)

composed of two Bessel beams with equal amplitudes as,
opposite vorticities ±s, s = 1, 2, . . . , and slightly different
cone angles, θ±s > 0, hence the respective shifts of the axial
wave vectors,

δ±s = −kθ2
±s/2, (4)

are slightly different, too. It is worthwhile to note that the
solution of the linearized version of Eq. (1) seeded by input
(3), namely

A(r, ϕ, z) = as[Js(kθsr) exp (isϕ + iδsz)

+ J−s(kθ−sr) exp (−isϕ + iδ−sz)], (5)

features vorticity s at its center (r → 0) for θs > θ−s, and −s
for θs < θ−s, with counterclockwise and clockwise phase cir-
culation, ±2πs, respectively, along a circle of small radius r.
With increasing radius, the vorticity keeps switching between
s and −s. The angular velocity of the rotation of the intensity
pattern, |A(r, ϕ, z)|2, corresponding to the linear solution in
Eq. (5) is [24,25]

	 = δ−s − δs

2s
= k

4s

(
θ2

s − θ2
−s

)
, (6)

where Eq. (4) is used, which is counterclockwise (positive)
for θs > θ−s and clockwise (negative) for θs < θ−s. Thus, the
direction of the rotation of the intensity pattern coincides with
the direction of the azimuthal gradient of the phase close to the
beam’s center in these linear superpositions of Bessel beams.

Figure 1(a) displays an example of the nonlinear evolution
produced by the initial condition in Eq. (3) with s = 1 and
slightly different cone angles. The simulations of Eq. (1) were
performed (as mentioned above, in both Cartesian and polar
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coordinates) with parameters corresponding to the propaga-
tion of high-intensity light in air, in the regime for which
the Kerr self-focusing and nonlinear absorption are significant
(see the caption to the figure for details). The numerical solu-
tion demonstrates that the propagating beam quickly attains a
steady rotatory state, featuring compressed lobes as a result of
the Kerr self-focusing, as seen in Fig. 1(b). The solid black
curve in Fig. 1(c) shows that the peak intensity approaches a
constant value in the course of the propagation, confirming the
stationarity of the rotating pattern. Another manifestation of
the steady propagation is the fact that the rate of the nonlinear
loss (NLL) of the power,

NLL = 2πβ (M )
∫ ∞

0
|A(r)|2Mrdr, (7)

also attains a nearly constant value, as shown by the red solid
curve in Fig. 1(c). Thus, the rotating structure is a genuine
dissipative azimuthon.

As shown in Figs. 1–5 for different values of s, intensity
patterns of dissipative azimuthons preserve the 2s-fold rota-
tional symmetry of the input configuration given by Eq. (3).
Thus, the number of “hot spots” in the rotating azimuthons,
N = 2s, is only determined by magnitude s of the topological
charge in the two beams that build the input. In this respect,
dissipative azimuthons differ from their conservative counter-
parts and soliton clusters, for which the number of hot spots
and the vorticity at the center are independent integers [5,6].
The latter property of the conservative model is explained by
the fact that the number of intensity maxima in the circular
pattern is determined by the modulational instability of the
axially uniform state.

Another manifestation of the robustness of the dissipative
azimuthons is that they preserve the angular velocity imposed
by the superposition of the two vortex Bessel beams in in-
put (3), viz., 	 = (δ−s − δs)/2s; hence the rotation period
is zrotation = 4πs/|δ−s − δs|, and, given the 2s-fold rotational
symmetry of the rotating pattern, it periodically repeats it-
self after passing distance 2π/|δ−s − δs|, independent of the
topological charge, s. The preservation of the angular veloc-
ity is explained by the fact that the dissipative azimuthon is
surrounded by the quasilinear asymptotic field (providing the
above-mentioned power reservoir) that continues to rotate as
the input linear superposition does, i.e., with angular velocity
(6). Since the whole structure is stationary in the rotating
frame, the inner nonlinear region rotates synchronously with
the small-amplitude periphery.

A general feature of dissipative azimuthons that makes
them substantially different from the linear Bessel superpo-
sition in Eq. (5) is that the direction of rotation of the intensity
pattern is opposite to the direction of the azimuthal phase
gradient close to the pattern’s pivot. The reason is that the
topological charge of the vortex at the center reverses its
sign in the course of the azimuthon formation from the initial
Bessel beam superposition, as shown in Fig. 2. The intensity
pattern of the input Bessel-beam superposition in Fig. 2(a)
has θs > θ−s, hence the input vorticity at the center is s = 1,
corresponding to the counterclockwise phase increase by 2πs
around the origin, as shown by the azimuthal phase profile in
Fig. 2(c). Accordingly, the intensity pattern in the azimuthon
established by the evolution of the intensity pattern, which

is displayed in Fig. 2(b), rotates counterclockwise as well.
However, the vorticity at the center inverts in the course of
the evolution to −s = −1, corresponding to the clockwise
phase circulation 2πs around the origin, as seen in Fig. 2(d).
Details of the transformation of the azimuthal phase profile
from vorticity s = 1 in Fig. 2(c) to −s = −1 in Fig. 2(d) in
the course of the formation of the azimuthon are shown in the
supplemental material [28]. The vorticity inversion affects the
entire central zone of the azimuthon, including the hot spots.
At larger radii, the vorticity oscillates, and in the peripheral
zone the periodic alternations coincide with those of the input
Bessel-beam superposition.

It is relevant to note that a possibility of the dynamical
inversion of the sign of the topological charge of an opti-
cal vortex in a conservative medium, which interacts with
a material lattice structure, was previously predicted theo-
retically [29] and demonstrated experimentally [30]. In the
present setting, the rotating intensity pattern emerging in the
azimuthon mode may play the role of such a lattice. Indeed,
the rotation of a layer with radius R at angular velocity 	

tends to add the term generated by the Galilean transform,
kR2	(ϕ − 	z/2), to the phase of the wave field (subject to the
periodicity constraint, kR2	 = m, with integer m). If, on the
other hand, vorticity phase ±sϕ dominates at r small enough,
the minimization of the gradient term in the Hamiltonian of
the conservative part of Eq. (1), with density (2k)−1|∇⊥A|2,
suggests to choose mutual signs of 	 and s that help to cancel
different contributions to the phase.

Thus, dissipative azimuthons clearly exhibit a mixed
linear-nonlinear structure: The stationary intensity pattern,
including the quasilinear periphery, rotating with angular ve-
locity given by Eq. (6), which is imposed by input (3), and a
restructured nonlinear core, including the circular chain of hot
spots, whose vorticity is inverted with respect to the rotation
direction, as in soliton clusters [3,5].

For a more comprehensive study of the properties of the
dissipative azimuthons [in particular, their (in)stability], we
introduce

δ ≡ 1
2 (δs + δ−s), �δ ≡ 1

2 (δs − δ−s), (8)

where δ±s is defined as per Eq. (2), and the scaled radius and
propagation distance,

ρ ≡
√

2k|δ|r, ζ ≡ |δ|z, Ã ≡
(

β (M )

2|δ|
) 1

2M−2

A. (9)

These rescalings transform NLSE (1) into

∂ζ Ã = i∇2
⊥Ã + iα|Ã|2Ã − |Ã|2M−2Ã, (10)

where now ∇2
⊥ = ∂2

ρ + (1/ρ)∂ρ + (1/ρ2)∂2
ϕ , and

α ≡
(

2|δ|
β (M )

)1/(M−1) kn2

n|δ| . (11)

In this notation, input (3) takes the form of

A(ρ, ϕ, 0) = bs

[
Js

(√
1 + �δ

δ
ρ

)
eisϕ

+ J−s

(√
1− �δ

δ
ρ

)
e−isϕ

]
, (12)
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which, given the smallness of |�δ/δ| for close values of the
cone angles, may be approximated by

A(ρ, ϕ, 0) = bs[Js[(1 + η)ρ]eisϕ + J−s[(1 − η)ρ]e−isϕ],
(13)

where we set
√

1 ± �δ/δ � 1 ± η, and

η ≡ �δ

2δ
, bs ≡

(
β (M )

2|δ|
) 1

2M−2

as. (14)

The properties of dissipative azimuthons, similar to what
was previously reported for static dissipations and nonlinear
Bessel vortex beams, are essentially the same, regardless of
the multiphoton absorption order M in Eq. (3), therefore we
henceforth fix M = 4 (note, in particular, that M = 4 takes
place in water at 527 nm). The dissipative azimuthon is then
determined by vorticity s, the strength of the Kerr nonlinearity
relative to the nonlinear absorption, α, the amplitude parame-
ter, bs, and the radial mismatch η of the input Bessel beams;
see Eqs. (11) and (14). Positive and negative η correspond,
respectively, to θs > θ−s and θs < θ−s, i.e., positive (counter-
clockwise) and negative (clockwise) angular velocity. In the
scaled notation, the angular velocity is

� = 2η

s
, (15)

and the rotation period is ζrotation = πs/|η|. The above-
mentioned inversion of the vorticity implies that the respective
topological charges are −s and s for η > 0 and η < 0, respec-
tively.

III. THE GYROSCOPIC EFFECT IN DISSIPATIVE
AZIMUTHONS

In comparison to nonlinear Bessel beams and static dis-
sipatons [17,21], it is seen in Figs. 1 and 3 that the rotation
accelerates the formation of the dissipative patterns. The
dashed curves in Fig. 1(c) show the peak intensity and nonlin-
ear power loss rate as functions of the propagation distance,
and Fig. 1(d) displays the static intensity pattern established,
after some propagation distance, in the nonlinear medium,
when the cone angles of the input Bessel beams are made
equal to the mean value of the two slightly different angles
of the original input. It is seen that the profile with the
equal conicities is not yet formed because it still continues
to decrease its amplitude, in comparison to the original one
that propagates without attenuation. The nonrotating pattern
requires a much longer propagation distance to form than its
steadily rotating counterpart, whose formation is promoted by
what may be called a gyroscopic effect. Namely, if the static
pattern is created by input (13) with η = 0, the slow relaxation
toward the static state is characterized by a certain relaxation
length, ζrel. On the other hand, if the slight difference of
conicities of the two Bessel beams in the input promotes
the formation of a steadily rotating state, characterized by a
rotation period ζrotation = πs/|η|, then the rotation is expected
to eclipse the slow relaxation provided that ζrotation � ζrel, i.e.,
for

|η| � |η|min = πs/ζrel. (16)
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FIG. 3. (a) Peak intensities as functions of the propagation dis-
tance for the dissipative azimuthons formed, at values of parameters
M = 4, α = 1, starting with the Bessel-beam superposition input
given by Eq. (13), with s = 1, b1 = 0.75 and increasing values of
scaled mismatch, η = 0, 0.001, 0.01, and 0.04; see Eq. (14). The
characteristic relaxation distance for η = 0 is ζrel � 70, yielding
|η|min � 0.04; see Eq. (16). (b) The intensity pattern of the non-
rotating dissipaton formed with η = 0 and � = 0. (c) The same
as in (b) but for the rotating dissipative azimuthon with η = 0.04
and counterclockwise scaled angular velocity, � = 0.081 ± 0.003,
as obtained from the simulations, and � = 0.080, as produced by
Eq. (15). The latter pattern forms after propagating a much shorter
distance.

In the example displayed in Fig. 3 with s = 1, b1 = 0.75 and
M = 4, α = 1, the characteristic relaxation distance, ζrel ∼
70, of the nonrotating pattern predicts |η|min � 0.04. As seen
in Fig. 3(a), the long relaxation stage, following the short
initial stage of compression under the combined action of
the self-focusing and absorption, is indeed eliminated at η �
|η|min. Eventually, the snapshot of the intensity pattern in the
rotating state is quite similar to that of the nonrotating one,
cf. Figs. 3(b) and 3(c), but the rotating pattern forms much
faster.

IV. STABILITY OF THE DISSIPATIVE AZIMUTHONS

A. Stability limits

Similar to nonlinear Bessel vortex beams [20] and dissipa-
tons [21], dissipative azimuthons remain stable for sufficiently
low values of the normalized Kerr coefficient α [see Eq. (11)],
and they become unstable above a threshold value, α > αth,
which is significantly higher than the instability threshold for
nonrotating states [20,21], implying that the rotation enhances
the stability. By means of systematic simulations, we have
identified the threshold for several values of vorticity s, using
input (13).

Given the large number of parameters, in the numerical
simulations we set |bs| = 0.6 and |bs| = 0.8 [see Eq. (14)],
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FIG. 4. Stable dissipative azimuthons, spontaneously formed, in
the setting with M = 4 and Kerr coefficient α = 1.8, from input
(3) with s = 2 and η = 0.04. (a) The amplitude and (b) phase
profiles at ζ = 270, obtained starting with the scaled Bessel am-
plitude |bs| = 0.6. The angular velocity is � � 0.0403 ± 0.0002,
while 2η/s = 0.04; see the supplemental material [28] for the
excitation of the azimuthon in (a) from the input Bessel-beam
superposition. Panels (c) and (d) display the same as (a) and
(b), but for α = 2 and |bs| = 0.8, the angular velocity being
� � 0.0403 ± 0.0004.

which represent typical intensities at which the Kerr non-
linearity and multiphoton absorption are substantial in fused
silica, and η = 0.04, which implies relative variations of the
cone angle � 10%.

For s = 1, the threshold is found to be (αth )s=1 = 2.25 ±
0.05 for |bs| = 0.6 and |bs| = 0.8. The dissipative azimuthons
with a higher vorticity are somewhat less stable, featuring
(αth )s=2 = 1.95 ± 0.05 for |bs| = 0.6, and (αth )s=2 = 2.15 ±
0.05 for |bs| = 0.8. Further, for s = 3 it was found that
(αth )s=3 = 2.25 ± 0.05 for |bs| = 0.6, and (αth )s=3 = 1.95 ±
0.05 for |bs| = 0.8. The difference between the cases of
s = 2 and 3 plausibly originates from their differing sym-
metries. These instability thresholds are about twice as large
as typical values αth � 1 for nonlinear Bessel beams and
nonrotating dissipatons found in Refs. [20,21], respectively,
which indicates the enhanced robustness provided by the
rotation. Figures 4 and 5 show the intensity and phase pat-
terns of the rotating dissipative azimuthons with s = 2 and
3, and α = 1, which places them well within the stability
region.
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FIG. 5. Stable dissipative azimuthons established in the setting
with M = 4 and Kerr coefficient α = 2.2, starting from input (3) with
s = 3 and η = 0.04. (a) The amplitude and (b) phase structure at
ζ = 225, obtained starting with the scaled Bessel amplitude |bs| =
0.6. The angular velocity is � � 0.0267 ± 0.0003, while 2η/s �
0.0267. Panels (c) and (d) display the same as (a) and (b), but for α =
1.9 and |bs| = 0.8, the angular velocity being � � 0.0268 ± 0.0002.

B. Instability development scenarios

Direct simulations make it possible to identify two ba-
sic scenarios of the development of unstable patterns. Close
to the stability boundary, i.e., for the values of α slightly
exceeding αth, unstable rotating patterns spontaneously turn
into oscillating ones, which keep rotating and may remain
robust by themselves. For higher values of α, an unstable az-
imuthon decays into random patterns by progressively losing
its symmetry. Three examples of this dynamics are shown in
Figs. 6, 7, and 8 for s = 1, 2, and 3, respectively. The insta-
bility develops, at first, through a long sequence of regular
patterns featuring the same 2s-fold symmetry as the input,
which follow each other in a random way. Then the patterns
become less and less regular, developing intrinsic oscillations,
and eventually they become completely random.

The instability-development scenario, demonstrated by the
numerical solutions, is essentially the same for s = 1, 2, and
3, but the symmetry with respect to the rotation by �ϕ = π

for s = 1 is much more robust than the symmetry with �ϕ =
π/2 for s = 2 or �ϕ = π/3 for s = 3. The patterns for s = 1
are much simpler, and typically the resulting random structure
maintains the symmetry with respect to the rotation by �ϕ =
π [see, e.g., Fig. 6(b)].
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FIG. 6. An example of the instability development, starting from
the two-lobe dissipative azimuthon, with s = 1, and leading to estab-
lishment of a random set of isolated hot spots. In this case, the input is
similar to that displayed in Fig. 3(c). Examples of a transient regular
amplitude pattern, obtained at ζ = 20.625 (a), and of a random pat-
tern, obtained at ζ = 93.75 (b). The developing pattern is eventually
fully randomized (not shown here). Parameters are M = 4, α = 4
for the NLSE, and s = 1, |bs| = 0.8, η = 0.04 for the Bessel-beam
input (3).

The phase pattern globally reflects the shape of the inten-
sity pattern. However, if one considers the phase as a function
of azimuthal angle ϕ along circumferences with different radii
ρ, conspicuous evolution in the course of the evolution in
ζ can be identified. Indeed, while the phase circulation is
2πs in the core of the input configuration (3), and −2πs just
after the topological charge has reversed its sign, a central
domain of the small radius in which the phase circulation is
zero quickly emerges in the course of the evolution of the
unstable azimuthon. The radius of this domain grows until it
fills the entire core of the pattern, except for a few remain-
ing phase dislocations, while the pattern becomes random.
Thus, the evolution leads to a conclusion that the core area
of the pattern does not carry vorticity anymore. Alternation
of domains with phase circulations 2πs and −2πs still occurs
at different increasing values of the radius and, as expected,
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FIG. 7. An example of the instability development, starting from
the four-lobe dissipative azimuthon, with s = 2. In this case, the
input is similar to that displayed in Fig. 4(a). Examples of a tran-
sient regular amplitude pattern, obtained at ζ = 16.875 (a), and of a
randomized one, established at ζ = 105 (b). Parameters are M = 4,
α = 4 for the NLSE, and s = 2, |bs| = 0.8, η = 0.04 for the Bessel-
beam input (3).
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FIG. 8. Examples of the instability development of the six-lobe
dissipative azimuthon, proceeding through a sequence of regular
patterns, the input pattern being close to that shown in Fig. 5(a),
while the final pattern (not shown here) is a random set of isolated
hot spots. Examples of transient regular patterns are displayed at
(a) ζ = 7.5 and (b) ζ = 13.125. Parameters are M = 4, α = 4 for the
NLSE, and s = 3, |bs| = 0.8, η = 0.04 for the Bessel-beam input.

in the peripheral area (at large radii) the alternations become
identical to that of the input Bessel-beam superposition.

C. Pulsating and breathing dissipative azimuthons

In the case of vorticity s = 2, a peculiar instability scenario
exhibits spontaneous transition of the four-lobe pattern into
a two-lobe one. The development of this scenario is quite
slow, allowing the initial four-lobe pattern to propagate con-
siderable distances, keeping an apparently stable shape. The
transition commences with oscillations of the amplitude of
two pairs of hot spots which constitute the cross (four-lobe)
structure of the input. Such oscillations may lead directly to
the destruction of the structure, or proceed in an apparently
persistent way. Due to a limited propagation distance in the
simulations and very low instability growth rate, it is not
always possible to distinguish these outcomes. An example
is produced in Fig. 9 for s = 2, |bs| = 0.8, and α = 2.6, in

-20 -10 0 10 20-20

-10

0

10

20

ρ cosϕ

ρ 
si

n
ϕ

(a)

-20 -10 0 10 20-20

-10

0

10

20

ρ cosϕ

ρ 
si

n
ϕ

(b)

FIG. 9. An example of the formation of a pulsating dissipative
azimuthon, triggered by the instability of a four-lobe azimuthon. In
this case, input (3) is similar to that in Fig. 4. (a) At ζ = 115.625,
the instability has just led to the appearance of a two-lobe pattern.
(b) A snapshot of a persistent oscillatory pattern at ζ = 231.25 [it
has rotated by �ϕ = π/2 between (a) and (b)]. Parameters are s = 2,
M = 4, α = 2.6, |bs| = 0.8, and η = 0.04.
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FIG. 10. A breathing dissipative azimuthon. It oscillates between
two configurations: at ζ = 193.75 (a) and 200 (b), the major am-
plitude maxima are located, respectively, at internal and external
positions. Parameters are s = 1, M = 4, α = 3, |bs| = 0.6, and η =
0.04. See the supplemental material [28] for a detailed picture of the
breathing-azimuthon dynamics.

which the emerging oscillatory state appears to be stable. In
this case, input (3) quickly forms a dissipative azimuthon that
propagates without any visible instability up to ζ � 75. Then,
the amplitudes of the lobes start to oscillate until the pattern
reshapes into a fully robust two-lobe structure.

Another noteworthy propagation regime triggered by the
instability for s = 1 is the formation of a permanently breath-
ing dissipative azimuthon. As seen in Fig. 10, in this case
oscillations occur between a pattern in which the hot spots
with the largest amplitude are closest to the center [Fig. 10(a)],
and another one in which the hot spots are located on a
secondary ring [Fig. 10(b)]. This regime sets in as a persistent
one, after a transient stage in which the intensity maxima of
the farther separated spots are lower. The dynamics of the
breathing dissipative azimuthon is displayed in the supple-
mental material [28].

There is also a dynamical regime exhibiting spontaneous
transformation of a transient oscillatory state, which keeps a
high level of symmetry, into another one with a lower sym-
metry, as shown in Fig. 11. The initial six-lobe azimuthon
is similar to the one displayed Fig. 5 but for a larger scaled
strength of the Kerr nonlinearity, α [see Eq. (11)]. At the first,
relatively long, stage of the evolution (ζ � 75), the pattern
remains unchanged in the rotating reference frame before
the instability commences. Then, the first oscillatory state
emerges, see Figs. 11(a) and 11(b), which maintains essential
symmetry: the initial invariance with respect to the rotation
by �ϕ = π/3 is lost, being reduced to the invariance with
�ϕ = π , but the axial symmetry is conserved. The amplitude
oscillates between configurations with two opposite spots and
four spots. Then, the structure switches into a second oscilla-
tory state, which keeps solely the symmetry with respect to
the rotation by �ϕ = π ; see Figs. 11(c) and 11(d). In this
state, oscillations occur between opposite spots in two pairs,
labeled (1, 4) and (2, 5) in the figure, while the spots belong-
ing to the third pair, (3, 6), keep a low intensity. Note that
the apparent rotation by π/6, which relates Figs. 11(c) and
11(d), is actually a consequence of the oscillations. Indeed,
the rotation angle per se between the configurations in panels
(c) and (d), separated by propagation distance �ζ = 3.125, is
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FIG. 11. An example of the unstable evolution of the six-lobe
dissipative azimuthon. The respective input (3) is similar to that
presented in Fig. 5. At the first stage of the evolution, the pattern
oscillates between configurations shown in (a) at ζ = 125, and (b) at
ζ = 128.125. At the second stage, the pattern oscillates between the
configurations shown in (c) at ζ = 165.625, and (d) at ζ = 168.750.
Parameters are s = 3, M = 4, α = 3, |bs| = 0.6, and η = 0.04.

�ϕ = ��ζ = (2η/s)�ζ [see Eq. (15)], which yields �ϕ =
4.77◦.

V. CONCLUSION

We have reported the existence of a different type of az-
imuthon, which represents the propagating optical field with a
stationary intensity pattern in a uniformly rotating reference
frame in the Kerr medium with nonlinear loss, induced by
multiphoton absorption in the material. Similar to nonlinear
Bessel fundamental [13,14] and vortical [17,20] beams and
“dissipatons” [21], the steady propagation of the rotating az-
imuthons in the lossy medium is maintained by the flux from
the peripheral reservoir, which stores an indefinitely large
amount of power in the slowly decaying tails of the beam.
Unlike conservative azimuthons [5,6], the number N of “hot
spots” (intensity maxima) and the vorticity of the input are
linked by N = 2s, rather than being mutually independent.

The rotating dissipative azimuthons are excited by the
coherent superposition of two Bessel beams with opposite
topological charges and slightly different cone angles; cf.
Refs. [24,25]. In comparison to the nonrotating intensity
patterns excited by the Bessel-beam pairs with identical conic-
ities, the rotating azimuthons form faster and are more robust.
The existence and stability of these modes in the self-focusing
Kerr medium is provided by the nonlinear absorption. If
the absorption is turned off, the input superposition of the
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Bessel beams does not result in the formation of any station-
ary pattern. Unstable rotating azimuthons in this model are
interesting objects as well because the development of the
instability gives rise to various dynamical regimes, including
persistently pulsating and breathing azimuthons, as well as the
transition to “turbulent” patterns.

These results may help to understand the physics un-
derlying the recently observed helical filaments, excited by
superpositions of Bessel-Gauss beams with opposite vortici-
ties in air and CS2 [22,23], where the interplay of the Kerr
nonlinearity and multiphoton absorption, induced by the ion-
ization of air, plays a key role in the propagation.
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APPENDIX: NUMERICAL SCHEMES

The validity of all the numerical results reported above
has been verified by running the simulations independently
in the Cartesian and polar coordinates by means of different
algorithms with different discretization meshes. In the former

case, a standard symmetrized split-step Fourier method was
applied to the rectangular mesh using fast Fourier transform
to perform the linear steps of the integration, and a trapezoidal
method was used for the nonlinear steps. With the polar coor-
dinates, a five-point finite-difference scheme was employed to
evaluate the transverse derivatives, and a fourth-order Runge-
Kutta scheme was used for the axial integration on the polar
mesh. It has been concluded that all the results produced by
means of both coordinate systems are identical.

Special boundary conditions were required to simulate the
propagation of Bessel-beam superpositions with tails slowly
decaying at r → ∞. In all the simulations, the evolving field
was set equal to the linearly propagated field, whose analytical
expression is given by Eq. (5), in a narrow strip attached
to the transverse computational boundary, which contains a
few radial points of the discretization mesh. From the phys-
ical point of view, these boundary conditions are justified
as the propagation of the small-amplitude tails is initially
linear, and the boundary conditions emulate the divergence
of the total power in the reservoir. On the computational
side, the same boundary conditions initially eliminate un-
physical inward-propagating boundary waves, which would
emerge if zero boundary conditions were used. The results of
the simulations become invalid at values of the propagation
distance at which nonlinear excitations propagating from the
high-intensity beam’s core outward are reflected at the strip
boundary and come back to the core.
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