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We theoretically investigate the generation of steady-state entanglement in a levitated optomechanical system
with a cascade three-level atomic medium and a dielectric nanosphere. There are two cavity modes, driven by two
external laser beams with different frequencies, which are responsible for trapping and cooling the nanosphere.
Atoms prepared in coherent superposition are injected into the cavity to manipulate the optical fields and the
effective optomechanical coupling. We show that the entanglement between the nanosphere and the cavity
modes can be enhanced by selecting properly the initial population of the lower atomic level. In particular,
when the atoms are prepared at that level, the corresponding optomechanical entanglement increases with the
increase of the atom-field coupling strength. We also investigate in detail the influence of the effective cavity
field detunings, the atomic detunings, the driving power, and the nanosphere’s radius and found that there exist
optimal values of the effective cavity field detuning and the driving power that maximize the optomechanical
entanglement. By selecting the system’s parameters properly, we further demonstrate the generation of genuine
tripartite entanglement between three degrees of freedom in the system. The findings here may help flexible
control of the steady-state entanglement in hybrid optomechanical systems.
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I. INTRODUCTION

Cavity optomechanical system is usually designed to re-
alize the coupling of macroscopic mechanical oscillator and
cavity field [1–3]. In such optomechanical systems, the me-
chanical oscillators can take many forms, such as a movable
mirror as the boundary of the cavity [4,5], an embedded di-
electric membrane [6–8], a suspended nanosphere [9–13], or
a microresonator in a microwave transmission line resonator
[14]. Physically, these interactions between light and mechan-
ical motion in cavity optomechanical systems are the result
of the frequency of driven cavity mode changing with the
position of mechanical oscillator, which serves as the basis
for the high-accuracy measurement [15,16] and the sensoring
technology [17–19]. Further, based on the optomechanical
coupling effect, the cavity optomechancial system can vividly
display the quantum-mechanical effects in macroscopic sys-
tems, such as the photon blockade [20], optomechanically
induced transparency (OMIT) [2], two-mode squeezing in
the oscillation quadratures [21], ground-state cooling [22–27]
and quantum coherence [28,29] of the mechanical mode, and
so on. Moreover, the steady-state quantum entanglement be-
tween the mechanical and optical modes can be generated
by the optomechanical coupling in various optomechanical
setups [30–41], which has paved the way for quantum com-
putation and quantum information processing [42–46].
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In general, the optomechanical interaction between the
light field and mechanical motion can be effectively enhanced
by the external pump laser, which is helpful to embody the
quantum effect of mechanical motion [1]. In addition to the
enhancing effective optomechanical coupling by pumping
light field, it can be also indirectly changed through the inter-
action between the internal state of atoms and the cavity field,
so that the atomic ensemble placed in the cavity can be used to
manipulate and enhance the quantum optomechanical entan-
glement [47–51]. Other optomechanical phenomena, such as
OMIT [52–54] and high-order sideband generation [55–57],
have been studied extensively based on atom-assisted hybrid
optomechanical systems. In particular, the vacuum effect of
the quantum emitter and its nearby mechanical oscillator
can be used to mediate an effective optomechanical coupling
between the mechanical oscillator and the cavity field [58]
and manipulate the quantum optomechanical entanglement
between a movable mirror and a light field [59]. Similarly,
when a dielectric nanosphere is trapped near the cavity mirror,
the vacuum interaction between them can enhance the quan-
tum entanglement between the mechanical mode and optical
fields [60,61]. Furthermore, the hybrid systems composed of
a dielectric nanosphere and a two-level atomic ensemble have
been established to study the macroscopic quantum mechan-
ical motion, where the low-atomic excitation limit can be
broken so that the steady-state optomechanical entanglement
increases with increasing numbers of excited atoms [62].

In this work, a hybrid levitated optomechanical system
composed of a cascade three-level atomic ensemble and a
dielectric nanosphere is considered, which is driven by two
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FIG. 1. Optomechanical system with a levitated dielectric
nanosphere and a three-level cascade atomic medium with the lev-
els of |a〉, |b〉, and |c〉. The cavity field with frequency ω1 (ω2)
is excited by the external driving laser with frequency ωL1 (ωL2).
The nanosphere is trapped and levitated in the cavity by the optical
potential of the driven cavity modes. x and p are the position and the
momentum of the nanosphere, respectively. The atomic medium is
coupled to the cavity fields with the detunings δab and δbc.

external laser beams. Atoms prepared in a coherent superpo-
sition state are injected to the cavity and used to manipulate
the optomechanical interaction between the levitated dielec-
tric nanosphere and the two driven cavity fields. Then, based
on the Heisenberg equations of motion and a linearization
technology [30,63], the steady-state optomechanical entan-
glements between the dielectric nanosphere and the optical
modes are analyzed in detail. We show that the optimal bipar-
tite entanglement between the dielectric nanosphere and the
optical mode 1 or 2 can be obtained under the appropriate
effective cavity detuning and driving power. The influence of
the initial population of the atomic states, the atomic detun-
ing, the atom-field coupling strength, and the radius of the
nanosphere on the steady-state optomechanical entanglement
is also discussed in detail. In particular, we find that the
levitated dielectric nanosphere and the two cavity modes can
be entangled with each other with proper parameters of the
system and therefore genuine tripartite entanglement between
the levitated dielectric nanosphere and the cavity modes is
realized.

The paper is organized as follows. In Sec. II, we present the
model Hamiltonian, derive the Heisenberg-Langevin equation
for the system, and study the quantum dynamics of the fluctua-
tions around the steady-state value. In Sec. III, we evaluate the
oscillation frequency of the levitated nanosphere and study the
dependence on the system parameters of the optomechanical
entanglement between the nanosphere and the cavity modes.
Section IV presents a short summary of the paper.

II. THE MODEL AND HAMILTONIAN

The hybrid optomechanical system studied here, which
consists of a levitated nanosphere and an atomic medium with
a cascade configuration injected into the cavity [49,64], is
depicted in Fig. 1. Further, we consider that the Fabry-Pérot
cavity is driven by two laser beams with frequencies ωL1 and
ωL2 so that the trap and cooling of the nanosphere can be
realized by the optomechanical interactions [64]. Correspond-
ingly, the three-level atomic medium in the cavity interacts
with the two-mode cavity fields with the detunings δab and δbc,
respectively, where |a〉, |b〉, and |c〉 denote the atomic states.
We aim to investigate the entanglement between the levitated

nanosphere and the cavity modes for the continuous-variable
optomechanical system, and study the influence of the three-
level atomic medium on the entanglement with the help of the
Heisenberg equation of motion of the system.

To this end, we first describe the Hamiltonian of the hybrid
system, which can be written as [49,64]

H =
∑
j=1,2

h̄ω ja
†
j a j + p2

2m
+ h̄

∑
i=a,b,c

Eiσii

+h̄(G1σbaa†
1 + G2σcba†

2 + H.c.)

−h̄g1a†
1a1cos2(k1x) − h̄g2a†

2a2cos2(k2x − ϕ)

+
∑
j=1,2

ih̄(ε ja
†
j e

−iωL jt − ε∗
j a je

iωL jt ), (1)

where the first term in the first line describes the energy
of the driven cavity modes and a j ( j = 1, 2) is the photon
annihilation operator for the jth cavity mode of frequency
ω j = k jc. k j and c are the wave vector and the speed of light
in vacuum, respectively. The second term in the first line is
the kinetic energy of the levitated nanosphere at oscillation
frequency ωm, which in general depends on the mass (m)
of the nanosphere and the steady-state values of the system
[60,64]. The position x and momentum p for the center of
mass (c.m.) of the nanosphere satisfy the commutation rela-
tions [x, p] = ih̄. The third term in the first line is the free
Hamiltonian of the atomic medium, where each atom is mod-
eled by a three-level system with the excited states |a〉 and |b〉
and the ground state |c〉. Here we describe each atom in the
medium by the spin operators σii′ = |i〉〈i′|[i(i′) = a, b, c]. The
terms in the second line describe the interactions of the atomic
medium with the driven cavity fields, where Gj represents
the averaged atom-field coupling strength [49]. The terms in
the third line describe the interaction between the trapped
nanosphere and the two cavity modes and g j = 3V

4Vc j

ε−1
ε+2ω j is

the optomechanical coupling strength between the nanosphere
and the cavity mode j, where V and Vc j are the volumes
of nanosphere and the optical mode j, respectively. ε is the
dielectric constant of the levitated nanosphere. ϕ is the phase
between the two optical potentials. Finally, the term in the last
line describes the interaction between the cavity modes and
driving lasers with the amplitude |ε j | = √

2Pjκ j/h̄ωL j , where
κ j is the decay rate of the cavity mode j and Pj is the power of
the driving laser j. In the interaction picture, the Hamiltonian
(1) can be written as

H = h̄(δ1 − δab)a†
1a1 + h̄(δ2 − δbc)a†

2a2 + h̄δ1σaa − h̄δ2σcc

+ p2

2m
− h̄g1a†

1a1cos2(k1x) − h̄g2a†
2a2cos2(k2x − ϕ)

+ h̄(G1σbaa†
1 + G2σcba†

2 + H.c.) + ih̄(ε1a†
1 − ε∗

1a1)

+ ih̄(ε2a†
2 − ε∗

2a2), (2)

where δab = Ea − Eb − ω1, δbc = Eb − Ec − ω2, δ1 = Ea −
Eb − ωL1, and δ2 = Eb − Ec − ωL2. Thus, δ1 − δab = ω1 −
ωL1 (δ2 − δbc = ω2 − ωL2) denotes the detuning between
the cavity field with frequency ω1 (ω2) and the clas-
sical driving field with frequency ωL1 (ωL2). With the
fluctuation-dissipation processes affecting the optical fields,
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the mechanical oscillator, and the atoms, the dynamics of the
system is determined by the following Heisenberg-Langevin
equations:

ẋ = p/m, (3a)

ṗ = −h̄g1k1a†
1a1 sin(2k1x) − h̄g2k2a†

2a2 sin(2k2x − 2ϕ) (3b)

−γM p + ξ (t ) + √
γm1Fp1(t ) + √

γm2Fp2(t ), (3c)

ȧ1 = −[κ1 + i(δ1 − δab)]a1 + ig1cos2(k1x)a1 − iG1σba (3d)

+ε1 +
√

2κ1a1,in, (3e)

ȧ2 = −[κ2 + i(δ2 − δbc)]a2 + ig2cos2(k2x − ϕ)a2

−iG2σcb + ε2 +
√

2κ2a2,in,

˙σba = −(γ + iδ1)σba − iG1a1(σbb − σaa) + iG2a†
2σca

+
√

2γ c1,in,

σ̇cb = −(γ + iδ2)σcb − iG1a†
1σca − iG2a2(σcc − σbb)

+
√

2γ c2,in, (3f)

where the overdots denote time derivatives. ξ (t ) is the
Brownian noise with zero mean value, which is character-
ized by the following correlation function [65] 〈ξ (t )ξ (t ′)〉 =
h̄γM m

2π

∫
dωe−iω(t−t ′ )ω[1 + coth ( h̄ω

2kBT )], where kB is the Boltz-
mann constant and T is the temperature related to the
nanosphere. In general, in the levitated optomechanical sys-
tem placed in a high-vacuum chamber, a high mechanical
quality factor can be attained for the optically trapped di-
electric nanosphere and therefore the thermal damping rate
γM is negligible [66,67]. In contrast, the diffusion rate
(γm j) of the levitated nanosphere caused by the photon
recoil from the cavity fields should be included in the
system dynamics, which can be estimated by γm j = φ jωm

with φ j = 4π2V
5λ3

L j

ε−1
ε+2 [9]. λL j is the wavelength of the driv-

ing laser beam j. It should be noted that recoil heating
effect does not contribute to any mechanical damping of
the nanosphere, but only diffusion [68]. Fpj (t ) is the noisy
force acting on the nanosphere due to photon recoil, which
has the correlation [68] 〈Fpj (t )Fpj (t ′)〉 = δ(t − t ′). a j,in and
c j,in are the optical and atomic noise operators, respectively.
They are fully characterized by the correlation functions,
〈a j,in(t )a†

j,in(t ′)〉 = δ(t − t ′) and 〈c j,in(t )c†
j,in(t ′)〉 = δ(t − t ′).

γ denotes the atomic decay.
In order to obtain the steady-state solution of the system,

we use the linear approximation theory to solve the last two
equations, (3) and (3) [69]. That is, σii′ is substituted by
〈σii′ 〉 for the terms containing σii′ × a j or σii′ × a†

j so that the
last two equations are expanded to the first order in Gj in
Eq. (3). The approximation holds as long as the field operator
changes slowly during the average lifetime of the atoms so
that they can reach the steady state in a short time. This is
because the states of the atoms and the cavity modes can be
generally uncorrelated whether the atoms reside in or leave the
cavity [49,69]. Further, we assume that the initial state of the
atoms specified by the density ρa = ρ0

aa|a〉〈a| + ρ0
cc|c〉〈c| +

ρ0
ca(|c〉〈a| + |a〉〈c|) and the atoms are injected into the cavity

at a normalized injection rate ra. Consequently, the last two
equations of Eq. (3) can be written as

˙σba = −(γ + iδ1)σba + iG1raρ
0
aaa1 + iG2raρ

0
caa†

2

+
√

2γ c1,in, (4a)

σ̇cb = −(γ + iδ2)σcb − iG1raρ
0
caa†

1 − iG2raρ
0
cca2

+
√

2γ c2,in. (4b)

By combining it with Eq. (3), the steady-state val-
ues of the hybrid system can be obtained by setting the
time derivatives to zero, resulting in g1|a1s|2k1sin(2k1xs) +
g2|a2s|2k2sin(2k2xs − 2ϕ) = 0, ps = 0, a1s = u∗

2cε1+u1ε
∗
2

u1u∗
2+u1au∗

2c
, and

a2s = u∗
1aε2−u2ε

∗
1

u∗
1u2+u2cu∗

1a
, where u j = G1G2raρ

0
ca

γ+iδ j
( j = 1, 2), u1a = κ1 +

i�1 − G2
1raρ

0
aa

γ+iδ1
with �1 = δ1 − δab − g1cos2(k1xs), and u2c =

κ2 + i�2 + G2
2raρ

0
cc

γ+iδ2
with �2 = δ2 − δbc − g2cos2(k2xs − ϕ).

Clearly, the steady-state values of the hybrid system depend
strongly on the parameters of the atomic medium, such as the
initial population of the upper level ρ0

aa, that of the lower level
ρ0

cc, and their coherence ρ0
ca. Next we focus on the linearized

dynamics of the quantum fluctuation around the semiclas-
sical fixed points, in which the steady-state photon number
in the cavity should be large, i.e., α1s � 1 and α2s � 1. In
this case, one splits the operators in Eqs. (3) and (4) into
their steady-state values and quantum fluctuations, e.g., O =
Os + δO (O = x, p, a1, a2, σba, σcb). By inserting the ansatz
O = Os + δO into Eqs. (3) and (4) and neglecting all the terms
higher than linear order in the fluctuation δO, the quantum
Langevin equations for the fluctuations can be written as

δẋ = ωmδp, (5a)

δ ṗ = −ωmδx − Gp1(a∗
1sδa1 + a1sδa†

1) − Gp2(a∗
2sδa2 (5b)

+ a2sδa†
2) + √

γm1Fp1(t ) + √
γm2Fp2(t ), (5c)

δȧ1 = − (κ1 + i�1)δa1 − iGp1a1sδx − iG1δσba (5d)

+
√

2κ1δa1,in, (5e)

δȧ2 = −(κ2 + i�2)δa2 − iGp2a2sδx − iG2δσcb

+
√

2κ2δa2,in,

δ ˙σba = −(γ + iδ1)δσba + iG1raρ
0
aaδa1 + iG2raρ

0
caδa†

2

+
√

2γ δc1,in,

δσ̇cb = −(γ + iδ2)δσcb − iG2raρ
0
ccδa2 − iG1raρ

0
caδa†

1

+
√

2γ δc2,in, (5f)

where Gp1 = h̄g1k1sin(2k1xs)/
√

h̄mωm and Gp2 =
h̄g2k2sin(2k2xs − 2ϕ)/

√
h̄mωm are the effective optome-

chanical coupling coefficients. The effective frequency ωm

associated with c.m. oscillation of the levitated nanosphere is
given as

ωm = {
2h̄

[
g1k2

1 |a1s|2cos(2k1xs)

+ g2k2
2 |a2s|2cos(2k2xs − 2ϕ)

]
/m

}1/2
. (6)

Here the position and momentum fluctuations δx and δp
have been nondimensionalized as

√
mωm/h̄δx → δx and
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√
1/h̄mωmδp → δp in Eq. (5). In addition, the thermal damp-

ing force γMδp in Eq. (5 b) is neglected because γM is tiny.
Further, by introducing the column vector of the fluctuation

operators f T (t ) = (δx, δp, δX1, δY1, δX2, δY2, δU1, δV1, δU2,

δV2) and the corresponding noise vector nT (t ) =
(0,

√
γm1Fp1+ √

γm2Fp2,
√

2κ1δX1,in,
√

2κ1δY1,in,
√

2κ2δX2,in,√
2κ2 δY2,in,

√
2γ δU1,in,

√
2γ δV1,in,

√
2γ δU2,in,

√
2γ δV2,in ),

where δXj = (δa j + δa†
j )/

√
2, δYj = (δa j − δa†

j )/
√

2i, δU1

= (σba + σab)/
√

2, δV1 = (σba − σab)/
√

2i, δU2 = (σcb +

σbc)/
√

2, and δV1 = (σcb − σbc)/
√

2i; the Hermitian
input noise operators δXj,in = (δa j,in + δa†

j,in )/
√

2,

δYj,in = (δa j,in − δa†
j,in )/

√
2i, δUj,in = (δc j,in + δc†

j,in )/
√

2,

and δVj,in = (δc j,in − δc†
j,in )/

√
2i, the set of linear quantum

Langevin equations can be written in the following matrix
form

ḟ (t ) = A f (t ) + n(t ). (7)

Here A is the 10 × 10 drift matrix, given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ωm 0 0 0 0 0 0 0 0

−ωm 0 −Gp1X1s −Gp1Y1s −Gp2X2s −Gp2Y2s 0 0 0 0

Gp1Y1s 0 −κ1 �1 0 0 0 G1 0 0

−Gp1X1s 0 −�1 −κ1 0 0 −G1 0 0 0

Gp2Y2s 0 0 0 −κ2 �2 0 0 0 G2

−Gp2X2s 0 0 0 −�2 −κ2 0 0 −G2 0

0 0 0 −G1raρ
0
aa 0 G2raρ

0
ca −γ δ1 0 0

0 0 G1raρ
0
aa 0 G2raρ

0
ca 0 −δ1 −γ 0 0

0 0 0 −G1raρ
0
ca 0 G2raρ

0
cc 0 0 −γ δ2

0 0 −G1raρ
0
ca 0 −G2raρ

0
cc0 0 0 −δ2 −γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

where Xjs = (a∗
js + a js)/

√
2 and Yjs = (a js − a∗

js)/
√

2i.
The steady state of the hybrid system is unique when the

solutions to Eq. (5) are stable, i.e., the real parts of all eigen-
values of the matrix A are negative. The stability condition
can be formulated by using the Routh-Hurwitz criteria [70].
In spite of this fact, the explicit inequalities are quite cumber-
some. Here, we check the stability of the steady-state solutions
with numerical calculation to ensure that the parameters we
used always satisfy the stability conditions.

The nature of linear quantum correlations among the cavity
fields and the nanosphere can be investigated by the correla-
tion matrix (V ) of quantum fluctuations in the hybrid system,
whose element can be defined as Vi j = 〈 fi(∞) f j (∞) +
f j (∞) fi(∞)〉/2 because the steady state of the present system
is always a zero-mean multipartite Gaussian state. Further,
we can solve the linearized Langevin equation (7) for the
fluctuations to obtain the steady-state correlation matrix that
satisfies the following Lyapunov equation [30]:

AV + VAT = −D, (9)

where D = diag[0, (γm1 + γm2)/2, κ1, κ1, κ2, κ2, γ , γ , γ , γ ].
In order to study the optomechanical entanglement in the sys-
tem and the influence of the three-level atoms, we consider the
bipartite entanglement between the levitated nanosphere and
the cavity mode 1 or 2. The bipartite subsystem can be formed
by tracing over the remaining degrees of freedom and such
bipartite entanglement is quantified by using the logarithmic
negativity, EN , and given by [71]

EN = max[0,− ln 2νmin], (10)

where νmin is the smallest symplectic eigenvalue of the
partially transposed correlation matrix associated with the
selected bipartite subsystem. The corresponding reduced cor-

relation matrix can be represented in a 2 × 2 block form Vbp =
(A1 C
CT A2

), obtained by neglecting the columns and rows of
uninteresting modes in the 10 × 10 correlation martix V . For
example, when the bipartite entanglement EN1 between the
nanosphere and the cavity mode 1 is evaluated, we have A1 =
(V11 V12
V21 V22

), A2 = (V33 V34
V43 V44

), and C = (V13 V14
V23 V24

). In this man-

ner, the smallest symplectic eigenvalue is νmin = 2−1/2[� −√
� − 4 det Vbp]1/2 with � = det A1 + det A2 − 2 det C. The

block matrix for the bipartite subsystem of the nanosphere and
the cavity mode 2 and the corresponding bipartite entangle-
ment EN2 can be obtained similarly.

III. NUMERICAL RESULTS

In general, the generation of the entanglement between
the mechanical and the optical modes results from the cou-
pling between them, which can be controlled coherently with
a proper design of the atomic state [49]. In this section,
we evaluate in detail the entanglement between the levi-
tated nanosphere and the cavity modes in the presence of
the injected atomic medium. For simplicity, in the numerical
calculations, we assumed that the two cavity modes 1 and
2 have similar properties, i.e., ω1 ≈ ω2 = ωc, κ1 ≈ κ2 = κ ,
etc. However, we stress that in the present hybrid optome-
chanical system, the photons of different modes should be
distinguished and driven separately by the external driving
lasers with different frequencies ωL1 and ωL2. This is possible
when the frequency difference between the modes 1 and 2,
|ω1 − ω2|, is much larger than the decay rates of the photons
and the oscillation frequency of the levitated nanosphere,
both of which are only in the order of 1 MHz [64]. This
means that the previous numerical assumption, i.e., ω1 ≈ ω2,
is not contradictory to the two-mode driving setup. Further,
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we choose that the wavelength of driving laser field 1 and
the cavity decay rate are λL1 = 810 nm and κ1 = 0.2 MHz,
respectively. In order to evaluate the coupling between the
levitated nanosphere and the cavity modes, we take the ra-
dius of the silicon nanosphere r = 100 nm with the dielectric
constant ε = 2 and the density ρ = 2300 kg/m3. The silicon
nanosphere is used for its stability near the high melting
point and the high polarizability-to-mass ratio, which was suc-
cessfully done in experiments [13]. The length of the cavity
and the mode waist are L = 3 mm and w j = 25 μm, respec-
tively; the corresponding mode volume can be evaluated as
Vc j = (π/4)Lw2

j . In addition, the driving power of the laser
is relatively small, i.e., P = P1 = 20 μW, which ensures that
the nanosphere will not be melted. We further take the phase
ϕ = π/12 and consider laser field 1 driving with a slightly
larger power than field 2, with a ratio R = ε2/ε1 = 0.8.

The other parameter, i.e., the initial state of the atomic
medium injected into the cavity, is assumed to be |ψA(0)〉 =
Ca|a〉 + Cc|c〉. That is, there is no population in the inter-
mediate level |b〉. In this case, the initial density matrix
is calculated as ρa(0) = |ψA〉〈ψA| = ρ0

aa|a〉〈a| + ρ0
cc|c〉〈c| +

(ρ0
ca|c〉〈a| + H.c.), where ρ0

aa = |Ca|2 and ρ0
cc = |Cc|2 are the

initial populations of the upper and lower levels, respectively;
ρ0

ca = C∗
aCc describes the initial two-photon atomic coher-

ence; and the two optical fields a1 and a2 will be correlated
when ρ0

ca �= 0. In order to investigate the impact of the atomic
coherence on the steady-state optomechanical entanglement,
we introduced a new coherent superposition parameter η ∈
[−1, 1] to characterize the initial atomic medium, i.e., ρ0

aa =
(1 − η)/2 and ρ0

cc = (1 + η)/2, and the corresponding atomic
coherence, i.e., ρ0

ca =
√

1 − η2/2 [50]. It is easy to find that
ρ0

aa (ρ0
cc) decreases (increases) with the increase of η. In

contrast, the atomic coherence ρ0
ca increases first and then

decreases to 0 with the increase of η. The optimal coherence of
the atomic initial state can be attained when η = 0. The atomic
detunings δ1 = δ2 = π MHz, the decay rate γ = 2 MHz, the
atom-field couplings G1 = G2 = 1.6π × 103 Hz, and the nor-
malized injection rate ra = 2000. In Fig. 2, we consider the
dependence of the oscillation frequency of the nanosphere on
the effective cavity field detunings �1 and �2 with η = 0.6
and the corresponding atomic coherence ρ0

ca = 0.4. It can be
seen that the frequency of the levitated nanosphere depends
strongly on the effective detunings �1 and �2. In particular,
in the case of small detunings �1 and �2, there is always a
relatively large oscillation frequency, which comes from two
terms: the contribution of the cavity field 1 plus that from
cavity field 2 [see Eq. (6)]. Clearly, the two contributions
are proportional to the intracavity mean photon number, i.e.,
|α1s|2 or |α2s|2, which increases with the decreasing moduli of
the effective detuning �1 or �2.

Figures 3(a) and 3(b) show the bipartite entanglement be-
tween the levitated nanosphere and the cavity modes in the
steady state, EN1 and EN2, as a function of the positive ef-
fective detunings �1 and �2. It is clear from Fig. 3 that the
entanglement can appear in the positive detuning region. Fur-
ther, the entanglement between the nanosphere and the cavity
mode 1 reaches a maximum Emax

N1 = 0.054 at �max
1 = 2.8κ

and �max
2 = 2.3κ . The corresponding effective oscillation fre-

quency of the nanosphere is ωm = 2.63κ (see Fig. 2), which

FIG. 2. Plot of the oscillating frequency of the dielectric
nanosphere, ωm, as a function of the effective cavity field detunings
�1 and �2. We assume that the atoms are prepared in coherent
superposition state with η = 0.6. We have taken the modes 1 and
2 with similar properties, i.e., ω1 ≈ ω2 = ωc, κ1 ≈ κ2 = κ , etc. The
wavelength of laser field 1 is λL1 = 810 nm, the driving power
P1 = 20 μW, and the cavity decay rate κ1 = 0.2 MHz. We have taken
ϕ = π/12 and laser field 1 has a slightly larger power than laser field
2, i.e., R = 0.8. The other parameters are the atomic detunings δ1 =
δ2 = π MHz, normalized injection rate ra = 2000, atom-field cou-
plings G1 = G2 = 1.6π × 103 Hz, and decay rate γ = 2 MHz; the
radius of silica nanosphere r = 100 nm, density � = 2300 kg/m3,
and dielectric constant ε = 2; and the cavity length L = 3 mm and
mode waist ω = 25 μ m.

approaches the optimal detuning �max
1 . It displays an optimal

cooling in cavity field 1 due to the beam-splitter interaction
and therefore leads to a maximal entanglement. When the
effective cavity field detunings �1 and �2 are far away from
the effective oscillation frequency, the log negativities, EN1

and EN2, decrease gradually to 0 and therefore the optome-
chanical entanglement disappears. For the nanosphere and
cavity mode 2, the entanglement maximum is Emax

N2 = 0.105
for �max

1 = 2.6κ and �max
2 = 2.4κ , which shows up in the

resonance region with ωm ≈ �max
1 , corresponding to an op-

timal cooling of the cavity field. It is found from Figs. 3(a)
and 3(b) that due to the fact that the effective optomechanical
coupling strength |Gp2a2s| > |Gp1a1s|, the maximum entan-
glement Emax

N2 is larger than Emax
N1 , which reveals the role of the

optomechanical interaction in the generation of entanglement.
In addition, it is noted that the two-mode squeezing in-

teractions arising from the mechanical blue-sideband driving
may enhance the optomechanical entanglement. Therefore,
we consider the case that the one of the cavity field detuning
is negative, i.e., �1 < 0, and study the generation of entangle-
ment. In Fig. 4, we show the bipartite entanglement, EN1 and
EN2, as a function of the negative detuning �1 and the positive
one �2. We can see from Fig. 4(a) that the maximum entan-
glement Emax

N1 = 0.237 can be obtained due to the two-mode
squeezing interaction when �1 = −2.6κ , which is larger than
that under the mechanical red-sideband driving, i.e., �1 > 0.
In contrast, it is found from Fig. 4(b) that the entanglement
between the levitated nanosphere and cavity field 2 declines
due to the dominating role of the blue-detuning mode 1. We

063501-5



LI, NIE, WU, LIAO, CHEN, AND LAN PHYSICAL REVIEW A 102, 063501 (2020)

E
N1

(a)

1 2 3 4 5 6

2
/

1

2

3

4

5

6

1
/

0

0.01

0.02

0.03

0.04

0.05

E
N2

(b)

1 2 3 4 5 6

2
/

1

2

3

4

5

6

1
/

0.03

0.05

0.07

0.09

FIG. 3. Plot of the entanglements, EN1 (a) and EN2 (b), as a func-
tion of the effective positive detunings �1 and �2. Other parameter
values are the same as in Fig. 2.

also evaluate the stability of the system by considering the
maximum eigenvalue of the drift matrix A. Figure 5 shows the
maximum eigenvalue as a function of the effective detunings
�1 and �2. It is found from Fig. 5 that the optimal entan-
glements in Figs. 3 and 4 appear in the stable region of the
system.

Next, we investigate the role of the atomic coherent su-
perposition in the generation of the steady-state entanglement
near the optimal cavity field detunings. Figure 6 shows the
bipartite entanglement, EN1 and EN2, as a function of atom-
field coupling strength G with different η. The driving power
is P = P1 = 50 μW and the optimal cavity detunings �1 =
�2 ≈ 3κ . Other parameter values are the same as in Fig. 2.
It is found from Fig. 6(a) that when the atomic coherence is
fixed, i.e., ρ0

ca = 0.4, the coherent superposition parameter η

is 0.6 or −0.6 and therefore these exist two different values of
the bipartite entanglement EN1. Similar characteristics appear
for the bipartite entanglement EN2; see Fig. 6(b). This means
that the optomechanical entanglement in the hybrid system is
sensitive to the initial population of the atomic states, which
affects significantly the effective optomechanical coupling.
Furthermore, when the atomic population is changed from the
upper level to the lower level, the bipartite entanglements EN1
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FIG. 4. Plot of the entanglements, EN1 (a) and EN2 (b), as a func-
tion of the effective negative detuning �1 and the positive detunging
�2. Other parameter values are the same as in Fig. 2.

FIG. 5. Plot of the maximum eigenvalue of the drift matrix A as
a function of the effective detunings �1 and �2. The blue region
denotes that the maximum eigenvalue of the drift matrix A is negative
and therefore the system is stable. The parameter values are the same
as in Fig. 2.
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FIG. 6. Plot of the entanglements, EN1 (a) and EN2 (b), as func-
tions of the atom-field coupling strength G with different η. The
driving power P = P1 = 50 μW and the optimal cavity detunings
�1 = �2 = 3κ . The effective atom-field couplings are assumed to
be equal, i.e., G1 = G2 = G. Other parameter values are the same as
in Fig. 2.
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FIG. 7. Plot of the entanglements, EN1 (a) and EN2 (b), as func-
tions of the driving power P and the coherent superposition η. Other
parameters are the same as in Fig. 6.
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FIG. 8. Plot of the entanglements, EN1 (a) and EN2 (b), as func-
tions of the atomic detunings δ1 and δ2. Other parameters are the
same as in Fig. 6.

and EN2 increase monotonically. The entanglement maximum
appears at η = 1 and ρca = 0. Therefore, the large initial
population of lower level |c〉 can enhance the optomechanical
entanglement. In addition, we can see from Fig. 6 that the bi-
partite entanglements EN1 and EN2 decrease with the increase
of G if all atoms are initially in the upper level, i.e., (η = −1).
In contrast, when the atoms are initially in the lower atomic
level, i.e., (η = 1), the bipartite entanglements EN1 and EN2

increase with the increase of G. Consequently, the injected
atomic medium should be prepared initially in the lower level
at a fixed atomic coherence ρ0

ca to attain a large entanglement.
Figure 7 depicts EN1 and EN2 (�1 = �2 = 3κ) as functions

of the driving power P and the coherent superposition η.
Clearly, we see from Figs. 7(a) and 7(b) that the maximum
entanglements Emax

N1 and Emax
N2 always appear when the atoms

are prepared in the lower level, i.e., η = 1. Moreover, it is ob-
served from Fig. 7 that the entanglements are not monotonic
functions of the driving power P and that their maximums
appear at certain intermediate values of P for different coher-
ent superpositions η. In the present model, the increase of the
driving power leads to large photon numbers |a1s|2 and |a2s|2.
Correspondingly, the effective oscillation frequency ωm of the

063501-7



LI, NIE, WU, LIAO, CHEN, AND LAN PHYSICAL REVIEW A 102, 063501 (2020)

1 2 3 4 5 6
/

0

0.02

0.04

0.06

E
N

1

r=60nm
r=90nm
r=120nm

1 2 3 4 5 6
/

0

0.05

0.1

E
N

2

r=60nm
r=90nm
r=120nm

(a)

(b)

FIG. 9. Plot of the entanglements, EN1 (a) and EN2 (b), as func-
tions of the effective cavity field detuning � with different radius r.
Here we take �1 = �2 = �. Other parameters are the same as in
Fig. 6.

levitated nanosphere becomes large gradually. Then, when the
driving power of the system is relatively small or large, ωm

will be very different from the effective cavity field detunings
�1 and �2 so that the resonant coupling cannot be achieved,
which leads to a small optomechanical entanglement.

In Fig. 8, we investigate the dependence of the op-
tomechanical entanglements, EN1 and EN2, upon the atomic
detunings δ1 and δ2 near the optimal effective cavity field
detunings with �1 = �2 = 3κ . In Fig. 8, the entanglements
are not a monotonic function of the atomic detunings δ1

and δ2. Further, for a given atomic detuning δ1, the maxi-
mum entanglement Emax

N1 appears in the region of δ2 ≈ �2.
In contrast, when the atomic detuning δ2 is fixed, the bipartite
entanglement EN1 decreases first and then increases with the
increase of the atomic detuning δ1 and the minimum Emin

N1 is
attained at δ1 ≈ �1. Similar characteristics are observed for
the bipartite entanglement EN2 shown in Fig. 8(b). The results
suggest that one should carefully choose the atomic detunings,
which impact significantly the optomechanical entanglement
and its maximum.

It was noted that increasing the radius of the nanosphere
will enhance the optomechanical coupling gj and therefore
may help generate the steady-state optomechanical entan-
glement. Figures 9(a) and 9(b) portray the steady-state
entanglements between the nanosphere and the cavity modes
as functions of the dimensionless effective cavity field de-
tuning �/κ with different radius r, where we assume �1 =
�2 = �. Other parameters are the same as those in Fig. 6. In
Fig. 9, we see clearly that in the resonant region with � ≈ ωm,
the optomechanical entanglement in the steady state always
increases with the radius of the nanosphere. In particular,
the range of the effective cavity field detuning expands with
the radius of the nanosphere. We stress that the radius of
the nanosphere cannot increase too much because the recoil
diffusion resulting from the cavity fields and the difficulty of
levitating a heavy nanosphere.

Finally, it would be interesting to check the presence of
genuine tripartite entanglement between the three degrees of
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FIG. 10. Plot of the optomechanical entanglements, EN1 and EN2,
and the entanglement between the optical modes, EN12, as functions
of the effective cavity field detuning � with �1 = �2 = �. Here we
have taken δ1 = δ2 = 6π × 105 Hz and P = 0.05 × 10−4 W. Other
parameters are the same as in Fig. 6.

freedom in the system, signaled by a simultaneous presence of
bipartite entanglement across all three bipartitions [38–41,71].
For example, denoting EN12 as the residual entanglement be-
tween the two optical modes, then EN1, EN2, and EN12 are all
larger than zero, which means that the levitated nanosphere
and the two cavity modes 1 and 2 are genuinely entangled with
each other [38,71]. Figure 10 portrays the evolution of entan-
glement among the nanosphere and the two cavity fields as a
function of the dimensionless effective cavity field detuning
�/κ , where we assume �1 = �2 = �. δ1 = δ2 = 6π × 105

Hz and P = 0.05 × 10−4 W. Other parameters are the same
as those in Fig. 6. In Fig. 10, we see clearly that the simul-
taneous presence of bipartite entanglement across all three
bipartitions, i.e., EN1 > 0, EN2 > 0, and EN12 > 0, appears
in the intermediate region of the cavity field detuning � so
that the genuine multipartite entanglement between the two
optical fields and the levitated nanosphere can be obtained by
selecting the system’s parameters properly. As a result, the
present optomechanical system has potential applications in
the generation of the bipartite and tripartite optomechanical
entanglement, which may be useful for quantum information
processing.

IV. CONCLUSIONS

In conclusion, we have analyzed a hybrid optomechanical
system consisting of a Fabry-Pérot cavity with a three-level
atomic medium and a levitated dielectric nanosphere, which
are coupled with two driven cavity modes. We focused on
the linearized dynamics around the semiclassical fixed point
and discussed the steady-state optomechanical entanglement
between the levitated nanosphere and the driven optical modes
as a function of the control parameters of the cavity field,
the atomic medium, and the nanosphere, which we found
depend strongly on the initial population in different atomic
states and the atomic detuning. Further, we showed the exis-
tence of the optimal effective cavity field detuning and the
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driving power that maximize the optomechanical entangle-
ment. We also investigated in detail the role of the radius of
the nanosphere in the steady-state optomechanical entangle-
ment and the generation of genuine tripartite entanglement
between the three degrees of freedom in the system. The
present study demonstrates that the atomic medium with a cas-
cade configuration emerges as a flexible handle to coherently
control the dynamics of the levitated nanosphere and hence
provides a useful way to manipulate macroscopc quantum
properties.
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