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Nonlinear dynamics of Rydberg-dressed Bose-Einstein condensates in a triple-well potential
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We study nonlinear dynamics of Rydberg-dressed Bose-Einstein condensates (BECs) trapped in a triple-well
potential in the semiclassical limit. The Rydberg-dressed BECs experience a long-range soft-core interaction,
giving rise to strong nearest- and next-nearest-neighbor interactions in the triple-well system. Using mean-field
Gross-Pitaevskii (GP) equations, we show that lower branches of the eigenspectra exhibit loops and level
crossings when the soft-core interaction is strong. The direct level crossings eliminate the possibility of adiabatic
Landau-Zener transitions when tilting of the triple-well potential. We demonstrate that the long-range interaction
allows for self-trapping in one, two, or three wells, in a far more controllable manor than BECs with short-range
or dipolar interactions. Exact quantum simulations of the three-well Bose-Hubbard model indicate that self-
trapping and nonadiabatic transition can be observed with less than a dozen bosons. Our study is relevant to
current research into collective excitation and nonlinear dynamics of Rydberg-dressed atoms.
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I. INTRODUCTION

The understanding of the dynamics of interacting Bose-
Einstein condensates (BECs) has been a lucrative field of
research in the past three decades [1–6]. With modern ex-
perimental techniques that allow for controlling properties of
ultracold atomic gases, such as atom-atom interactions [7],
trapping potentials and spatial dimensions [8–10], along with
long coherence times [11], stationary and dynamical proper-
ties of atomic BECs have been explored in great detail [5].
The dynamics of a trapped atomic BEC is typically described
by the mean-field, Gross-Pitaevskii (GP) equation [7,12,13],
with which many interesting properties and novel dynamics
have been revealed [14–22]. In optical lattices [23], bosons
can undergo the well-known superfluid-Mott insulator transi-
tion [24]. It has been proposed that BECs [25–27] and atoms
trapped in optical lattices [28] can be used for carrying out
quantum computation.

Substantial work has also been carried out in finite-sized
double-well and triple-well potentials. In the quantum regime,
the dynamics of atoms in double well potentials are affected
by the onsite (short-range) interactions, causing wave-packet
collapse and revivals [29]. In the semiclassical regime, strong
onsite interactions introduce interesting nonlinear effects. One
striking feature is that the eigenspectrum of the nonlinear sys-
tem develops a loop structure due to strong onsite interactions
[30,31]. The loop causes the breakdown of the adiabatic the-
orem and self-trapping dynamics, which has been examined
experimentally [32,33]. In triple-well configurations, static
and dynamical properties depend on boundary conditions
and spatial profiles of two-body interactions. With closed
boundaries and bare onsite interactions [34–36], multiple loop
structures are found in the spectra of the coupled nonlinear

FIG. 1. Long-range soft-core interaction and finite lattice trap-
ping potential. (a) The soft-core interaction potential (red) extends
across several lattice sites. The soft-core radius can be larger than the
lattice constant d of the optical lattice potential (dashed). When the
atomic separation is larger than R, the interaction decreases rapidly.
(b) Schematic of a triple-well lattice potential. The potential height
(zero-point energy) γ of each trap may be adjusted dynamically.
Atoms may interact via onsite (W ), nearest- (U ), or next-nearest- (V )
neighbor interactions, while the tunneling J is restricted to nearest-
neighbor sites, forming a chain setup.

system. These complicated spectra lead to turbulent phase
spaces [37–39] and produce oscillatory dynamics beyond the
typical Josephson or self-trapping behavior [34,35,40]. Pop-
ulation transfer between energy levels has been found via
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Landau-Zener tunneling [34,37,38]. Additionally, resonance
generation within a triple-well was explored [41]. Ring-
shaped triple-well setups (i.e., periodic boundary conditions)
have also been examined, in which eigenenergies intersect
even for the noninteracting case [42].

When long-range dipolar interactions are present, the dy-
namics of BECs are changed dramatically in triple-well
potentials. The ground state shows exotic behavior, such as
mesoscopic quantum superpositions [43] and macroscopic
first-order coherence between the outer sites [44]. Recently,
quantum population [45] and entanglement [46] dynamics of
dipolar BECs in triple wells have also been examined. It was
shown that the nonlocal interactions allow both coherent and
non-coherent oscillations between the sites, with very little
occupation occurring in the middle well. However, dipolar
interactions decay rapidly with distance r as r−3, which leads
to weak nearest-neighbor and much weaker next-nearest-
neighbor interactions in a triple-well potential.

Long-range interactions can be realized alternatively by
dressing ground state atoms to electronically high-lying Ryd-
berg states, leading to soft-core shaped long-range interaction
potentials [47–52]. The soft-core interaction is nearly a con-
stant within a radius R. For typical parameters, the soft-core
radius is a few micrometers [48] after which the dressed
interaction decreases as r−6 as depicted in Fig. 1(a). This
interaction has motivated a number theoretical studies on the
static and dynamical properties of Rydberg-dressed atoms
confined in traps [53–59] and optical lattices [60–66]. Addi-
tionally, recent experiments have successfully demonstrated
Rydberg-dressing in optical tweezers [67], optical lattices
[68–70], and traps [22,71].

In this work, we study BECs interacting with long-
range soft-core interactions trapped in a triple-well potential
[see Fig. 1(b)]. A key feature is that the long-range Rydberg-
dressed interaction allows us to explore dynamics in a regime
where nearest-neighbor and next-nearest-neighbor interac-
tions are strong, due to the large soft-core radius. When the
traps are tilted, the system undergoes nonadiabatic Landau-
Zener transitions due to complicated loops and level crossings
on the lower branches of the eigenspectra. This results in
dynamical instability and hence leads to the breakdown of the
adiabatic theorem. This is in stark contrast to systems with
short-range interactions, where tunneling from the ground
state is not prevented from adiabatic population dynamics,
as the level crossings emerge in the higher energy branches.
By tuning the profile of Rydberg-dressed interactions, we can
also control self-trapping of BECs [9,72] to a high degree
of accuracy, which is typically difficult if considering only
onsite interactions. We propose that the nonlocal interactions
allow for precise manipulation of the final states, such that
we can control whether the trapping is localized in a one,
two, or even all three wells simultaneously. We also carry
out simulations of the quantum dynamics which takes into
account the interwell correlations. The comparison with the
mean-field results show that the transporting dynamics can be
found in mesoscopic systems with tens of atoms.

The paper is organized as follows. In Sec. II, the Hamil-
tonian of the system is introduced. The corresponding
mean-field approximation is presented and the resulting equa-
tions of motion are given. We examine the eigenspectrum and

discuss new features in our system. In Sec III, we explore
nonadiabatic transitions for both weak and strong nonlinear
interactions. The Landau-Zener transition probability is also
examined. By analyzing the Poincaré sections for different en-
ergy values, we show that the system can move towards highly
chaotic regions when the nonlinear interactions are strong.
We then examine self-trapping of bosons in different sites.
The dynamics depends on initial conditions and long-range
interactions. We moreover compare the mean-field results to
quantum dynamics. We conclude our work in Sec. IV.

II. MODEL AND METHOD

A. Bose-Hubbard and mean-field Hamiltonian

We consider N bosonic atoms in a one-dimensional trap
array, whose dynamics is governed by an extended Bose-
Hubbard Hamiltonian (h̄ = 1)

Ĥ =
L∑
j

� j n̂ j − J
L∑

〈i, j〉
â†

i â j

+ g

2

L∑
j

n̂ j (n̂ j − 1) + 1

2

L∑
i, j

�i, j n̂in̂ j, (1)

where J and L are the hopping rate of atoms between nearest-
neighbor traps and total number of traps, respectively. In this
work we imagine a triple-well chain setup (i.e., L = 3 with
closed boundary conditions), where we restrict hopping to
nearest neighbors only, denoted by 〈. . . 〉. The bosonic an-
nihilation (creation) operator at site j is given by â j (â

†
j ).

� j and n̂ j = â†
j â j are the local tilting potential and number

operator, respectively. The parameter g = 4πas/m charac-
terizes the onsite (s-wave) interaction [5,6], which can be
controlled through Feshbach resonances [73]; where as and
m are the scattering length and mass, respectively. �i, j =
C6/[|i − j|6d6 + R6] is the soft-core interaction between site
i and j with d being the lattice constant, and C6 being the van
der Waals coefficient [48].

In the limit of N � 1, we employ the mean-field approx-
imation to replace the bosonic operator with a classical field
ψ j , i.e. â j ≈ ψ j , â†

j ≈ ψ∗
j and

∑
j |ψ j |2 = N [7]. This yields

the mean-field Hamiltonian

H̃ =
3∑
j

� j |ψ j |2 − J
3∑

〈i, j〉
ψ∗

i ψ j

+ g

2

3∑
j

|ψ j |2(|ψ j |2 − 1) + 1

2

3∑
i, j

�i, j |ψi|2|ψ j |2. (2)

The dynamics of the classical field ψi is derived via the
canonical equation idψ j/dt = ∂H̃/∂ψ∗

j . For convenience, we

define the normalized field c j = ψ j/
√

N with the normaliza-
tion condition

∑
j |c j |2 = 1. For the triple-well system, we

obtain the following coupled nonlinear GP equations:

iċ1 = (
W |c1|2 + U |c2|2 + V |c3|2

)
c1 + γ c1 − Jc2, (3a)

iċ2 = [
W |c2|2 + U (|c1|2 + |c3|2)

]
c2 − J (c1 + c3), (3b)

iċ3 = (
W |c3|3 + U |c2|2 + V |c1|2

)
c3 − γ c3 − Jc2, (3c)
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FIG. 2. Adiabatic eigenspectra with different short-range inter-
actions. We show the adiabatic eigenspectra as a function of γ for
(a) W = −5, (b) 0, (c) 5, and (d) 10 while fixing U = 2V = 5.
When the short-range interaction is attractive or vanishing, loops
and direct level crossings are found in the lower branches. These
structures disappear when W = U . When the short-range interaction
dominates, the structures are found in the upper branches of the
levels. The linear case (W = U = V = 0) is shown for reference in
each panel (blue dotted). To compare with the nonlinear spectra, the
linear spectra are shifted perpendicularly by W .

where we have defined W = N (�11 + g), U = N�1,2 and
V = N�1,3 to be the onsite, nearest-neighbor and next-
nearest-neighbor mean-field interactions, respectively. The
short-range interaction W takes into account of contributions
from the s-wave and onsite soft-core interaction. The local
potential � j is antisymmetric, given by � j = −( j − 2)γ , i.e.,
�1 = γ , �2 = 0, and �3 = −γ . Here γ is a bias field to
create a potential height difference between neighboring traps.
In Sec. III A, the potential wells are linearly biased through
γ = αt , with α being the sweep rate. In Sec. III B, we will
consider a fixed γ . To be convenient, we will scale time and
energy with respect to 1/J and J in the following unless stated
explicitly.

B. Adiabatic eigenspectra of the GP equation

When analyzing the adiabatic spectra of the system
through Eqs. (3a)–(3c), the presence of the nonlinearity
implies that standard methods (i.e., diagonalization of the
Hamiltonian) are not valid. We adapt the method applied to
treat nonlinear equations corresponding to interacting BECs
in double-well potentials [30]. The basic idea is to convert the
nonlinear equations into a high-order L2 polynomial equation
of eigenvalue ε additionally applying the normalization condi-
tion [74]. For L = 3, it becomes difficult to solve the resulting
polynomial equation even numerically. As such, we employ
a shooting method that is similar to obtaining bound states
of the Schrödinger equation. A trial energy εt is fed into the
nonlinear GP equations, allowing us to calculate eigenvectors
[c1, c2, c3] and eigenenergy εn. An eigenstate is identified if
the calculated and trial energy are equal, i.e., εt = εn. This
is carried out for a fine grid of trial energies to obtain all
eigenenergies.

γ γ

FIG. 3. Adiabatic eigenspectra with different long-range inter-
actions. By turning off the short-range interactions (W = 0), the
adiabatic eigenspectra are shown as a function of γ for U = 2V with
(a) U = 1, (b) 3, (c) 5, and (d) 9. When the long-range interactions
are strong, loops and direct level crossings emerge on the lower
branches, as shown in (b)–(d). The linear case (W = U = V = 0)
is shown for reference in each panel (blue dotted).

We first investigate the interplay between short-range (W )
and long-range (U and V ) interactions. When both the short
and long-range interaction are perturbative with respect to J ,
the eigenspectra are separated and display avoid level cross-
ings even when γ ∼ 0 (see demonstration in Appendix A).
To highlight the roles played by the nonlinear interaction,
we calculate the eigenspectra of the GP equation by varying
W while fixing U = 2V = 5, shown in Fig. 2. When the
tilting is large, i.e., |γ | > |W |, U, and V the eigenspectra
approaches the linear spectra. When W = −10 (i.e., attractive
onsite interactions), we find direct level crossings between the
lowest three branches at γ = 0. Slightly away from γ = 0,
large loop structures are found, as shown in Fig. 2(a). When
W = 0 similar structures are found, where the sizes of the
loops shrink [Fig. 2(b)]. When W = U = 2V = 5, the loops
disappear and the spectra is similar to the linear spectra.
This set of parameters largely gives a global energy shift.
Due to the normalization condition, only Eqs. (3a) and (3c)
have a single nonlinear term proportional to V while Eq. (3b)
has no nonlinear interaction term anymore. When W = 10
[Fig. 2(d)], the loop and level crossings re-appear in the higher
energy branches. In this case the spectra are dominated by the
short-range interaction. This structure is similar to previous
studies in systems with bare onsite interactions [35,36] where
the loops and level crossings form star-like structures.

In the remainder of this work, we will focus on a regime
where only long-range interactions are present (i.e., W = 0).
For soft-core interactions where R � 1, the nearest and next-
nearest-neighbor interactions are the same as U = V . The
resulting spectra can be obtained from BECs with bare short-
range interactions (see details in Appendix A). This can be
understood as the particle conservation maps the long-range
interaction to an attractive short-range interaction. To violate
this symmetry, we will focus on a condition U = 2V , which
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FIG. 4. Eigenspectra vs the long-range interactions. Increasing
the interaction strength leads to the creation of new energy levels in
(a) symmetrical traps (γ = 0) and (b) titled traps (γ = 1). Location
of the critical interaction strengths can be extrapolated from when
a new level is created. In (a) the critical values are Uc1 ≈ 3.5 and
Uc2 ≈ 5.4. In (b), the critical values are U c1 ≈ 4.1, U c2 ≈ 6.6, and
U c3 ≈ 8.

will be used for the remainder of this article. This restriction
can move the loop and level crossings to the central region,
leading to interesting dynamics. For weak long-range interac-
tions, the eigenenergies are slightly modified from the linear
counterpart [Fig. 3(a)]. When the long-range nonlinear inter-
action is strong (i.e., U, V � 1), the energy levels are pushed
upwards by increasing U and V , as can be seen in Fig. 3(b).
The spectrum develops a loop structure on the lowest level
when U = 2V = 3. By further increasing the long-range in-
teractions [see Figs. 3(c) and 3(d)], the loops become larger
and more complicated level crossings emerge in higher energy
states.

In Fig. 4(a), we plot the energy levels as a function of
U with γ = 0. At a critical interaction strength Uc1 ≈ 3.5,
a new branch of levels emerges. Further increasing U to
Uc2 ≈ 5.4, a second branch appears at higher energies. Note
that explicit values of Uc1 and Uc2 depend on γ . Figure 4(b)
shows another example for a tilted trap with γ = 1. The levels
are more separated in the low energy region. Here the two
critical values are U c1 ≈ 4.1 and U c2 ≈ 6.6. Furthermore we
see the emergence of a third energy level at U c3 ≈ 8. In the
following sections, we will show that the critical values of
the long-range interaction strongly relate to dynamical behav-
iors of the system.

III. RESULTS AND DISCUSSION

A. Landau-Zener and nonadiabatic transitions

In this section, we study the dynamics of the long-range
interacting BEC when the traps are tilted at different rates α.
Without nonlinear interactions (U = V = 0), the level spac-
ing is determined by the tunneling rate J . In the diabatic
regime where

√
α is large and comparable to the typical level

spacing 
E (see dashed curve in Fig. 3), the system does
not have enough time to respond to the change of the tilting.
Starting from the ground state, higher energy levels will be
excited. In the opposite, adiabatic limit where

√
α is small,

the adiabatic theorem states that the system will remain in an
instantaneous eigenstate under variation of α [75,76]. This has
been studied extensively with two-state (well) systems, where
the transition probability from t → −∞ to t → ∞ is given

n
i

γ

n
i

γ

n1

n2

n3

FIG. 5. Landau-Zener transitions with weak and strong interac-
tions. The bias potential is tilted with a fast rate α = 1 in (a) and
(c), and a much slower rate α = 0.001 in (b) and (d). The interaction
is U = 2V = 1 in the upper panels and U = 2V = 3 in the lower
panels. For rapid tilting, higher energy modes are excited such that
oscillatory dynamics are observed in (a) and (c). For slow tilting, the
dynamics depends strongly on the nonlinear interactions. When the
interaction is strong, the adiabatic condition is broken [see Fig. 4(b)].
The densities n1, n2, and n3 are given by the dotted red, solid blue,
and dashed black lines.

analytically by

P(α) = exp

(−2πJ2

α

)
. (4)

The resulting Landau-Zener dynamics [77,78] has produced
a vast field of research and is still lucrative in terms of its
modern day applications.

In Fig. 5, population evolution of the BECs in the three
wells is shown in the presence of weak interactions. Ini-
tially all atoms are in the left well [n1(0) = 1]. When the
trap is tilted rapidly at rate α = 1 [Fig. 5(a)], the population
undergoes fast oscillations when the tilting is reversed, i.e.,
γ > 0. This case corresponds to the diabatic regime where
the lowest energy gap is 
E = 0.6, comparable to

√
α = 1.

The level spacing 
E now depends on the nonlinear inter-
action strengths, in addition to the hopping. In Fig. 5(b), we
show the population evolution for slow tilting with α = 0.001.
The dynamics is in the adiabatic limit, as

√
α ≈ 0.03 � 
E ,

leading to smooth population changes among the three wells.
The system follows the ground state adiabatically, where the
population tunnels from the leftmost to rightmost well.

For sufficiently strong nonlinear interactions, the lower
levels develops loop structures near U > Uc1. Due to the non-
linearity, the number of eigenvalues available is now greater
than the dimension of the Hilbert space. Dynamically, the
system undergoes multiple avoided and direct level crossings,
when increasing γ from −∞ → +∞. As a result, oscillations
are seen in the diabatic regime due to the excitation of higher
energy eigenstates [see Fig. 5(c)]. In the adiabatic limit, the
loop structures play vital roles as many eigenstates are ex-
cited, giving rise to extremely fast oscillations with multiple
frequencies, as seen in Fig. 5(d).
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To show the influence of the long-range interaction on the
dynamics, we show the probability of the population being
retained in the initial state (left well) for different tilting rate
α in Fig. 6. Interestingly, the excitation probability is largely
captured by the Landau-Zener transition probability Eq. (4)
when the nonlinear interaction vanishes. When U = 1 the
retention probability of the initial well increases. It approaches
to the non-interacting case in the adiabatic limit when
α � 1. Note that there are no simple power laws present in
the tunneling probability as a function of α, which is differ-
ent from the double-well potentials [30]. For even stronger
interactions U = 3, the excitation probability depends on α

non-monotonically. The retention probability is large for cer-
tain values of α when α < 1, and becomes dramatically larger
when α > 1. As shown in Fig. 3, the presence of the loop and
level crossings breaks the adiabatic condition. Violating the
Landau-Zener prediction in the adiabatic limit has also been
shown for both double-well [30–33] and triple-well systems
with short-range interactions [34,42].

B. Self-trapping and chaotic dynamics

The retention probability in Fig. 6 indicates the emergence
of self-trapping when the long-range interaction is strong.
Self-trapping has been extensively studied in double-well
potentials [29,30]. BECs with short-range interactions can
localize in a single well as the densities scale logarithmically
with the interaction strength, after a certain critical value. Self-
trapping is also studied with short-range interacting BECs
in triple-well potentials [34,35]. Here, we will discuss the
differences between both short and long-range interactions,
and how we can control the final distribution of atoms, by
manipulating the initial conditions. Without nonlinear interac-
tions (U = 0), the mean-field Eqs. (3a)–(3c) are analytically
solvable, yielding solutions

c1(t ) = 1

ω2
{J[Jc̄1 + γ c̄2 − Jc̄3]

+ [γ 2c̄1 − Jγ c̄2 + J2[c̄1 + c̄3]] cos ωt

+ iω[Jc̄2 − γ c̄1] sin ωt}, (5a)

c2(t ) = 1

ω2
{γ [Jc̄1 + γ c̄2 − Jc̄3]

+ [2Jc̄2 + γ [c̄3 − c̄1]] cos ωt

+ iω[c̄1 − c̄3] sin ωt}, (5b)

c3(t ) = 1

ω2
{−J[Jc̄1 + γ c̄2 − Jc̄3]

+ [Jγ c̄2 − γ 2c̄3 + J2[c̄1 + c̄3] cos ωt]

+ iω[Jc̄2 + γ c̄3] sin ωt}, (5c)

where ω =
√

2J2 + γ 2 and Y ᵀ = [c̄1, c̄2, c̄3] denotes the
eigenvectors at t = 0.

In the presence of nonlinear interactions, the mean-field
equations are solved numerically with a given set of param-
eters and initial conditions. To characterize dynamics in the
long time limit, we calculate the time averaged densities in

α

P
(α

)

FIG. 6. Retention probability of the initial state. The analytical
Landau-Zener probability for U = 0 is given by the black squares.
The other curves correspond to the numerical calculations for U = 0
(red dashed), U = 1 (blue dotted), U = 2 (green dot-dashed), and
U = 3 (purple solid). The parameter γ is varied from −10 → +10
in calculating the probability.

individual wells through

〈ni〉 = lim
τ→∞

[∫ τ

0 |ci(t )|2 dt

τ

]
, (6)

where τ is the final time. In the numerical simulations,
we integrate the nonlinear GP equations from t = 0 up to
τ = 100. We have checked that consistent results can be ob-
tained when integrating the GP equations up to this time.

In the following, we consider several different cases for
both the symmetric and antisymmetric trap setups, to demon-
strate the importance that the initial conditions have on the
dynamics. We begin by looking at the symmetric case where
γ = 0.

Case I: Yᵀ = [1/2, 1/
√

2, 1/2]

The lowest energy eigenstate when U = 0 is given by
Y ᵀ = [1/2, 1/

√
2, 1/2]. Using this as the initial state, the

corresponding atomic densities in each wells are obtained by
using Eq. (5),

〈n1〉 = 〈n3〉 = 1
4 , 〈n2〉 = 1

2 .

The majority of the particles are found in the middle well.
Using the same initial state, we numerically solve the GP
equations for different U . In Fig. 7(a), the average density
decreases in the two outer wells while increasing in the mid-
dle site, as U increases. When U � 1, the population tends
to fully localize in the middle site. Due to strong nearest-
neighbor and next-nearest-neighbor interactions, the lowest
energy corresponds to all atoms sitting in one well, as we show
in the numerical simulation. Here we see a smooth transition
from the initial densities towards the self-trapping regime.
From Fig. 4(a), we see that when U > Uc1 the lowest energy
level is largely independent of U . The next excited level has
also merged with the lowest level, preventing any occupation
of higher energy modes. This accounts for the smooth increase
in the densities as each the energy gap separating any higher
levels is larger than the hopping strength, i.e., 
E > J .
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U

〈n
i〉

[1
2
, 1√

2
, 1

2
] [1, 0, 0] [

√
2
3
,
√

1
3
, 0]

[
√

1
3
,
√

1
3
,
√

1
3
]

≈ [0.211, 0.577, 0.789]

[1, 0, 0] [
√

5
6
,
√

1
6
, 0]

[0, 1, 0]

FIG. 7. Self-trapping of the populations with different initial conditions. The time-averaged densities of each site are shown as a function
of the interaction strength U . The symmetric cases with γ = 0 are shown in (a)–(d) and the tilted cases with γ = 1 are shown in (e)–(h). The
initial conditions Y ᵀ = [c̄1, c̄2, c̄3] are shown as insets in each panel. The densities of the left, middle and right wells are denoted with red
dotted, blue solid, and black dashed curves. The average density is obtained by evolving the GP equations to time τ = 100.

Case II: Yᵀ = [1, 0, 0]

When changing the initial state to Y ᵀ = [1, 0, 0], the
dynamics of the population changes drastically. Without in-
teractions, the average populations are obtained again with the
help of Eq. (5),

〈n1〉 = 〈n3〉 = 3
8 , 〈n2〉 = 1

4 .

Increasing U , the average densities of the middle well de-
creases slightly and then stays at a lower value [Fig. 7(b)]. The
populations then become turbulent as the interaction strength
passes U = Uc1, where the dynamics can not be categorized
by standard Josephson or self-trapping regimes. Due to the
complicated energy levels [see Fig. 4(a)], chaotic dynamics
is produced as particles tunnel between each site within the
range of Uc1 < U < Uc2. This chaotic dynamics continues un-
til the interaction strength passes U = Uc2. The self-trapping
re-emerges such that the BECs localize in the left well when
U > Uc2.

Case III: Yᵀ = [
√

2/3,
√

1/3, 0]

Figure 7(c) shows the system being initialized in the state
Y ᵀ = [

√
2/3,

√
1/3, 0]. Without interactions (i.e., U = 0),

densities in each well are

〈n1〉 = 〈n2〉 = 〈n3〉 = 1
3 .

As with the previous case, the dynamics is turbulent within the
region of Uc1 < U < Uc2 due to the superposition of energy
levels. What is interesting is that the densities are no longer
localized in a single well in the limit when U → ∞. Here the
weighting of the initial conditions have allowed for approxi-
mately 17% of the atoms to occupy the middle well, with the
remainder almost all in the left well.

Case IV: Yᵀ = [
√

1/3,
√

1/3,
√

1/3]

Next we examine the initial condition Y ᵀ = [
√

1/3,√
1/3,

√
1/3]. The average density with U = 0 is

〈n1〉 = 〈n3〉 = 1
4 , 〈n2〉 = 1

2 .

For this case we see drastically different dynamics in Fig. 7(d).
First, we note that in the intermediate region Uc1 < U < Uc2,
the system bypasses any chaotic dynamics. This will be ex-
amined in more detail in the coming section, however we
can attribute this to the structure of phase space that the
fixed points travel through. Moreover, this case provides an
example of self-trapping in three wells simultaneously, as
ni > 0 ∀ i, when U � 1.

Case V: Yᵀ ≈ [0.221, 0.577, 0.789]

We now move on to examine the antisymmetric case by
focusing on γ = 1. We begin by examining the lowest energy
eigenvector Y ᵀ ≈ [0.221, 0.577, 0.789]. When U = 0 the av-
erage densities of each well are

〈n1〉 ≈ 0.045, 〈n2〉 = 1
3 , 〈n3〉 ≈ 0.622.

As with the symmetric case, the system is prepared in an
eigenstate of the initial Hamiltonian, meaning that there is
a smooth transition as the state follows the constant energy
past U � 3. From Fig. 4(b), we see that the energy difference
between the lowest energy state and the upper states is far
larger than the hopping strength, i.e., 
E > J , preventing
coupling to higher energy states.

Case VI: Yᵀ = [1, 0, 0]

We begin to see more interesting dynamics when the initial
condition Y ᵀ = [1, 0, 0] is again chosen. For the tilted wells
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this gives the noninteracting densities

〈n1〉 = 1
2 , 〈n2〉 = 1

3 , 〈n3〉 = 1
6 .

At first glance, these initial values may seem uninteresting,
however they imply that even though the trap is orientated
such that the rightmost well has the lowest overall level bias,
the densities are still localized mainly in the leftmost well.
This phenomena is extremely counter-intuitive as one would
expect a large proportion of the densities to tunnel to the low-
est available state. When we numerically solve the nonlinear
GP equation [see Fig. 7(f)], we see this feature persist for
strong nonlinear interaction strength U > U c3. The interme-
diate chaotic region now spans the entire range of U c1 < U <

U c3, as the tilted orientation produce a further energy level at
much larger interaction strengths [see Fig. 4(b)]. As U → ∞,
we see that the localization is almost fully in the leftmost well,
with the highest level bias energy. Similar phenomena where
reported for the short-range interacting system in Ref. [35].

Case VII: Yᵀ = [
√

5/6,
√

1/6, 0]

The noninteracting density for this case can be obtained by
using Eq (5),

〈n1〉 = 17 − 2
√

5

36
, 〈n2〉 = 1

3
, 〈n3〉 = 17 + 2

√
5

36
.

Similar to the previous case in Fig. 7(g), we see that this initial
condition yields highly chaotic dynamics, where the range
of the chaos extends the region U c1 < U < U c3. When the
nonlinear interaction is strong, and the system enters the self-
trapped regime (U > U c3) we see that self trapping occurs
in the leftmost and middle wells, with roughly 10% of the
particles occupying the middle site.

Case VIII: Yᵀ = [0, 1, 0]

In this case, the density when U = 0 is

〈n1〉 = 〈n2〉 = 〈n3〉 = 1
3 .

In Fig. 7(h), we see self-trapping dynamics once the inter-
action passes U > U c2, as only the lowest energy level is
occupied. When U c1 < U < U c2 the dynamics is unstable
such that the average density fluctuates drastically when vary-
ing U .

C. Poincaré Sections and chaotic dynamics

Figure 7 shows that regular and chaotic dynamics can be
triggered by varying the initial state, even when the long-range
interactions are the same. This dependence comes from the
fact that energies of the system are changed when considering
different initial states. As the energy is a conserved quantity,
the system will show vastly different trajectories in phase
space. We now illustrate this dependence using Poincaré sec-
tions [35,79].

To obtain the Poincaré section, Hamiltonian (2) is con-
verted to a classical Josephson-like analog, where the
resulting equations of motion define a four-dimensional phase
space in terms of the canonical variables {n1, θ1} and {n3, θ3}
[see Appendix C for more details]. By taking a slice at θ3 = 0,
in the direction of θ̇3 < 0, and employing energy conversation,

FIG. 8. Poincaré sections. The Poincaré sections for
(a) E = −0.5 and (b) 0.2 are shown. (c) and (d) show dynamics of
n1 (red dotted), n2 (solid blue), and n3 (black dashed) using initial
conditions that would lie on the sections of (a) and (b), respectively.
Other parameters are U = 3 and γ = 0.

the equations of motion can be expressed inside the two-
dimensional plane {n1, θ1}, forming the Poincaré section.

In Fig. 8(a), we show the Poincaré section when the av-
erage energy E = 〈H̃〉/N = −0.5. Regular orbits mean that
solutions to the dynamics will travel across phase space via
smooth paths periodically. This energy is associated with
the initial conditions given by Figs. 7(a) and 7(d), which
do not show chaos in their time-averaged dynamics in the
interplay region of Uc1 < U < Uc2. In Fig. 8(c) we show
dynamics of the population that corresponds to the initial
condition of Fig. 7(d). The periodic oscillation of the popu-
lation is consistent with the regular pattern in the Poincaré
section. Figure 8(b) shows a very different situation where
the Poincaré section at E = 0.2 only has localized regions of
chaos, corresponding to the initial conditions of Figs. 7(b) and
7(c). In Fig. 8(d), we see that the associated dynamics does
not shown regular periodic oscillations. Recent studies have
found interesting chaotic dynamics emerging from three-state
systems when nonlinear interactions become strong [37–39].
The understanding of the chaotic dynamics and its control in
Rydberg-dressed BECs will be useful for future experiments.

D. Comparison between quantum and mean-field dynamics

The mean-field dynamics presented in previous sections is
obtained in the limit N → ∞. Experimentally, self-trapping
of populations has been observed with BECs containing about
1000 atoms in double-well potentials, where dynamics of the
BEC can be accurately described by the mean-field theory
[32]. In this section, we will show that the adiabatic and nona-
diabatic dynamics predicted by the mean-field theory can be
also seen in relatively small systems with N � 100. To study
the quantum dynamics, we numerically solve the Schrödinger
equations using the three-site Bose-Hubbard Hamiltonian (1).
We will encounter a time-dependent Hamiltonian when study-
ing the Landau-Zener transition.

In the Josephson oscillation regime when U < Uc1, popu-
lations oscillate among the potential wells almost completely,
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FIG. 9. Quantum and semiclassical dynamics. Populations ob-
tained from the extended Bose-Hubbard Hamiltonian (1) using
(a) U = 1 and (b) 5 for different atom numbers. The black solid
curves show the mean-field results with same interactions. Landau-
Zener transitions are shown when (c) α = 1 and (d) α = 0.01 with
U = 3. Arrows are used in (d) to distinguish the different oscillations
in gray scale.

as shown in Fig. 9(a). At later times, the population partially
returns to the initial well. The long-time dynamics of the
population shows a relaxation, especially when N is small. In-
creasing N , we find that the relaxation becomes weaker, such
that the quantum dynamics resembles that of the mean-field
calculation. Similar dynamics has been investigated in detail
in Ref. [80]. When approaching to the self-trapping regime
(U > Uc1), only a small fraction of populations can tunnel
to other potential wells. The population oscillates irregularly
around a constant that is close to 1 [see Fig. 9(b)]. Increasing
N , we find that amplitudes of the oscillation decrease rapidly,
and the average population also increases. The average pop-
ulation, however, is smaller than the mean-field result. The
difference is largely attributed to the many-body correlations
between potential wells, which are neglected in the mean-field
calculations

In Figs. 9(c) and 9(d), we study Landau-Zener dynamics
by dynamically changing the trap bias from γ = −10 to 10
in Hamiltonian (1). The corresponding mean-field dynamics
is shown in Figs. 5(c) and 5(d). When rate α is large, the
right well starts to be populated once γ > 0. Further increas-
ing γ , the population oscillates with larger amplitudes for
larger N . Remarkably, such evolution agrees with the mean-
field calculation well. In the adiabatic regime with α = 0.01,
the mean-field calculation shows rapid oscillations around
n3 ∼ 1. We note that the quantum dynamics is less oscillatory
than the mean-field result, especially when N is large. How-
ever, asymptotic values from both quantum and mean-field
calculations agree when γ � 1.

IV. CONCLUSION

We have studied the dynamics of Rydberg-dressed BECs
in a triple well potential. Within the mean-field theory, we
have obtained eigenenergies of the system for different com-

binations of parameters. It is found that the eigenspectrum
develops multiple level crossings in the lower branches of
the eigenspectra, when the soft-core interaction is strong. The
presence of level crossings in the lower branches leads to
more complicated dynamics than BECs with only short-range
interactions. We have shown that it is possible to achieve
self-trapping of populations in either one, two, or three wells
by varying the initial conditions and the level bias. We have
identified parameter regions, where dynamics is chaotic. This
is demonstrated with the population evolution, and further
confirmed with Poincaré sections. By numerically solving the
quantum Hamiltonian for fixed particle numbers, we have
shown that the mean-field results can be largely observed
when the particle number N ∼ 100. In the future, it would
be interesting to study how chaos emerges in the finite trap
system due to strong long-range interactions. Moreover, it
would be advantageous to increase the number of sites to
explore mean-field and quantum mechanical effects due to the
soft-core interaction. In large and tilted lattices, one could also
study Bloch oscillations of BECs with strong and long-range
interactions.
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APPENDIX A: SYMMETRY BETWEEN SHORT-RANGE
AND LONG-RANGE INTERACTING SYSTEMS

If only the short-range interaction is present in the system,
the corresponding nonlinear GP equations read

iċ1 = −Jc2 + W |c1|2c1 + γ c1, (A1a)

iċ2 = −J (c1 + c3) + W |c2|2c2, (A1b)

iċ3 = −Jc2 + W |c3|2c3 − γ c3. (A1c)

The respective eigenspectrum shows complicated level
crossings when the onsite interaction W is strong, as shown
in Fig. 10. Note that these structures only show in the upper
branches.

Now consider a special situation with V = U and W = 0,
the GP equations become,

iċ1 = −Jc2 − U |c1|2c1 + (U + γ )c1, (A2a)

iċ2 = −J (c1 + c3) − U |c2|2c2 + Uc2, (A2b)

iċ3 = −Jc2 − U |c3|2c3 + (U − γ )c3, (A2c)

where we have used the normalization condition
∑

j |c j |2 =
1. This means that long-range repulsive interactions are equiv-
alent to short-range attractive interactions (plus a global
energy shift U ). The symmetry of the system will not be
changed when we change the sign of parameter J . Hence
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ε

γ

ε

γ

FIG. 10. Eigenspectra with barely short-range interactions. We
show eigenspectra for nonlinear systems with only short-range inter-
actions for (a) W = 1, (b) 3, (c) 5, and (d) 9, while fixing U = V = 0.
The level crossings are only found in the upper branches.

the eigenspectra of the long-range interacting BEC can be
obtained by flipping Fig. 10 (after shifting downwards by U ).
This can be seen from our numerical calculation, shown in
Fig. 11. This also explains why the level crossings emerge in
the lower branches in the main text.

APPENDIX B: LANDAU-ZENER DYNAMICS
WITH SHORT-RANGE INTERACTIONS

At first glance, the differences between Figs. 10(c) and
11(c) may not be apparent. However, the fact that the bifur-
cation of the energy levels happens on the lowest energy state
for the long-range interacting system leads to dramatically
different physics when compared to its short-range counter-
part. In the short-range case, the system is allowed to follow
a complete adiabatic transfer of the populations as there is no
splitting of the ground state eigenspectrum as the tilt moves
from γ = −∞ to γ = +∞. This can be seen explicitly when
we evolve the time dependent nonlinear GP equation for the
short-range system, and calculate the Landau-Zener dynam-
ics, as we did in Sec. III A of the main text.

From Fig. 12(a), we see that the fast quench produces
minor oscillations in the densities, but even at this speed there
is almost a complete transfer from the leftmost well to the
rightmost well. In Fig. 12(b), where we examine the slow
quench, the system completely responds to the changes in
the eigenenergies and a complete transfer is seen. This shows
the short-range interactions produce quantitatively different
physics compared to long-range interactions.

APPENDIX C: CANONICAL REPRESENTATION
OF PHASE SPACE

The amplitudes of each site can be expressed in terms
of the total density and a phase factor as ci = √

nieiφi . Im-
portantly, only the relative phase between each site is an

ε

γ

ε

γ

FIG. 11. Eigenspectra when U = V . The eigenspectra are shown
for (a) U = V = 1, (b) U = V = 3, (d) U = V = 5 and (d) U =
V = 9.

observable, meaning we can define the relative phase factors
θ1 = φ2 − φ1 and θ3 = φ2 − φ3. The conservation condition
means that the densities of the second site is defined by
n2 = 1 − n1 − n3. Using these, the mean-field Hamiltonian
[Eq. (2) of main text] can be expressed similarly to a classical
Josephson Hamiltonian of the form

H = −2J
√

1 − n1 − n3
[
cos(θ1)

√
n1 + cos(θ3)

√
n3

]
+U (1 − n1 − n3)(n1 + n3) + V n1n3 + γ (n1 − n3)

(C1)

The resulting Lagrangian equations of motion for conserved
momenta then read

ṅ1 = −2J
√

n1

√
1 − n1 − n3 sin(θ1), (C2)

ṅ3 = −2J
√

n3

√
1 − n1 − n3 sin(θ3), (C3)

θ̇1 = U (1−2n1 − 2n3) + V n3 + γ − J
√

1 − n1 − n3 cos(θ1)√
n1

+ J[
√

n1 cos(θ1) + √
n3 cos(θ3)]√

1 − n1 − n3
, (C4)

γ

n
i

γ

FIG. 12. Landau-Zener dynamics for a short-range interacting
system. The interaction strength U = 5 for both panels. Here (a) is
α = 1 and (b) 0.001. The system is initialize in the left well.
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θ̇3 = U (1−2n1−2n3) + V n1−γ − J
√

1 − n1 − n3 cos(θ3)√
n3

+ J[
√

n1 cos(θ1) + √
n3 cos(θ3)]√

1 − n1 − n3
. (C5)

These equations provide an alternate way of calculating
the dynamics, which can also be used to explore how the

relative phase of each site changes as a function of time. For
the purposes of this work, we use these equations to calculate
the Poincaré sections. For a given set of initial condition
{n1(0), θ1(0)}, conversation of energy allows us to find the
initial n3(0) for a given energy value E where E = H, while
looking along the plane of θ3 = 0. The intersection of n1 and
θ1 along the plane of θ3 = 0 in the θ̇3 < 0 are recorded to
produce the Poincaré section.
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