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with spin–orbital-angular-momentum coupling

Y. Duan ,1,2 Y. M. Bidasyuk ,1 and A. Surzhykov 1,2,3

1Physikalisch–Technische Bundesanstalt, D–38116 Braunschweig, Germany
2Institut für Mathematische Physik, Technische Universität Braunschweig, D–38106 Braunschweig, Germany

3Laboratory for Emerging Nanometrology Braunschweig, D–38106 Braunschweig, Germany

(Received 21 October 2020; accepted 8 December 2020; published 24 December 2020)

Theoretical study is presented for a spinor Bose-Einstein condensate, whose two components are coupled
by copropagating Raman beams with different orbital angular momenta. The investigation is focused on the
behavior of the ground state of this condensate, depending on the atom-light coupling strength. By analyzing
the ground state, we have identified a number of quantum phases, which reflect the symmetries of the effective
Hamiltonian and are characterized by the specific structure of the wave function. In addition to the well-known
stripe, polarized, and zero-momentum phases, our results show that the system can support phases whose wave
functions contain a complex vortex molecule. Such a molecule plays an important role in the continuous phase
transitions of the system. The predicted behavior of vortex-molecule phases can be examined in cold-atom
experiments using currently existing techniques.
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I. INTRODUCTION

The first experimental realizations of atomic Bose-Einstein
condensates (BECs) in 1995 opened a new era in the study
of macroscopic quantum systems [1,2]. In the original ex-
periments, the condensation of atoms in a single hyperfine
sublevel was achieved using a magnetic trap. Further devel-
opments of optical-dipole trapping techniques enabled the
simultaneous confinement of atoms in several hyperfine sub-
states and thus opened a possibility to also manipulate the
spin degree of freedom of the condensate [3,4]. Coherent
coupling between the substates of such spinor condensate is
commonly achieved with two-photon �-type Raman transi-
tions. If the Raman transition is accompanied by a change in
the center-of-mass motion of an atom, the spin and motional
degrees of freedom become coupled. This artificial spin-orbit
coupling (SOC) has drawn considerable attention from both
theory and experiment [5–10]. In particular, previous studies
demonstrated the utility of atomic BECs as a highly control-
lable platform for exploring effects of SOC in various fields of
modern physics [10]. As the most prominent example, a spin-
orbit-coupled condensate has been proposed to simulate such
exotic phenomena in condensed-matter physics as topological
insulators and quantum spin Hall effect [11,12]. Moreover,
BEC with SOC can be seen as a test bed for studying quantum
phase transitions at zero temperature, as it supports a number
of quantum phases with distinct symmetries and topological
properties [13–17].

So far, different experimental setups have been proposed to
produce spin-orbit-coupled condensates [10]. In the first real-
ization, for example, counterpropagating Raman lasers were
used to enable a transfer of linear momentum to atoms during
the “absorption-and-stimulated-emission” process [5]. In ad-

dition to this spin-linear-momentum (SLM) coupling, another
type of SOC can be induced by two copropagating beams with
different orbital angular momenta [18]. This setup suppresses
the transfer of linear momentum and couples instead the spin
and orbital angular momentum (OAM) of the condensate.
BECs with the spin–orbital-angular-momentum (SOAM) cou-
pling have been studied theoretically [18–25] and realized
recently in experiments with 87Rb atoms [26,27]. In these
studies, special attention has been paid to their rich ground-
state phase diagram. In particular, it has been shown that
several quantum phases in SOAM-coupled condensates are
very similar to those observed under SLM coupling [21,27].
However, a few other phases, which have no obvious coun-
terparts in the SLM scenario, were also predicted [22–25].
These phases are characterized by the existence of quantum
vortices or other topological defects. A number of theoretical
studies have been performed to search for such vortex phases
and to analyze the complex topological structure of their wave
functions [22–25]. Not so much attention, however, has been
paid to the questions of how the vortex states change through
the phase transitions and how these changes are related to
the symmetries of the system. As we show below, answers
to these questions are especially important for understanding
the microscopic mechanism driving the phase transitions in
SOAM-coupled atomic condensates.

In the present paper, we aim to analyze tight interrela-
tions between the quantum phase transitions and symmetries
in spinor BECs with SOAM coupling. To this end, we
first define in Sec. II our model system. We consider a
quasi-two-dimensional condensate whose two internal levels
are resonantly coupled by copropagating Laguerre-Gaussian
(LG) laser modes. The Gross-Pitaevskii Hamiltonian of this
system as well as the properties of its eigenstates are discussed
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FIG. 1. (a) Schematic representation of a disk-shaped BEC in-
teracting with copropagating LG laser beams with OAM l1 and l2.
(b) A sketch of the level diagram illustrating the angular momentum
transfer in the two-photon Raman transition between atomic states
|↑〉 and |↓〉.

in Secs. II A and II B. The numerical procedure used to reli-
ably compute the ground-state solutions of the Hamiltonian
is briefly explained in Sec. II C. This procedure is employed
later in Sec. III for a realistic scenario of 87Rb condensate in
a disk-shaped harmonic trapping potential. In particular, the
ground-state wave function is calculated for various values of
the Raman coupling strength. Based on the results of these
calculations, we identify in total five quantum phases of the
spinor condensate. We describe these phases and analyze the
relation between their vortex structures and symmetry prop-
erties. Moreover, we argue that the quantum vortices in the
condensate can strongly affect the mechanism of phase transi-
tions. Particularly, we find that the counterintuitive continuous
phase transitions, predicted for the SOAM coupled conden-
sate, can be explained by the formation of a vortex molecule
in the ground-state wave function. The summary and outlook
are given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Model

We consider a weakly interacting BEC in a harmonic trap.
The condensate atoms are assumed to occupy two internal
atomic states, coupled by laser beams in a �-type Raman
regime [see Fig. 1(b)]. For simplicity, we denote these two
states as |↑〉 and |↓〉. The condensate is then described by a
coherent superposition of two macroscopic wave functions as

�(r) = ψ↑(r)χ↑ + ψ↓(r)χ↓. (1)

For convenience of representation, we consider χ↑ = (1
0

)
and

χ↓ = (0
1

)
as the basis of a two-dimensional complex Hilbert

space. In such representation, �(r) can be written as a two-
component vector

�(r) =
[
ψ↑(r)
ψ↓(r)

]
. (2)

This pseudo-spin- 1
2 wave function � obeys the Gross-

Pitaevskii equation (GPE),

ih̄
∂

∂t
� = Ĥ� ≡ (Ĥs + Ĥint )� , (3)

where the Hamiltonian Ĥ is a 2 × 2 matrix consisting
of single-particle and nonlinear interaction terms [23].

The first one,

Ĥs = − h̄2∇2

2M
I2 + VtrapI2 + V̂c, (4)

is a sum of kinetic energy operator, trapping potential and the
Raman coupling V̂c between two internal states. The interac-
tion Hamiltonian Ĥint in Eq. (3) reads

Ĥint =
(

g↑↑|ψ↑|2 + g↑↓|ψ↓|2 0
0 g↓↓|ψ↓|2 + g↑↓|ψ↑|2

)
,

(5)
where g↑↑, g↓↓ and g↑↓ are nonlinear interaction parameters
characterizing collisions between particles in corresponding
internal states.

To further specify the single-particle Hamiltonian (4), we
need to define the geometry of our system. In particular, we
consider the condensate to be confined in a disk-shaped har-
monic trap as illustrated in Fig. 1(a). In cylindrical coordinates
r = (ρ, φ, z), the trap potential is described by

Vtrap(r) = Mω2
ρρ

2

2
+ Mω2

z z2

2
, (6)

where ωz and ωρ are the trapping frequencies in z and radial
directions, respectively. We assume ωz � ωρ , which allows
us to consider the z dimension as frozen and treat the system
as two-dimensional [27,28].

As schematically shown in Fig. 1, a resonant Raman cou-
pling between two atomic states is induced by two LG lasers
with different OAM l1 and l2, which copropagate along the
z axis. The coupling term V̂c in Eq. (4) is then defined by
the effective two-photon Rabi frequency [21]. In the paraxial
regime, it reads as

V̂c(r) = 
̃(ρ)

(
0 e2ilφ

e−2ilφ 0

)
≡ 
̃(ρ)σ̂2l , (7)

where 2l = l2 − l1 and the unitary operator σ̂2l can be repre-
sented in terms of the Pauli matrices σ̂x and σ̂z:

σ̂2l = eilφσ̂z σ̂xe−ilφσ̂z . (8)

Moreover, in Eq. (7), 
̃(ρ) is the radial function, which re-
flects the intensity distribution of the LG modes and is given
by


̃(ρ) = 

( ρ

w

)2l
e− 2ρ2

w2 , (9)

where w is the beam waist and 
 is the amplitude parameter
proportional to the beam intensity, which we call the Raman
coupling strength.

To complete the introduction of the theoretical model, we
should mention two integrals of motion of the GPE (3). These
are the total particle number N , which we choose for the
normalization of the wave functions

N =
∫

dr
(|ψ↑|2 + |ψ↓|2), (10)

and the energy per particle

ε = 1

N

∫
dr

[(
ψ∗

↑, ψ∗
↓
)
Ĥs(ψ↑, ψ↓)T

+g↑↑
2

|ψ↑|4 + g↓↓
2

|ψ↓|4 + g↑↓|ψ↑|2|ψ↓|2
]
. (11)
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The latter expression allows us to define the ground state of
the system as a state corresponding to the lowest possible
value of ε.

B. Symmetry properties of the system

It is convenient to begin the analysis of the GPE (3)
by addressing the noninteracting case Ĥint = 0. The GPE in
this case becomes a single-particle Schrödinger equation. To
characterize its solutions, we need to analyze relevant sym-
metries defined by transformation operators commuting with
the Hamiltonian Ĥs. For a system with SOAM coupling, the
relevant symmetry transformations include rotations and time
reversal. It should be noted, however, that the time-reversal
symmetry is specific to the case of resonant Raman coupling
considered here.

We first analyze the rotational symmetry with respect to the
z axis. Due to the φ dependence of Raman coupling V̂c, the
single-particle Hamiltonian (4) is not invariant under rotation
of spatial coordinates, which is generated by the operator

R̂(φ0) = e−iL̂zφ0 , with L̂z = −i
∂

∂φ
I2. (12)

This means, in particular, that OAM projection 〈L̂z〉 =
1
N 〈�| L̂z |�〉 is not conserved in the system. On the other
hand, the operator that combines spatial and spin rotation,

R̂′(φ0) = e−i(L̂z−lσ̂z )φ0 , (13)

commutes with the Hamiltonian (4) and therefore represents
a symmetry of the system. This symmetry transformation
implements the spatial rotation by the angle φ0 with a simul-
taneous spin rotation by the angle −lφ0. We therefore expect
the conservation of the total angular momentum (TAM) pro-
jection defined by the operator

Ĵz = L̂z − l σ̂z. (14)

One may note a conceptual similarity of our system to a
standard SOC in atomic and nuclear physics. In contrast to
atoms and nuclei, however, the eigenvalues of Ĵz for SOAM-
coupled condensates span the entire range of integer values
−∞ < j < ∞.

The eigenstates of the Hamiltonian (4) with well-defined
TAM projection can be written in the general form

� j (r) =
[

f j (ρ)ei( j+l )φ

g j (ρ)ei( j−l )φ

]
, (15)

where j is an eigenvalue of Ĵz operator and the radial functions
f j (ρ) and g j (ρ) can be considered real-valued without a loss
of generality [22]. In the discussion below, we will refer to
the symmetry associated with the operator (13) as rotational
symmetry (R symmetry) and to the states (15) as rotationally-
symmetric states of the system. To identify these states, we can
evaluate the symmetry indicators, given by the expectation
value

〈Ĵz〉 = 1

N
〈�| Ĵz |�〉 (16)

and a standard deviation

Jz ≡
√〈

Ĵ2
z

〉 − 〈Ĵz〉2. (17)

By inserting � = � j into above equations, we obtain 〈Ĵz〉 = j
and J = 0. For a general non-R-symmetric state, we can
expect J > 0. This measure will be used as a quantitative
indicator of the rotational symmetry in our numerical calcula-
tions below.

As already mentioned above, another relevant symmetry
transformation is the time reversal. The Hamiltonian Ĥs ob-
viously commutes with the time-reversal operator T̂ = σ̂xK̂ ,
with K̂ being the complex conjugation. Eigenfunctions of this
operator, which correspond to real eigenvalues ±1, have the
following structure:

�±(r) =
[

ψ (r)
±ψ∗(r)

]
. (18)

Here ψ (r) is an arbitrary function which has no immediate
relation to the functions f (ρ) and g(ρ) in Eq. (15). We will
refer to the states (18) as time-reversal-symmetric. Again, we
would like to have a convenient measure which quantifies
the time-reversal symmetry of an arbitrary wave function (2).
In contrast to the rotational symmetry, however, there is no
physical observable associated with the operator T̂ . One suit-
able quantity, commonly applied for spinor condensates and
related to T symmetry, is the spin polarization

〈σ̂z〉 = 1

N

∫
(|ψ↑(r)|2 − |ψ↓(r)|2)dr, (19)

which represents the relative population imbalance between
two components of the wave function [23,27]. This quantity,
however, is not a universal indicator of the time-reversal sym-
metry. As one can see from Eq. (18), time-reversal-symmetric
states are always unpolarized, 〈σ̂z〉 = 0. The opposite, how-
ever, is not true, since the unpolarized state can be also
non-T-symmetric. We will encounter such nonsymmetric un-
polarized states in the numerical results of the next section.

Above we have analyzed each of the two symmetries of
the system separately. We now discuss the consequences of
both of them being applied simultaneously. We first remind
the reader that the angular momentum operator transforms
under time reversal as T̂ ĴzT̂ −1 = −Ĵz. Consequently, for ev-
ery eigenstate � j there is a corresponding eigenstate with
opposite TAM projection �− j related by the following trans-
formation

T̂ � j (r) = ±�− j (r). (20)

In general, this relation may contain an arbitrary phase factor
which is restricted to only plus or minus if we consider radial
functions in Eq. (15) to be real. The time-reversal symmetry of
the Hamiltonian also implies that both � j (r) and T̂ � j (r) are
eigenstates with the same energy. Since the states � j (r) and
�− j (r) are orthogonal for j �= 0, then corresponding energy
levels are doubly degenerate. The state with j = 0 is non-
degenerate and possesses both symmetries. This additionally
restricts the radial parts of the corresponding wave function to
g0(ρ) = ± f0(ρ).

The above considerations are valid for all eigenstates of
the Hamiltonian Ĥs. However, our primary goal here is to
characterize the properties of the ground state. According to
the previous studies [20,22,23], the ground state of a SOAM-
coupled system may have either zero or nonzero angular
momentum projection j0 within the range −l � j0 � l . If the
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ground state corresponds to zero angular momentum j0 = 0,
then it is also T symmetric as already discussed above. For
the cases when j0 �= 0, there are two degenerate rotationally
symmetric ground states � j0 and �− j0 . Their superposition
allows us to define equivalent time-reversal-symmetric ground
states as

� j0± = 1√
2

(
� j0 ± �− j0

)
. (21)

These two ground states are not rotationally symmetric and
characterized by 〈Jz〉 = 0 and Jz = j0. An analogous discus-
sion for the case of SLM coupling can be found in Ref. [14].

So far, we have discussed symmetry properties of the non-
interacting Hamiltonian. Most of them are expected to also
be valid in the presence of collisional interactions manifested
by the nonlinear term in the Hamiltonian (5). However, one
crucial difference of the interacting system is a breakdown
of the superposition principle for wave functions. This su-
perposition principle is required for R-symmetric states �± j0
and T-symmetric states � j0± to have the same energy. In the
interacting system, their energies will be different. Therefore,
if the ground state is characterized by j0 �= 0, then either
rotational or time-reversal symmetry will be spontaneously
broken. These symmetry breakings lead to possible existence
of two different quantum phases: a stripe phase with broken
R symmetry and a polarized phase with broken T symmetry
[13,23]. If the ground state is characterized by j0 = 0, then
both symmetries can be preserved even in the presence of
interactions. Such a ground state of the interacting systems
is commonly termed as a zero-momentum phase. These and
other possible types of ground states of the interacting system
will be discussed in more detail in the next section.

C. Numerical procedure

Symmetries of the single-particle Hamiltonian provide a
lot of insight into the properties of the ground state. Never-
theless, solutions of the full GPE (3) can never be obtained
analytically. For numerical computations of the ground-state
solution, we adopt a well-known imaginary-time evolution
method [29,30]. Due to a complex energy landscape of a
SOAM-coupled system, finding a true ground state becomes
a numerically challenging task. To distinguish the ground
state from low-lying metastable excited states, we repeat the
procedure of imaginary-time evolution using different initial
trial states. We construct trial states with different populations
and OAM projections between −2l an 2l in each component,
as well as states with random distributions. The ground state is
then determined as the final state with the lowest energy after
the converged numerical procedure.

III. RESULTS AND DISCUSSIONS

For the rest of the paper, we focus on a more realistic
system of weakly interacting atoms described by the full GPE
(3). We consider a total number of N = 5 × 103 particles
confined in a disk-shaped harmonic trap with trapping fre-
quencies ωρ = 1.5 × 2π Hz and ωz = 24 × 2π Hz. For this
choice of frequencies, ωz � ωρ , the use of two-dimensional
approximation is justified. The nonlinear interaction parame-

ters are chosen as

g↑↑ = g↓↓ = g, g↑↓ = 0.9g,

where g = a
√

8π h̄2ωz/M is related to the s-wave scattering
length a and the atom mass M of 87Rb. This choice of non-
linear interaction parameter is reasonably close to the realistic
parameters of 87Rb condensate but at the same time allows us
to observe many possible types of the ground state [24].

The Raman coupling (7) is characterized by the angular
momentum l = 1 and the beam waist w = 176 μm, which is
considerably larger than the estimated Thomas-Fermi radius
of the condensate RTF ≈ 26 μm.

Our results below are presented in dimensionless units, by
adopting the oscillator energy εho = h̄ωρ and length aho =√

h̄/Mωρ of the harmonic trap as the energy and length scales,
respectively.

A. Phase diagram

We aim here to define and characterize possible types of
ground states in the system. Due to a large number of parame-
ters in the Hamiltonian, it is unfeasible to explore the entire
parameter space. We therefore concentrate on a single, but
most relevant control parameter, the Raman coupling strength

. Fig. 2 shows five examples of ground-state wave functions
calculated for different values of 
. One may see qualita-
tive changes in the ground state depending on the coupling
strength. When the coupling is weak, we can observe a de-
formation of the cloud from the rotationally-symmetric shape
defined by the trapping potential [see Fig. 2(I)]. Stronger
coupling leads to the formation of quantum vortices in the
condensate, which can be identified by hollow regions in the
amplitude and singularities in the phase of the wave function.
By calculating the ground-state solutions in a wide range of

 > 0 we are able to identify four different spatial arrange-
ments of vortices in the condensate [see Figs. 2(II)–2(V)].

The different types of ground-state wave functions dis-
played in Fig. 2 can be unambiguously related to the
symmetries of single-particle Hamiltonian. To this end, we
show in Fig. 3 the previously introduced symmetry indicators
〈Ĵz〉, Jz, and 〈σ̂z〉 depending on the coupling strength 
.
We identify in total four critical values 
c1, ..., 
c4, at which
both the behavior of these symmetry indicators and the spa-
tial distribution of the wave function sharply change. These
changes represent quantum phase transitions and, therefore,
Fig. 3 can be seen as a phase diagram showing five phases
(I–V) of the system, whose corresponding wave functions are
already shown in Fig. 2.

The phase transitions identified in Fig. 3 can be classified
by their orders. Adopting the Ehrenfest classification, the
order of a transition is the order of the lowest derivative of
energy which shows a discontinuity [31]. The first-order and
second-order (continuous) phase transitions significantly dif-
fer in a way how the ground state changes with the variation of
a control parameter. For the first-order transition, the ground
state switches from the stationary state of one phase to that of
the other phase due to an energy crossing between two states.
In contrast, the continuous phase transition is characterized
by the smooth transformation of the ground state. For this
case, the ground-state wave functions of two phases are in-
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FIG. 2. Amplitudes and phases of the ground-state wave func-
tions for up (two left columns) and down (two right columns)
components at Raman coupling strengths 
 = 36 (I), 
 = 45 (II),

 = 120 (III), 
 = 150 (IV), and 
 = 220 (V). Vortices in each
component are marked with circles on the phase plots. Arrows in-
dicate directions of the phase winding. The length unit is set by
aho = √

h̄/Mωρ .

distinguishable at the transition point. In the present paper, to
determine the order of transitions, we calculate the derivative
of energy with respect to the coupling strength, ∂ε/∂
. As
seen in Fig. 3(a), this quantity shows that only the transition
between phases III and IV is of first order, while all other
phase transitions are continuous. This observation is quite
surprising, as previous works have shown that transitions in

FIG. 3. Phase diagram with respect to the coupling strength 
.
Panel (a) shows the derivative of ground-state energy ∂ε/∂
. Panel
(b) shows the expectation of total angular momentum 〈Ĵz〉 and its
standard deviation Jz. Panel (c) shows expectation values of the
spin operators 〈σ̂z〉 and 〈σ̂2l〉. We show here only the non-negative
branch of 〈Ĵz〉 and 〈σ̂z〉, which corresponds to one of the two degen-
erate ground states. Phase transitions are detected at critical 
 values

c1 = 36, 
c2 = 59, 
c3 = 140, and 
c4 = 213.

SOAM coupled BECs are mostly of first order [21,23,24,27].
Below we will argue that this behavior is explained by the
existence of phases II and IV, which possess neither of the
symmetries of the Hamiltonian (4) and exhibit a nontrivial
vortex structure. In particular, their wave functions contain
the so-called vortex molecule, i.e., two vortices located at a
distance from each other. To better understand the role of

TABLE I. Properties of the ground state in phases I–V. The upper part shows the preserved symmetries and values of three symmetry
indicators. T and R denote the time-reversal and rotational symmetries, respectively. The lower part shows features of the wave function. In
the last row, the total phase winding numbers of up and down components are shown in brackets.

I II III IV V
Stripe Two-vortex Polarized Vortex-antivortex Zero-momentum
phase molecule phase phase molecule phase phase

Symmetry T − R − T, R
〈σ̂z〉 0 �= 0 �= 0 0 0
Jz �1 �= 0 0 �= 0 0
〈Ĵz〉 0 noninteger 1 or −1 0 0

Degeneracy − twofold twofold − −
Corresponding single-particle �1− [see Eq. (21)] − �1 or �−1 [see Eq. (15)] − �0 [see Eq. (15)]

states
Angular density stripes + + − + −
Phase winding number (0,0) (+2, 0) or (0, −2) (+2, 0) or (0, −2) (+1, −1) (+1,−1)

063328-5



Y. DUAN, Y. M. BIDASYUK, AND A. SURZHYKOV PHYSICAL REVIEW A 102, 063328 (2020)

such molecules in the observed continuous transitions, we
first need to discuss the properties of individual phases: I,
III, and V in Sec. III B and II and IV in Sec. III C. In this
discussion of various phases, special attention will be paid to
the vortex structure of the wave function and its relation to the
symmetry indicators. Moreover, for the sake of bookkeeping,
we summarize the properties of all five phases in Table I.

B. Symmetric phases

We refer to phases I, III, and V as the symmetric phases,
since each of them possesses either one or both of the symme-
tries of the system. These symmetries can be clearly identified
from the symmetry indicators in Fig. 3. Specifically, van-
ishing spin polarization 〈σ̂z〉 in phases I and V implies the
time-reversal symmetry of the ground state, while rotational
symmetry can be identified in phases III and V by Jz = 0.

Based on the symmetry properties, it is straightforward
to show that phases I, III, and V are the well-known stripe,
polarized, and zero-momentum phases that have been thor-
oughly studied in systems with SOAM or SLM coupling
[13,14,21,23]. Moreover, a correspondence can be established
between each of these phases and the single-particle state
with the same symmetry, as seen in Table I. For phases III
and V, their wave functions resemble Eq. (15). However, for
the stripe phase, �1− defined by Eq. (21) is only a rough
approximation of the many-body ground state, as suggested
by Jz � 1.

Before preceding to the discussion of other phases, we
would like to comment on the completeness of the phase
diagram. It leads us to the question whether any phases can
exist beyond phase V. To answer this question, we consider
the strong-coupling limit (
 → ∞) of the system, in which
the total Hamiltonian Ĥ is dominated by the Raman coupling
term, Ĥ ≈ 
̃(ρ)σ̂2l . Consequently, the ground state in this
regime is an eigenstate of the unitary operator σ̂2l correspond-
ing to its lowest eigenvalue −1. As seen from Fig. 3, this
condition is already fulfilled in phase V, for which 〈σ̂2l〉 = −1.
We conclude, therefore, that phase V represents the strong-
coupling limit of the system, and no other phases are expected
for 
 > 
c4.

C. Vortex-molecule phases

The phase diagram in Fig. 3 shows that the three symmetric
phases are separated by phases II and IV. These two intermedi-
ate phases have no counterparts in the single-particle spectrum
and also do not exist in systems with SLM coupling. In this
section, we will characterize these two phases and reveal the
role of vortex molecule in continuous phase transitions.

1. Two-vortex-molecule phase

Phase II is observed in a relatively narrow region between
the T-symmetric stripe phase and R-symmetric polarized
phase. The ground-state wave function of phase II is, however,
neither T nor R symmetric, as suggested by nonzero values of
〈σ̂z〉 and Jz. Therefore, two continuous phase transitions I–II
and II–III are associated with broken time-reversal and rota-
tional symmetry, respectively. Following a common practice
for describing such transitions, we define the so-called order

FIG. 4. Amplitudes of two wave-function components (two left
columns) and corresponding azimuthal distributions (rightmost col-
umn) at the distance ρ0 from the center (marked with a dashed
circle). Four rows correspond to different values of the coupling
strength: 
 = 36 (a), 
 = 37 (b), 
 = 45 (c), 
 = 61 (d). Row
(a) corresponds to phase I, (b) and (c) to phase II, (d) to phase
III. Vorex cores are marked with circles. The value of ρ0 is chosen
to pass through the vortex cores in the row (b). Characteristic size
of two-vortex molecule is labeled as dVV. The logarithmic scale is
applied in two left columns for a better visibility. The length unit is
set by aho = √

h̄/Mωρ .

parameter, which is zero in the symmetric phase and nonzero
in the symmetry-broken phase. In our paper, the symmetry
indicators can be used as such order parameters. For instance,
Jz, which continuously changes from nonzero in phase II to
zero in phase III, is an order parameter for transition II–III.
Similarly, transition I–II is characterized by 〈σ̂z〉 or 〈Ĵz〉.

In addition to the symmetry indicators, the continu-
ous phase transitions I → II → III can be identified by
the transformation of the ground-state wave functions. For
demonstration, we show in Fig. 4 the wave-function ampli-
tudes |ψ↑| and |ψ↓| calculated at different 
 across the two
transitions. Moreover, we include in the figure the angular
dependencies of these amplitudes for an arbitrarily chosen
radial position ρ0. To describe the transitions, we start with
Fig. 4(a), which displays the wave function of phase I. As
expected for this T-symmetric stripe phase, |ψ↑| = |ψ↓| and
both components exhibit azimuthal density modulations, usu-
ally referred to as stripes. The transition I–II is marked by the
formation of vortices inside these stripes in one component
and simultaneous healing of the stripes of the other, as seen
in Fig. 4(b). This behavior leads to the fact that |ψ↑| �= |ψ↓|,
which shows a breaking of T symmetry. As 
 increases fur-
ther, the two vortices approach each other and finally merge
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FIG. 5. Vortex molecule size dVV, in units of harmonic length
aho = √

h̄/Mωρ , as a function of coupling strength 
.

when the system experiences transition II–III. At the same
time, the azimuthal density modulations in both components
disappear and R symmetry is recovered, as expected for
phase III.

One may notice that in Figs. 2 and 4, vortex molecules and
density stripes are shown always oriented along the x axis.
In reality, this direction is randomly chosen by the system as
a result of rotational symmetry breaking. Due to invariance
of the Hamiltonian under rotations (13), all orientations are
equivalent and correspond to the same energy of the ground
state. We show these states always oriented along the x direc-
tion only for convenience of the presentation and analysis.

To gain more insight into the role of vortices in continuous
phase transitions, we show in Fig. 5 the characteristic size of
the vortex molecule, dVV, as a function of coupling strength

. Defined as the distance between two vortices, dVV diverges
at 
c1, monotonically decreases throughout phase II and be-
comes zero in phase III. We therefore argue that dVV can serve
as an alternative order parameter for the phase transition II–III
besides the symmetry indicator Jz. In contrast to the latter,
dVV can be more accessible for experimental measurements.

2. Vortex-antivortex-molecule phase

Apart from the two-vortex molecule in phase II, a different
vortex configuration can be detected in the ground state of
phase IV. In the latter case, each condensate component con-
tains a single vortex. These vortices possess opposite phase
windings and are displaced from each other, thus forming a
vortex-antivortex molecule [see Fig. 2(IV)]. The size of this
molecule, dVA, is displayed as a function of the coupling
strength 
 in Fig. 6. Similarly to transition II–III, we see
the collapse of vortex-antivortex molecule, dVA = 0, at the
formation of R-symmetric phase V. However, the behavior of
dVA at the other phase boundary 
c3 drastically differs from
the divergence of dVV at 
 = 
c1 (see Fig. 5). This difference
appears because transition III–IV is a first-order transition
characterized by a sudden switch of the ground state between
stationary states of phases III and IV. Therefore, while it is
possible to trace the value of dVA to 
 < 
c3, it does not
describe the ground state of the system any more.

Similar to Sec. III C, the characteristic size of the vortex-
antivortex molecule, dVA, can be used as an order parameter

FIG. 6. Vortex-antivortex molecule size dVA, in units of harmonic
length aho = √

h̄/Mωρ , as a function of Raman coupling strength

. Blue dots represent the (excited) stationary vortex-antivortex-
molecule state in the region 
 < 
c3.

for transition IV–V. Likewise, an alternative choice can be the
symmetry indicator Jz. However, in contrast to phase II, 〈σ̂z〉
fails to indicate the broken T symmetry in phase IV, and thus
cannot serve as an order parameter. The possibility of such
behavior was already mentioned in Sec. II B.

IV. SUMMARY AND OUTLOOK

In conclusion, we have provided a systematic description
of the quantum phases and phase transitions in a two-
component BEC with SOAM coupling. By analyzing the
ground-state wave function for different values of the Ra-
man coupling strength, we identified in total five quantum
phases. Three of them possess either one or both of the time-
reversal and rotational symmetries and represent the stripe,
polarized, and zero-momentum phases that are well-known in
systems with SLM coupling. In contrast, the other two phases
have no counterparts and possess neither of the above sym-
metries. Moreover, complex vortex-molecule structures were
observed in the wave functions of these two symmetry-broken
phases. We argue that the formation and collapse of vortex
molecules play an important role in the phase transitions of
the system. In particular, the existence of these molecules
can explain the presence of continuous phase transitions in
SOAM-coupled condensates. Since these transitions were not
the focus of previous studies, we carried out detailed calcula-
tions for investigating their properties. Our results showed that
the symmetry indicators, as well as the characteristic size of
the vortex molecules, can serve as effective order parameters
characterizing these continuous phase transitions.

The experimental investigation of the predicted vortex-
molecule phases is feasible with currently existing techniques.
For example, the finite spin polarization, which is an indi-
cation of broken time-reversal symmetry, exhibits itself in
dipole oscillations of the condensate [32]. Moreover, the vor-
tex structure can be detected by interferometric measurements
[27,33] or potentially with the Bragg-scattering technique,
which has been already applied for probing the stripe phase
under SLM coupling [17,34].
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The present study is restricted to the Raman coupling gen-
erated by LG beams with a phase winding l = 1. However,
the developed theory can be readily extended to higher values
of l . Following our analysis, no additional symmetries appear
in these cases, but more complicated multivortex molecules
may exist in the condensate (see, e.g., Ref. [23]). A systematic
investigation of such multivortex molecules and associated
phase transitions will be presented in future publications.
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