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Exploring chemical reactions in a quantum degenerate gas of polar molecules via complex formation
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A recent experiment [L. De Marco, G. Valtolina, K. Matsuda, W. G. Tobias, J. P. Covey, and J. Ye, A degenerate
Fermi gas of polar molecules, Science 363, 853 (2019)] reported for the first time the preparation of a Fermi
degenerate gas of polar molecules and observed a suppression of their chemical reaction rate compared to the
one expected from a treatment assuming classical Maxwell-Boltzmann statistics. While it was hypothesized
that the suppression in the ultracold regime had its roots in the Fermi statistics of the molecules, this argument is
inconsistent with the fact that the Fermi pressure should set a lower bound for the chemical reaction rate. Here we
develop a simple model of chemical reactions that occur via the formation and decay of molecular complexes. We
indeed find that pure two-body molecule losses are unable to explain the observed suppression. Instead we extend
our description beyond two-body physics by including multibody complex-molecule interactions. Although our
model is able to quantitatively reproduce recent experimental observations, it requires parameters physically
unlikely for direct microscopic interactions. The underlying processes, however, might emerge effectively from
many-body or medium effects. A detailed understanding of the direct microscopic mechanisms responsible for
these higher-order interaction processes is therefore still pending.
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I. INTRODUCTION

Polar molecular gases, offering tunable long-range interac-
tions and a large set of internal degrees of freedom, are an
ideal platform to explore a wide range of many-body phe-
nomena that are difficult to access in atomic systems. The
prerequisite for many of these explorations is the preparation
of quantum degenerate samples, which has been one of the
most challenging goals in molecular physics over past decades
[1–5]. Major challenges arise due to the complex molecu-
lar internal structure and the rapid loss caused by chemical
reactions which prevent the application of standard cooling
techniques for atoms [2,6].

The use of spin-polarized fermionic molecules facilitated
experimental efforts to reduce the undesirable chemical re-
actions as in these systems the collisions are dominated by
p-wave scattering. In this case, according to the Bethe-Wigner
threshold law [7–9], chemical reactions are partially sup-
pressed by the centrifugal barrier resulting in a loss rate that
scales linearly with temperature T . A quantitative analysis
using a multichannel quantum defect theory (MQDT) [10,11]
captured this behavior with a universal decay constant which
well explained the experimentally observed decay rate in a gas
of KRb molecules prepared in the classical regime where the
Fermi statistics is well approximated by Boltzmann statistics
(T > 0.5TF , with TF the Fermi temperature) [1,6]. However,
the Bethe-Wigner threshold law has been shown to fail in a
recent experiment [1] which prepared for the first time a quan-
tum degenerate gas of KRb molecules in a three-dimensional

(3D) dipole trap reaching temperatures below 0.3TF . Deep
in the quantum degenerate limit (T < 0.5TF ), a significant
suppression of the loss rate compared to the one predicted
by the MQDT theory was observed and conjectured to be
a consequence of the underlying Fermi statistics. Yet, this
explanation is inconsistent with the naive expectation that,
as the temperature vanishes, the Fermi pressure sets a lower
bound for the p-wave reaction rate, which would instead lead
to a rate higher than the one predicted by arguments based
on classical Maxwell-Boltzmann statistics. The observed sup-
pression therefore requires an explanation more profound than
just Fermi statistics.

Recent experiments [12,13] moreover revealed that even
in reactive molecules such as KRb, chemical reactions occur
via the formation of a transient complex whose properties
may affect the collision outcome. These observations there-
fore have opened the possibility of richer chemical reaction
processes [14].

Here we provide a possible explanation of the observed
chemical reaction suppression at ultracold temperatures by
developing a theoretical many-body framework that accounts
for the formation of molecular complexes. The large decay
rate of the complex [12,13] allows us to adiabatically elim-
inate the complex, and obtain an effective two-body decay
of the molecules which recovers the standard description of
KRb chemical reactions. We analytically solve the rate equa-
tions, accounting for both heating effects and quantum Fermi
statistics. We obtain a decay rate that is in agreement with
the Bethe-Wigner threshold laws above quantum degeneracy,
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FIG. 1. Schematics of the reactive collision processes. (a) Two
KRb molecules coherently collide in the p-wave channel with rate Gj

to form an intermediate complex K2Rb2, which subsequently decays
to the reaction products K2 and Rb2 at a rate γ j . If the complex decay
rate γ j is the fastest process, as for KRb molecules, the complex
can be adiabatically eliminated, giving rise to an effective two-body
decay. (b) This recovers the standard picture of direct chemical
reactions via p-wave inelastic collisions, where chemical reactions
occur with unit probability at short range inside the centrifugal
barrier. (c) Additional (in)elastic complex-molecule collisions with
rate αgGj (αγ γ j ) effectively generate three-body molecule processes
which can suppress the two-body molecule decay rate.

and also valid in the ultracold quantum regime. However, this
model fails to capture the experimental observations in the
quantum degenerate regime. We therefore turn to an effective
description, modeling beyond two-body physics by including
effective elastic and inelastic complex-molecule interactions
possibly emerging from many-body and effective medium
effects at finite densities and in the presence of trapping light,
which can generate a loss suppression mechanism like that
observed in the experiment.

II. THE MODEL

We begin by deriving a framework including an in-
termediate complex, whose existence has recently been
experimentally demonstrated [12,13], formed via the collision
of two molecules as illustrated in Fig. 1(a), which recovers
standard chemical reaction rate equations.

We consider N fermionic molecules, with mass m con-
fined by an external potential V (r), which for simplicity we
first set to be a simple square well that defines a confine-
ment volume V . In this system momentum h̄k is a good
quantum number. For molecules prepared in a single internal
quantum state, p-wave scattering dominates the collisions at
ultracold temperatures due to Fermi statistics, which is, thus,
the only partial wave we include. Assuming there are mul-
tiple channels to form a complex (each denoted by j) the
collision processes can be modeled by a simplified master
equation

d ρ̂

dt
= i

h̄
[Ĥ , ρ̂] + L(ρ̂ ), Ĥ = Ĥsingle + Ĥint, (1)

Ĥsingle =
∑

j,k

Eb
j,kb̂†

j,kb̂ j,k +
∑

k

Ec
k ĉ†

kĉk, (2)

Ĥint =
∑
j,k,k′

h̄g j√
V

|k − k′|(b̂†
j,k+k′ ĉkĉk′ + H.c.), (3)

L(ρ̂) =
∑

j,k

γ jL[b̂ j,k] ρ̂, (4)

where ĉ†
k (ĉk) is a fermionic creation (annihilation) operator

of a molecule with momentum h̄k, b̂†
j,k (b̂ j,k) is a bosonic

creation (annihilation) operator of a complex formed via chan-
nel j, Ec

k = h̄2k2/(2m) and Eb
j,k = h̄2k2/(4m) + Ej are the

single-particle energies of the molecules and complexes, re-
spectively, with Ej the binding energy of a complex. Without
loss of generality, we do not explicitly include the internal
states and energies of the particles. Adding them does not
change any of the conclusions under the large complex loss
rate assumption used in this work (see Appendix C). The
parameter g j sets the complex-molecule collision strength and
γ j is the complex decay rate. The Lindblad term L[Ô]ρ̂ =
Ô†ρ̂ Ô − 1

2 (ρ̂ Ô†Ô + Ô†Ôρ̂ ) describes the action of an op-
erator Ô on the density matrix ρ̂ of the complex-molecule
many-body system.

From the master equation one can obtain equations of
motion of the relevant observables. Since for the problem of
interest the initial state has zero coherence terms 〈ĉ†

kĉk′ 〉 = 0
and 〈ĉkĉk′ 〉 = 0 for k �= k′, these terms can be neglected dur-
ing the dynamics giving rise to the following equations:

d〈n̂k〉
dt

=
∑
j,k′

2Gj
k,k′ Im[〈b̂†

j,k+k′ ĉkĉk′ 〉], (5)

d〈b̂†
j,k+k′ ĉkĉk′ 〉

dt
= i

(
h̄|k − k′|2

4m
− Ej/h̄ + iγ j

)
〈b̂†

j,k+k′ ĉkĉk′ 〉

+ iG j
k,k′

(〈
n̂b

j,k+k′
〉 − 2〈n̂kn̂k′ 〉), (6)

d
〈
n̂b

j,k

〉
dt

= −2γ j
〈
n̂b

j,k

〉 − Gj
k,k−k′ Im[〈b̂†

j,kĉk′ ĉk−k′ 〉] (7)

with n̂k = ĉ†
kĉk, n̂b

j,k = b̂†
j,kb̂ j,k, and Gj

k,k′ = 2g j√
V
|k − k′|. The

mean complex decay rate γ has been measured to be 2π ×
4 MHz in free space and even larger in the presence of trap-
ping light [13]. Because this rate is much larger than any other
energy scales of the molecular gas [1], the complex associated
observables reach their steady state much faster than any
other dynamical processes occurring in the molecules. As a
consequence, we can adiabatically eliminate the complex, i.e.,
set the left-hand side of Eqs. (6) and (7) to zero, solve for
the steady-state values of 〈n̂b

j,k〉 and 〈b̂†
j,k+k′ ĉkĉk′ 〉, and replace

them back into the equations of motion of the molecules. Note
that since the steady-state value of 〈n̂b

j,k〉 is much smaller than
〈n̂ j,k〉 we can neglect it. The complex-molecule coherence
term then obeys (see details in Appendix A):

〈b̂†
j,k+k′ ĉkĉk′ 〉 ≈ −i

2Gj
k,k′

(γ j − iE j/h̄)
〈n̂kn̂k′ 〉

≈ −i
2Gj

k,k′

(γ j − iE j/h̄)
〈n̂k〉〈n̂k′ 〉. (8)

The factorization used above, 〈n̂kn̂k′ 〉 = 〈n̂k〉〈n̂k′ 〉, is based
on a mean-field approximation which neglects quantum
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fluctuations. Corrections to this approximation could in prin-
ciple modify the loss rate equations. However, for the
initial conditions and parameters used in the experiment,
we find corrections from quantum fluctuations are com-
pletely negligible (see Appendix B) and the mean-field
assumption to be a good approximation. After replacing
Eq. (8) with Eq. (5) one recovers the standard equa-
tions that describe direct chemical reactions, if we iden-
tify the p-wave collision parameters in terms of the real
and imaginary parts of the scattering volume b3

im,re as
follows: gim ≡ 3π h̄b3

im/m = ∑
j 4g2

jγ j/[γ 2
j + (Ej/h̄)2] and

gre ≡ 3π h̄b3
re/m = ∑

j 4g2
j (Ej/h̄)/[γ 2

j + (Ej/h̄)2] (see de-
tails in Appendix A). The real part describes elastic collisions
that thermalize the system, and the imaginary part gives rise
to the reactive collision rate [15] as illustrated in Fig. 1(b). We
observe that in the limit of a large decay rate γ j 	 g j , we are
in the quantum Zeno regime [16–18] where the decay of the
molecules is limited by the formation of the complex, and in
fact, is suppressed with increasing γ j . We also note that in this
limit the single-particle energies do not play a role.

We find that the dynamics of the particle decay is mainly
determined by the inelastic part since the elastic collisions
conserve the total particle number and only slightly affect
the decay rate by redistributing the mode population (see
details in Appendix D). Thus, in the following discussion, for
simplicity we set gre = 0. In this case the corresponding rate
equations simplify to

d〈n̂k〉
dt

≈ −
∑

k′
�kk′ 〈n̂k〉〈n̂k′ 〉, (9)

with �k,k′ = 4gim|k − k′|2/V . The complex population adi-
abatically follows the molecule population as 〈n̂b

j,k〉 ≈∑
k′ �kk′/(2γ j ) 〈n̂k〉〈n̂k′ 〉.
We can easily generalize Eq. (9) to any type of trapping po-

tential V (r) by considering the corresponding single-particle
eigenmodes. Explicitly,

d〈n̂n〉
dt

≈ −
∑

n′
�nn′ 〈n̂n〉〈n̂n′ 〉, (10)

dN

dt
= −

∑
n

d〈n̂n〉
dt

≡ −�N2, (11)

where n̂n = ĉ†
nĉn denotes the molecule population operator

in mode n, �nn′ is given by an integral over eigenmodes
n and n′ (see details in Appendix A), and we defined
the time-dependent averaged particle decay rates as � =∑

�nn′ 〈n̂n〉〈n̂n′ 〉/N2.

III. COMPARISON WITH EXPERIMENT

We now apply this developed framework to the experimen-
tal conditions, assuming a 3D harmonic trapping potential
of the form V (r) = ∑

i=x,y,z mω2
i r2

i /2 with ωi the trapping
frequency in the ith direction. In addition to the total particle
number N (t ), we study the density n ≡ N/V , the volume V ,
defined as V = 8π3/2(σxσyσz ) with σi the standard deviation
of the density profile in the ith direction, the total energy E ,
and the energy density ε ≡ E/N .

FIG. 2. Thermodynamic scaling relations in a 3D harmonic trap:
(a) average energy density, ε, (b) �, and (c) average volume, V .
Numerical results are shown as blue dots, and analytical scalings as a
function of energy density [red lines (b.i) and (c.i)] and temperature
[black lines (b.ii) and (c.ii)]. Only the scaling in terms of ε remains
valid in the quantum degenerate regime.

Note that the effective loss rate Eq. (10) for the molecules
takes exactly the same form as the original rate equation de-
rived assuming direct molecule-molecule scattering. Indeed,
generically both channels are present as recently shown in
Ref. [14]. Since so far there is no way to identify the individual
contributions from these processes, for simplicity, we assume
the loss comes purely from the complex-molecule scattering.
We therefore equate the effective molecule loss rate resulting
from this process to the one measured experimentally [1],
which was assumed to be set by a p-wave scattering volume
b3

im = (118a0)3 with a0 the atomic Bohr radius.
To develop an analytical understanding, we explore the

scaling relations of the averaged decay rates and the volume.
For an equilibrium system at temperature T , the population
〈n̂n〉 obeys the Fermi-Dirac distribution, from which the en-
ergy density ε, �, and V can be obtained as a function of T .
As shown in Fig. 2(a), in the classical limit T � 0.5TF , the
energy density ε in each direction is kBT in the harmonic
trap in accordance with the equipartition theorem, giving rise
to ε = 3kBT ; in the quantum degenerate limit T � 0.5TF , ε

is higher than the one predicted by a classical scaling since
the Fermi energy remains finite at zero temperature due to
quantum statistics. As demonstrated in Fig. 2(b), the scaling
relations � ∝ ε−1/2 and V ∝ ε3/2, written as a function of
ε, are universal over the whole temperature range, whereas
only in the classical regime the replacement ε → T is valid as
shown in Figs. 2(b.ii) and 2(c.ii).

During the nonequilibrium decay dynamics these simple
relations derived in equilibrium are not necessarily applicable.
Notwithstanding, they are found to keep holding during the
full dynamics as benchmarked by numerical simulations (see
details in Appendix F). We attribute this partly to the fact that
in a harmonic trap the initial Fermi distribution remains ap-
proximately unchanged during the dynamics by the balancing
between the local density and the p-wave decay rate: the low-
energy modes with a low p-wave decay rate concentrate at the
trap center where the density is higher, while the high-energy
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modes with faster decay rates concentrate at the edges where
the density is lower, making the effective decay rate nearly
uniform through the cloud.

In the experiment there is additional heating as particles
are lost (see details in Appendix E) similar to that observed in
prior experiments [19,20]. Here we phenomenologically de-
scribe these heating processes by a background single-particle
heating rate 3kBhbg acting as

dN

dt
= −�N2,

dε

dt
= 3kBhbg, (12)

where V = V0(ε/ε0)
3/2

and � = �0(ε/ε0)
−1/2

, and the sub-
script 0 denotes the values at t = 0. The dynamics of the
density n(t ) can be analytically obtained as

n(t ) ≈ n0(1 + 3kBht/ε0)−3/2

1 + 2�0V0n0
√

ε0(
√

ε0 + 3kBht − √
ε0)/(3kBh)

.

(13)

From this expression the density decay rate, which was
the fitting parameter used to characterize the decay rate in
Ref. [1], is predicted to be at short times β0 ≡ �0V0 ∝ ε0, and
thus proportional to the energy density. In the classical limit,
this recovers the results of the Bethe-Wigner threshold law
since ε = 3kBT . In the quantum degenerate limit, the decay
rate saturates to the Fermi energy kBTF instead of decreasing
to zero.

To directly compare with the experimentally extracted
rates, we numerically extract the decay rate β0 as the best
fit of n(t ) to Eq. (13) for the corresponding initial conditions
(see Appendix I for detailed fitting procedures). As shown in
Fig. 3, the theory results are flat throughout both the classical
temperature and the quantum degenerate regime, while the
experimental data shows a strong suppression in the latter.
We note that both represent an enhancement compared to the
prediction for a classical gas for which the decay rate would
vanish in the zero-temperature limit. Thus, we find that for
a spin-polarized gas there is no suppression of losses due to
Fermi statistics or antibunching in the quantum degenerate
regime and that a different mechanism is required to explain
the experimental observed suppression.

IV. BEYOND TWO-BODY MOLECULE LOSS

Having established that pure two-body molecule decay is
insufficient to explain the experimentally observed suppres-
sion, we consider more complicated interaction processes in
our model. The net loss rate of molecules in our framework
can be modified by additional complex-molecule collisions as
we show next. We explore both elastic and inelastic collisions
between molecules and complexes, as illustrated in Fig. 1(c).

To connect to Eq. (4), for simplicity we start again by
considering a homogeneous gas and model these processes by
adding the following terms in the master equation:

Ĥ ′
int =

∑
j,k,k′,k′′

h̄αg

2V
Gj

k,k′ (b̂†
j,k′+k′′ ĉ

†
kĉkĉk′ ĉk′′ + H.c.),

L′(ρ̂) = αγ

∑
j,k,k′

γ jL[b̂ j,kĉk′ ] ρ̂/V, (14)

FIG. 3. Comparison of theory predictions considering pure p-
wave molecule-molecule collisions without (red dots) or with (blue
dots) additional complex-molecule collisions assuming α = 8 ×
10−20 m3, and experimental measurements (black dots). Each dot
corresponds to different experimental runs with slightly different
conditions (see details in Appendix I). The theory (experiment)
β0/(ε/3kB ) is obtained as the best fit of the theoretically derived (the
experimentally measured) n(t ) to Eq. (13). The error bars include
uncertainties in the experimental measurements and the standard
deviation from the fitting procedure (see details in Appendix I). In
the classical temperature limit, both the theory and the experimental
results are approximately constant, in agreement with the universal
prediction [11] indicated by the gray band accounting for 8% errors
in the scattering value b3

im. In the quantum degenerate limit, the
model including the complex-molecule collisions can quantitatively
reproduce the observed suppression.

where the parameters αgGj
k,k′/V and αγ γ j/V , which have the

unit of s−1, parametrizes the rates of three-body elastic col-
lisions and the molecule-complex decay, respectively. After
adiabatically eliminating the complex, these terms result in
a modification of the two-body decay rate and an additional
molecular three-body decay term (see details in Appendix G)

d〈n̂k〉
dt

≈ −
∑

k′

(1 + 2αgn)

(1 + αγ n)
�k,k′ 〈n̂k〉〈n̂k′ 〉

−
∑

j,k′,k′′

αγ

2V
�k′,k′′ 〈n̂k〉〈n̂k′ 〉〈n̂k′′ 〉, (15)

where n = ∑
k′′ 〈n̂k′′ 〉/V = N/V is the density of the molecular

gas and we assumed Ej � γ j . Consequently, the total number
of molecules follows

dN

dt
≈ −

∑
k,k′

�P
k,k′ 〈n̂k〉〈n̂k′ 〉, (16)

where the modified decay rate becomes �P
k,k′ ≡ �k,k′[1 +

(2αg − αγ /2) n], with an effective inelastic scattering pa-
rameter gP

im ≡ gim(1 − αn) and α = αγ /2 − 2αg. Thus, coun-
terintuitively the additional loss due to complex-molecule
collisions results in an effective suppression of the two-body
loss due to the quantum Zeno effect which suppresses the
population of the complex for larger loss rates.

For a gas trapped in a 3D harmonic potential this density-
dependent scattering strength gP

im generates an effective loss
suppression in the quantum degenerate regime if α > 0 as the
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gas becomes denser with decreasing temperature. In a system
with a fixed particle number, where the change in density is
directly correlated with the average volume, this suppression
of the decay rate is tied to the temperature dependence of
the average volume [see Fig. 2(c)], reflecting the underlying
Fermi statistics.

In Fig. 3 we demonstrate that this effective model can
reproduce the experimentally observed suppression when
choosing α = 8 × 10−20 m3 (see details in Appendix H).
However, we note that this corresponds to an inelastic col-
lision rate αγ γ ∼ 2 × 10−12 m3/s between molecules and
the complex which exceeds the unitary limit given by
∼10−16 m3/s. Therefore these processes can only be regarded
as phenomenological effective processes possibly emerging
from indirect medium or many-body effects instead of direct
microscopic collisions. In contrast, the elastic term αgg is in
principle feasible, but requires a coherent three-body process,
rather than the conventionally expected pure loss in a three-
body collision [21,22]. A full explanation of the underlying
many-body framework responsible for the emergence of this
term, either from quasiparticle dressing and in medium inter-
actions, or direct multibody or light assisted collisions is still
pending.

V. CONCLUSIONS AND OUTLOOK

We have developed a theoretical framework that accounts
for the formation of an intermediate molecular complex to
study the reactive dynamics of a quantum degenerate gas
of polar molecules. The first part of this work considering
pure p-wave collision of the molecules establishes a decay
rate proportional to the energy density of the gas, extend-
ing the Wigner threshold law to the quantum degenerate
regime where the fermionic statistics of the particles become

relevant, and predicts a flat behavior at low temperature en-
hanced compared to the linearly in T vanishing prediction
obtained for Maxwell-Boltzmann statistics. Thus, we find no
suppression of losses due to Fermi statistics or antibunching in
the quantum degenerate regime at current experimental condi-
tions when quantum correlations are negligible. As two-body
molecule decay processes mediated by the formation of com-
plexes alone do not reproduce the experimentally observed
behavior in the quantum degenerate regime, we considered
beyond two-body molecule collisions. By including elastic or
inelastic higher order complex-molecule interactions we are
able to reproduce the experimental observations. Neverthe-
less, it seems unlikely that the actual origin of these terms is
direct complex-molecule collisions. Instead they may emerge
from many-body effects in the presence of trapping light. We
hope that our conclusions can stimulate further theory work
for an understanding of the microscopic origin of these effects
and experimental work that can directly validate or refute our
predictions.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with Jun Ye and his
JILA KRb group, Joseph Thywissen, Paul Julienne, John
Bohn, and Qi Zhou during the preparation of this paper. This
work is supported by the ARO single investigator Award No.
W911NF-19-1-0210, the DARPA DRINQs program, and the
JILA-PFC PHY-1734006 grants, by NIST, and by NSF Grant
No. PHY–1912350.

APPENDIX A: DERIVATIONS OF THE RATE EQUATIONS

Here we first derive the equations of motion described by
Eqs. (1)–(4) in the main text. We define Âk,k′ = âk âk′ and
Ĉk,k′ = â†

k âk′ .

d 〈b̂†
k, j b̂k′, j′ 〉
dt

= i

(
− Ej/h̄ + Ej′/h̄ + h̄|k′|2 − h̄|k|2

4m

)
〈b̂†

k, j b̂k′, j′ 〉 − (γ j + γ j′ )〈b̂†
k, j b̂k′, j′ 〉

+ i√
V

∑
k′′

(g j′ |2k′′ − k′| 〈b̂†
k, j Âk′′,k′−k′′ 〉 − g j |2k′′ − k| 〈Â†

k′′,k−k′′ b̂k′, j′ 〉), (A1)

d〈Âk,k′ 〉
dt

= i
h̄|k|2 + h̄|k′|2

2m
〈Âk,k′ 〉 + i

2√
V

∑
j

g j |k − k′| 〈b̂k+k′, j〉

+ i
2√
V

∑
k′′, j

g j (|k′′ − k| 〈Ĉk′′,k′ b̂k′′+k, j〉 + |k′ − k′′| 〈Ĉk′′,k b̂k′′+k′, j〉), (A2)

d〈b̂†
k′′, j

Âk,k′ 〉
dt

= i

(
2h̄|k|2 + 2h̄|k′|2 − h̄|k′′|2

4m
− Ej/h̄

)
〈b̂†

k′′, j
Âk,k′ 〉 − γ j〈b̂†

k′′, j
Âk,k′ 〉

+ i
2√
V

∑
j′

g j′ |k − k′| 〈b̂†
k′′, j

b̂k+k′, j′ 〉 − i
2√
V

∑
k′′′

g j |2k′′′ − k′′|〈Â†
k′′′,k′′−k′′′ Âk,k′ 〉

+ i
2√
V

∑
k′′′, j′

g j′ (|k′′′ − k| 〈b̂†
k′′, j

Ĉk′′′,k′ b̂k′′′+k, j′ 〉 + |k′ − k′′′| 〈b̂†
k′′, j

Ĉk′′′,kb̂k′′′+k′, j′ 〉), (A3)

d〈Ĉk,k′ 〉
dt

= i
h̄|k′|2 − h̄|k|2

2m
〈Ĉk,k′ 〉 + i

2√
V

∑
j,k′′

g j (|k − k′′| 〈b̂†
k′′+k, j

Âk′′,k′ 〉 + |k′′ − k′| 〈Â†
k′′,k b̂k′′+k′, j〉), (A4)
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d〈Ĉk,k′ b̂k′′, j〉
dt

= i

(
2h̄|k′|2 − 2h̄|k|2 + h̄|k′′|2

4m
+ Ej/h̄ + iγ j

)
〈b̂ j,k′′Ĉk,k′ 〉 + i

2√
V

∑
k′′′

g j |2k′′′ − k′′|〈Ĉk,k′ Âk′′′,k′′−k′′′ 〉

+ i
2√
V

∑
j′,k′′′

g j′
(
|k − k′′′| 〈b̂†

k′′′ + k, j′ Âk′′′,k′ b̂k′′, j〉 + |k′′′ − k′| 〈Â†
k′′′,k b̂k′′′ + k′, j′ b̂k′′, j〉

)
. (A5)

Assuming the observables can be factorized as〈
Âk1,k2 Â†

k3,k4

〉 = 〈
Âk1,k2

〉〈
Â†

k3,k4

〉 − (〈
Ĉ†

k4,k1

〉 − δk1,k4

)(〈
Ĉk3,k2

〉 − δk2,k3

)
+ (〈

Ĉ†
k3,k1

〉 − δk1,k3

)(〈
Ĉk4,k2

〉 − δk2,k4

)
, (A6)〈

Ĉk1,k2 Â†
k3,k4

〉 = 〈
Ĉk1,k2

〉〈
Â†

k3,k4

〉 − (〈
Ĉ†

k4,k1

〉 − δk1,k4

)(〈
Ĉk3,k2

〉 − δk2,k3

)
+ (〈

Ĉ†
k3,k1

〉 − δk1,k3

)(〈
Ĉk4,k2

〉 − δk2,k4

)
, (A7)

then the equations of motion above become a closed set of
equations and the dynamics of the observables can be evalu-
ated. Our numerical simulations confirm the coherence terms
〈Âk1,k2〉, 〈Ĉk1,k2〉 (k1 �= k2) and 〈b̂†

k3, j Âk1,k2〉 (k3 �= k1 + k2),
which are initially zero, remain zero, and therefore can be
neglected. Then the relevant observables are 〈Ĉk1,k1〉, 〈b̂†

k j
b̂k j′ 〉,

and 〈b̂†
k1+k2, j Âk1,k2〉.

In Ref. [13], the lifetime of the KRb complex was mea-
sured to be �250 ns, indicating the mean decay rate γ j �
2π × 4 MHz. Since the experimentally relevant energy scales
are set by the Fermi energy (approximately kHz), which is
much smaller than the complex decay rate, we can adiabati-
cally eliminate the complex, and set to zero both the left-hand
side of Eq. (A3) and the term 〈b̂†

j,k+k′ b̂ j,k+k′ 〉. Then the corre-
lation terms can be approximated as

〈b̂†
j,k+k′ Âk,k′ 〉 ≈ −i

4g j√
V

|k − k′|〈n̂kn̂k′ 〉/(γ j − iE j/h̄)

≈ −i
4gj√

V
|k − k′|〈n̂k〉〈n̂k′ 〉/(γ j − iE j/h̄), (A8)

where n̂k = ĉ†
kĉk. We will discuss in detail about validity

of the mean-field approximation (the second approximation
here) in Appendix B. Here we have also ignored single-
particle kinetic energy terms since they are in the order
of ∼kHz � γ j ∼ MHz. By substituting the correlations into
Eq. (A4), the dynamics for the molecular population becomes

d〈n̂k〉
dt

= −
∑

k′
�k,k′ 〈n̂k〉〈n̂k′ 〉

(A9)

�k,k′ =
∑

j

16g2
j

V

γ j

γ 2
j + (Ej/h̄)2

|k − k′|2.

Note that Eq. (A9) recovers the standard rate equa-
tions that describe direct chemical reactions, if we iden-
tify gim ≡ 3π h̄b3

im/m = ∑
j 4g2

jγ j/[γ 2
j + (Ej/h̄)2] and gre ≡

3π h̄b3
re/m = ∑

j 4g2
j (Ej/h̄)/[γ 2

j + (Ej/h̄)2], with b3
re and b3

im
the real and imaginary parts of the scattering volume.

As mentioned in the main text, Eq. (A9) can be general-
ized to account for any type of trapping potentials V (r) by

replacing 〈n̂k〉 by the population 〈n̂n〉 as given by

d〈n̂n〉
dt

≈ −∑
n′ �nn′ 〈n̂n〉〈n̂n′ 〉, (A10)

where �nn′ ≡ 4�nn′nn′ with

�nn′n′′n′′′ = 3π h̄b3
im

m

( ∫
dr 3{[∇φ∗

n (r)]φ∗
n′ (r)

−φ∗
n (r)[∇φ∗

n′ (r)]} · {[∇φn′′ (r)]φn′′′ (r)

−φn′′ (r)[∇φn′′′ (r)]}
)

, (A11)

where φn(r) is the eigenfunction of the eigenmode n of the
single-particle Hamiltonian.

APPENDIX B: MEAN-FIELD APPROXIMATION

One approximation we make when we derive the rate
equation in the paper [see Eq. (9) in the main text], is the
mean-field approximation which assumes that

〈n̂n〉
dt

= −
∑
m �=n

�nm〈n̂nn̂m〉 ≈ −
∑
m �=n

�nm〈n̂n〉〈n̂m〉, (B1)

where the correlation 〈n̂nn̂m〉c = 〈n̂nn̂m〉 − 〈n̂n〉〈n̂m〉 between
two particles is neglected. For an ideal Fermi gas, the magni-
tude of the initial correlations

∑
m �=n〈n̂nn̂m〉c ranges between

0 (at T = 0) and N (at T → ∞). Therefore the maximum
correlation for each two-particle pair is roughly 1/N and is
negligible for realistic systems consisting of ∼104 particles. In
order to prove the validity of this mean-field approximation,
we numerically compare the particle loss dynamics for ten
particles with and without the correlation terms and we find
no discernible difference between these two simulations as
shown in Fig. 4.

To take into account the correlation terms, we use the
cumulant expansion method which keeps track of two
point correlations and truncate higher-order correlation terms.
Specifically, three-point correlations are approximated as

〈n̂nn̂mn̂q〉 ≈ 〈n̂nn̂m〉〈n̂q〉 + 〈n̂nn̂q〉〈n̂m〉
+ 〈n̂mn̂q〉〈n̂n〉 − 2〈n̂n〉〈n̂m〉〈n̂q〉. (B2)
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FIG. 4. Particle loss dynamics for ten particles in one-
dimensional homogeneous gas solved using the cumulant expansion
(blue curve) and the mean-field approximation (red dashed curve) for
T/TF = 0.5 (left) and T/TF = 2 (right).

Therefore, the set of exact equations, given by

〈n̂n〉
dt

= −
∑
m �=n

�nm〈n̂nn̂m〉,
(B3)〈n̂nn̂p〉

dt
= −�nm〈n̂n〉〈n̂m〉 −

∑
m �=n �=p

(�np + �mp)〈n̂nn̂mn̂p〉

can be approximated as

〈n̂n〉
dt

= −
∑
m �=n

�nm(〈n̂n〉〈n̂m〉 + 〈n̂nn̂m〉c),

d〈n̂nn̂m〉c

dt
= −�nm(1 − 〈n̂n〉 − 〈n̂m〉)(〈n̂n〉〈n̂m〉 + 〈n̂nn̂m〉c)

−
∑

n �=m �=p

�np(〈n̂nn̂m〉c〈n̂p〉 + 〈n̂mn̂p〉c〈n̂n〉)

−
∑

n �=m �=p

�np(〈n̂nn̂m〉c〈n̂p〉 + 〈n̂nn̂p〉c〈n̂m〉). (B4)

APPENDIX C: GENERAL RATE EQUATIONS
INCORPORATING THE INTERNAL DEGREES

OF FREEDOM

So far we have ignored the internal degrees of freedom of
complexes and molecules. Here we show that as long as the
complex decay rate is the largest energy scale in the problem,
we can ignore them. To show that, let us label all the other in-
ternal degrees of freedom (electronic state, vibration/rotation
state, the spin state) of molecules and complexes with the
vector s. After including them, the master equation to model
the collision processes can be generalized from Eqs. (1)–(4)
in the main text to the following equations:

d ρ̂

dt
= i

h̄
[Ĥ, ρ̂] + L(ρ̂ ), Ĥ = Ĥsingle + Ĥint,

Ĥsingle =
∑
j,k,s

Eb
j,k,sb̂

†
j,k,sb̂ j,k,s +

∑
k,s

Ec
k,sĉ

†
k,sĉk,s,

(C1)

Ĥint =
∑

j,k,s,s′,s′′

h̄g j,s,s′√
V

|k − k′|(b̂†
j,k+k′,s′′ ĉk,sĉk′,s′ + H.c.),

L(ρ̂) =
∑
j,k,s

γ jL[b̂ j,k,s] ρ̂,

where the single-particle energy Ec(b)
k,s also includes the

internal energy.

Accordingly, the equations of motion for the relevant ob-
servables become

d〈n̂k,s〉
dt

=
∑

j,k′,s′,s′′

4g j,s,s′,s′′√
V

× |k − k′| Im[〈b̂†
j,k+k′,s′′ ĉk,sĉk′,s′ 〉], (C2)

d 〈b̂†
j,k+k′,s′′ ĉk,sĉk′,s′ 〉

dt

= −γ j〈b̂†
j,k+k′,s′′ ĉk,sĉk′,s′ 〉 + i

2g j,s,s′,s′′

+ i
2g j,s,s′,s′′√

V

× |k − k′| (〈n̂b
j,k+k′,s′′

〉 − 2〈n̂k,sn̂k′,s′ 〉), (C3)

d
〈
n̂b

j,k+k′,s′′
〉

dt
= −2γ j

〈
n̂b

j,k+k′,s′′
〉

− 2√
V

∑
k′

g j,s,s′,s′′ |k′ − k|

× Im[〈b̂†
j,k+k′,s′′ ĉk,sĉk′,s′ 〉]. (C4)

Assuming the complex decay rate has the largest energy
scale, the complex can be adiabatically eliminated and its
steady-state population neglected. Therefore the complex-
molecule correlation term can be approximated as

〈b̂†
j,k+k′,s′′ ĉk,sĉk′,s′ 〉

≈ −i
4g j,s,s′,s′′√

V
|k − k′|〈n̂k,s〉〈n̂k′,s′ 〉/(γ − iE j,s,s′,s′′/h̄), (C5)

where Ej,s,s′,s′′ = Ec
k+k′,s′′ − Eb

k,s − Eb
k′,s′ . There we have also

ignored single-particle kinetic energy terms, hence Ej,s,s′,s′′ is
independent of k, k′. By substituting the correlations into the
equation of motion for molecules, the generalized dynamics
for the molecular population becomes

d〈n̂k,s〉
dt

≡ −
∑
k′,s′

�s,s′

k,k′ 〈n̂k,s〉〈n̂k′,s′ 〉,

�s,s′

k,k′ =
∑
j,s′′

16g2
j,s,s′,s′′

V

γ j

γ 2
j + (Ej,s,s′,s′′/h̄)2

|k − k′|2,

(C6)

which takes a similar form as Eq. (A9).

APPENDIX D: EFFECTS OF ELASTIC SCATTERING

As discussed in the last section, both elastic and inelas-
tic interactions are present. According to the multichannel
quantum defect theory (MQDT) [11], the elastic and in-
elastic scattering volumes in KRb have exactly the same
amplitude but with opposite sign. However, thermalization
effect of the elastic collision cannot be captured by a second-
order cumulant expansion such as the one used to derive
Eq. (A4). Instead, here we use kinetic theory to incorporate
thermalization processes induced by elastic collisions [23]
and demonstrate that for the case of KRb they play a minimal
role in the loss dynamics. In the context of kinetic theory the
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FIG. 5. Population dynamics for different elastic scattering volumes and temperatures: (a) T = 0, (b) T = 0.3TF . Panels (i) and (ii) show
the particle mode distribution for N (t = 0) = 56 particles (n = nx + ny + nz) for gre = 0 and gre = −gim, respectively. The different colors
represent the distribution at different times t . Blue: t = 0; yellow: t = 0.12gim; green: t = 0.24gim; red: t = 0.32gim; and purple: t = 0.48gim.
Panel (iii) plots the dynamics of the particle number N (t ) as a function of time (red: gre = 0; blue dashed: gre = −gim). The comparison shows
that the elastic collisions only slightly affect the decay rate by redistributing the density profile and do not affect the decay dynamics. To
account for the fact that our simulations cannot be done for large systems, we capture the effect of the elastic interactions expected for the
real particle number used in the experiment Nexpt. = 104, by rescaling both gre and gim by a factor of (Nexpt./56)−1/6 ≈ 0.42, given the known
scaling of � ∝ N−1/6.

rate equations read as

d〈n̂n〉
dt

= −
∑

n′
�nn′ 〈n̂n〉〈n̂n′ 〉

+
∑

n′n′′n′′′
Wnn′n′′n′′′ (〈n̂n′′ 〉 〈n̂n′′′ 〉 (1 − 〈n̂n〉)(1 − 〈n̂n′ 〉)

−〈n̂n〉 〈n̂n′ 〉 (1 − 〈n̂n′′ 〉)(1 − 〈n̂n′′′ 〉)), (D1)

where Wnn′n′′n′′′ = 2π/ω|gre/gim|2|�nn′n′′n′′′ |2δEn+En′ ,En′′ +En′′′
and En is the single-particle energy of mode n. Note that
even though the elastic collisions are responsible for
thermalization, the loss dynamics is mainly determined
by the inelastic part since the elastic collisions conserve the
total particle number and only slightly affect the decay rate
by redistributing the mode population, as shown in Fig. 5.

APPENDIX E: EVAPORATIVE HEATING

During the decay process, the evolution of the total energy
of the system is given by

dE (t )

dt
= −

∑
ni,n j

Eni�nin j 〈n̂i〉t 〈n̂ j〉t ≡ −�ε(t )N (t )2, (E1)

where the time-dependent averaged particle decay rate
is defined as �ε(t ) = ∑

ni,ni
�nin j Eni 〈n̂i〉t 〈n̂ j〉t/N (t )2. This

equation together with the dynamics of N (t ), can be used
to solve for the dynamics of the energy density which

evolves as

dε(t )/dt = N[�(t )ε(t ) − �ε(t )] ≡ α0N�ε, (E2)

where α0 ≡ (�ε − �ε)/�ε denotes the evaporative cooling
(heating) rate with negative (positive) value. For the 3D har-
monic confinement under consideration, the particles with
lower energy decay faster according to the scaling � ∝ ε−1/2.
Therefore the energy density increases as particles get lost and
the system is evaporatively heated up. Using the numerical
results in Fig. 6, α0 is found to be a constant α0 = 0.07 for
all regimes down to T = 0.2TF which is close to the result

FIG. 6. The scaling relation �ε ∝ ε1/2 is valid over a wide range
of ε that covers both the classical limit and the quantum degenerate
regime.
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FIG. 7. Comparisons between the analytical results (red curves)
and the numerical results (blue dashed lines) for the population
dynamics at different initial equilibrium temperatures T = 0, T =
0.5TF , and T = 1.0TF from bottom to top for N = 120 particles.
We find that the analytical results can well capture the numerically
obtained dynamics over a wide range of temperatures.

α0 = 1/12 in the classical regime predicted in [24] using a
kinetic theory formalism.

APPENDIX F: SIMPLIFIED ANALYTICAL EQUATIONS

The experiment measured the decay dynamics of an
ensemble of N ∼ 105 particles, for which a quantitative theo-
retical comparison is numerically hard, even at the mean-field
level. To overcome this numerical complexity as well as get-
ting more insight into the decay, we assume that the decay
dynamics is governed by simple analytical equations which
are valid when the system is in equilibrium. Surprisingly, by
performing comparisons with numerical calculations we find
that these relations describe well the decay dynamics as shown
in Fig. 7.

APPENDIX G: INCORPORATING COMPLEX-MOLECULE
COLLISIONS IN THE RATE EQUATIONS

Taking into account the complex-molecule collisions, the
equations of motion for the relevant observables become

d〈n̂k〉
dt

= −
⎛
⎝∑

j,k′
2αγ γ j/V

〈
n̂b

j,k′
〉⎞⎠〈n̂k〉 +

∑
j,k′

4g j√
V

|k − k′| Im[〈b̂†
j,k+k′ Âk,k′ 〉] + αg

∑
k′′

Im[〈b̂†
j,k+k′ Âk,k′ n̂k′′ 〉]/V, (G1)

d 〈b̂†
j,k+k′ Âk,k′ 〉

dt
= −

⎡
⎣γ j

(
1 + αγ /V

∑
k′′

〈n̂k′′ 〉
)

+
∑
j′,k′′

2αγ γ j′/V 〈n̂b
j′,k′′ 〉

⎤
⎦〈b̂†

j,k+k′ Âk,k′ 〉

+ i
2g j√

V
|k − k′| (〈n̂b

j,k+k′
〉 − 2〈n̂kn̂k′ 〉) + i

2g jαg

V 3/2
|k − k′|

∑
k′′

(〈
n̂b

j,k+k′ n̂k′′
〉 − 2〈n̂kn̂k′ n̂k′′,k′′ 〉), (G2)

d
〈
n̂b

j,k

〉
dt

= −2γ j

(
1 + αγ

∑
k′

〈n̂k′ 〉/V

)〈
n̂b

j,k

〉 − 2g j√
V

∑
k′

|2k′ − k|
(

Im[〈b̂†
j,kÂk′,k−k′ 〉] + αg

∑
k′′

Im[〈b̂†
j,kÂk′,k−k′ n̂k′′ 〉]

)
, (G3)

where n̂b
j,k = b̂†

j,kb̂ j,k is the complex population operator.
Here we have neglected the kinetic energy term and the binding energy term. In addition, since the complex decay rate is large,

it is fair to assume that the complex population can be neglected when it is compared to the molecule population. Therefore, by
adiabatically eliminating the complex, one can obtain

〈b̂†
j,k+k′ Âk,k′ 〉 = −i

4g j√
V

(1 + αgn)|k − k′|〈n̂k〉〈n̂k′ 〉/[γ j (1 + αγ n)], (G4)〈
n̂b

j,k

〉 = − g j√
V

(1 + αgn)
∑

k′
|2k′ − k| Im[〈b̂†

j,kÂk′,k−k′ 〉]/[γ j (1 + αγ n)]

= 4g2
j (1 + αgn)2

V γ 2
j (1 + αγ n)2

∑
k′

|2k′ − k|2〈n̂k−k′ 〉〈n̂k′ 〉, (G5)

where n = ∑
k〈n̂k〉/V is the density of the molecules.

Similarly, by substituting the correlations into Eq. (G1), the dynamics for the molecular population becomes

d〈n̂k〉
dt

= −
∑
j,k′

16g2
j (1 + αgn)2

V γ j (1 + αγ n)
|k − k′|2〈n̂k〉〈n̂k′ 〉

−
∑

j,k′,k′′

8αγ g2
j (1 + αgn)

V 2γ 2
j (1 + αγ n)2

|2k′′ − k′|〈n̂k〉〈n̂k′′ 〉〈n̂k′−k′′ 〉

≈ −
∑

k′
�k,k′

(1 + αgn)2

(1 + αγ n)
〈n̂k〉〈n̂k′ 〉 − 1

2

∑
j,k′,k′′

αγ

V
�k′′,k′−k′′ 〈n̂k〉〈n̂k′′ 〉〈n̂k′−k′′ 〉. (G6)
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FIG. 8. The plots show �P/�0 for different (a) α values assuming N = 2 × 104 and (b) different particle number N setting α = 6 ×
10−20 m3.

Here we have assumed αg(γ )n � 1 approximation that is
found to be valid for the KRb experimental parameters. In ad-
dition, we assume γ j 	 Ej since only the close to resonance
complex can be formed.

And the dynamical equation for the total number of the
molecules is given by

dN

dt
= −

∑
k,k′

�k,k′ (1 + 2αgn − αγ n/2)〈n̂k〉〈n̂k′ 〉. (G7)

By comparing Eq. (G6) with Eq. (A9), we find the modified
decay rate after taking into account the inelastic molecule-
complex collisions becomes

�P
k,k′ = �k,k′ (1 + 2αgn − αγ n/2), (G8)

indicating that the effective inelastic scattering parameter
becomes

gP
im = gim(1 + 2αgn − αγ n/2). (G9)

APPENDIX H: REVISED DECAY RATES

In a harmonic trap, the density of the gas is not homo-
geneous, therefore the spatial dependence of the effective
scattering coefficient gP

im(r) needs to be taken into account.
This leads to a revised decay rate �nin j nknl given by

�P
nn′n′′n′′′ =

∫
dr3 gP

im(r){[∇φ∗
n (r)]φ∗

n′ (r) − φ∗
n (r)[∇φ∗

n′ (r)]}
· {[∇φn′′ (r)]φn′′′ (r) − φn′′ (r)[∇φn′′′ (r)]}. (H1)

FIG. 9. Comparison between the theoretically predicted (red
dots) and the experimentally measured (black dots) heating rates.

Consequently, the revised rate equations for the mode popula-
tions are given by

d〈n̂n〉
dt

≈ −∑
n′ �nn′ 〈n̂n〉〈n̂n′ 〉, (H2)

where �P
nn′ ≡ 4�P

nn′nn′ .

The scaling of �
P

for systems with a large number of par-
ticles is limited by the computation complexity. To overcome
this limit, here we instead take the local density approximation
starting from a semiclassical phase space distribution given by

f (r, p) = 1

exp
[(

mω2r2

2 + p2

2m − μ
)
/kBT

] + 1
, (H3)

the averaged decay rate can be calculated as

�
P =

∫
gP

im(r)p2 f (r, p)dr3d p3

NV
, (H4)

where N and V denote the particle number and the vol-
ume, respectively, and the first term in the integrand gP

im(r)
accommodates the spatial dependence, the second term p2

represents the p-wave collisional kernel that is proportional
to the kinetic energy of the gas, and the denominator is simply
the total particle number of the system.

We compute the integral Eq. (H4) numerically assuming
different α and particle number N . As shown in Fig. 8, we
find that the ratio �P/�0, assuming α = 0, saturates at high
temperature and gets suppressed as the gas enters quantum
degeneracy [�0 is calculated using Eq. (H4)]. In addition, the
degree of suppression and the saturation temperature increase
with increasing particle number.

APPENDIX I: FITTING ANALYSIS

In the experiment, the molecules are created and cooled
down to the Fermi degenerate regime. By fitting the initial
density profile to a Fermi-Dirac distribution, the initial tem-
peratures T ex

0 and T ex
0 /TF are obtained. To keep track of the

reactive collision processes, the particle number Nex(t ) and
the volume V ex(t ) are measured as a function of the evolution
time t . To compare with the experimentally extracted decay
rate, both the experimental initial energy density and the ini-
tial particle number are needed as input parameters for the
theory. They are extracted by a fitting procedure: By fitting
V ex(t ) to V (t ) = [4πε(t )/3mω2]3/2, the initial energy density
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FIG. 10. Comparison between theoretical results and experimental data (black dots) for the particle number N (t ). The theoretical results

are obtained using the decay rates [red (light-gray/lower) bands] �
th
0 and the revised decay rates [blue (dark-gray/upper) bands] �

th,P
0 =

�
th
0 (�

P
/�0 ), respectively, where the ratio �

P
/�0 is calculated assuming α = 8 × 10−20 m3.

εex
0 ± 
εex and the linear heating rate hex ± 
hex can be ex-

tracted with 
εex and 
hex the uncertainties. Furthermore, by
finding the best fit of Nex(t ) to the theoretical N th(t ) obtained,
the initial particle number Nex

0 ± 
Nex
0 can be obtained.

Assuming α0 = 0.07 and hbg = 20 ± 4 nK/s, together
with the extracted parameters Nex

0 , εex
0 can be solved self-

consistently. The theoretically predicted hth is extracted from
a linear fit to εth(t ). The comparison of the theoretically pre-
dicted hth and the experimentally measured hex are shown in
Fig. 9. We find that for the fixed hbg used in the theory model,
the theory results roughly agree with the experimental ones
in the degenerate regime where the density is high, while the
theory overestimates the heating rates in the classical regime
where the density is low, which is qualitatively consistent with
the conjecture that the background heating is induced by the

density-dependent collisions and should be smaller for dilute
systems.

The theory predicted N (t ) is obtained by substituting the-

oretically calculated decay rate �
th
0 , the heating rate hth, and

the experimentally measured initial conditions εex
0 and Nex

0
into Eq. (12) in the main text. In Fig. 10, we compare the
dynamics of N (t ) predicted by the theoretical results and
the experimental data. The decay rate β0 is obtained as the
best fit of the theoretical n(t ) = N (t )/V (t ) to Eq. (12) in the
main text.

To incorporate the effect of the formation of the complex,

we replace �
th
0 by �

th,P
0 = �

th
0 (�

P
/�0). Since �

P
/�0 gives

rise to suppression, the agreement between the dynamics of
the particle number of the theoretical results and experimental
data becomes better, as shown in Fig. 10.
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