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Scattering of two heavy Fermi polarons: Resonances and quasibound states
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Impurities in a Fermi sea, or Fermi polarons, experience a Casimir interaction induced by quantum fluctuations
of the medium. When there is short-range attraction between impurities and fermions, also the induced interac-
tion between two impurities is strongly attractive at short distance and oscillates in space for larger distances. We
theoretically investigate the scattering properties and compute the scattering phase shifts and scattering lengths
between two heavy impurities in an ideal Fermi gas at zero temperature. While the induced interaction between
impurities is weakly attractive for weak impurity-medium interactions, we find that impurities strongly and
attractively interacting with the medium exhibit resonances in the induced scattering with a sign change of the
induced scattering length and even strong repulsion. These resonances occur whenever a three-body Efimov
bound state appears at the continuum threshold. At energies above the continuum threshold, we find that the
Efimov state in medium can turn into a quasibound state with a finite decay width.

DOI: 10.1103/PhysRevA.102.063321

I. INTRODUCTION

The interaction of impurity particles in a medium is studied
across physical disciplines. Specifically, the Casimir interac-
tion between two impurities arises from fluctuations of the
medium, or even the vacuum, subject to the boundary con-
ditions imposed by the impurities [1]. Current applications
range from neutron stars [2] and the quark-gluon plasma [3]
to ultracold atoms [4,5]. Recent advances in experiments with
ultracold atomic gases allow exploring mobile impurities in
a fermionic medium, or Fermi polarons, in the regime of
strong attraction [6–12] and precisely measuring their spectral
properties. These experiments are performed not on a single
impurity but on a dilute gas of impurities. The induced inter-
action between impurities is typically weak [13–16], but it can
play an important role when the impurity-medium interaction
becomes strong. Indeed, for large scattering length it can lead
to Efimov three-body bound states [17–19] that are crucial for
interpreting impurity spectra [20].

The interaction between localized spins in an electron
gas is a classic result of condensed matter physics: by the
Pauli principle, the induced Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction oscillates in space and changes sign
whenever the distance between the spins grows by about an
electron spacing, or Fermi wavelength [21–23]. For larger
objects in a Fermi sea, this can be understood by semiclassical
methods [24]. More recently, these studies have been extended
to the case of impurity atoms in a Fermi gas, or Fermi po-
larons [25–27]. When the impurity is tuned to strong attraction
with the Fermi sea, it can form a bound state with one of
the fermions [26,28,29]. These, in turn, lead to an enhanced
attraction between two impurities at short distance [4,5,30]

and even to bipolaron bound states between two impurities
in a Fermi sea [5,31–34]. The Efimov bound states between
two impurities and one fermion are characterized by discrete
scaling relations [18,35]. In the medium, the scaling relations
are modified by the Fermi wavelength as an additional length
scale [5,31,33,34] and lead to shifts in the bipolaron resonance
positions. Because they satisfy a new scaling relation, we
refer to them as in-medium Efimov resonances. In the limit
of a dense medium the induced interaction diminishes propor-
tional to the Fermi wavelength and eventually vanishes [30].

In this work, we study the scattering properties of two
heavy impurities in an ideal Fermi gas, as shown in Fig. 1.
Based on the Casimir interaction potential [4], we com-
pute the scattering phase shift and the induced scattering
length between impurities and find that they scatter resonantly
whenever an Efimov bound state appears at the continuum
threshold. Moreover, for positive scattering length a repulsive
barrier arises in the impurity potential, and remarkably the
in-medium Efimov state can live on behind the barrier as a
quasibound state at positive energies. In the following, we
start by reviewing the Casimir interaction potential in Sec. II.
In Section III we solve the Schrödinger equation for two impu-
rities in this potential to find the scattering properties, and we
discuss our results also for the experimentally relevant case of
cesium-lithium mixtures [36,37] before concluding in Sec. IV.

II. CASIMIR INTERACTION

The interaction of two heavy impurities (mass M) in an
ideal Fermi gas of light particles (mass m) is well described in
the Born-Oppenheimer approximation. By the separation of
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FIG. 1. Two heavy impurities (large blue dots) at distance R in a
Fermi sea of light fermions (small red dots).

time scales, the impurities can be considered as a static scat-
tering potential for the fermions and—in the case of a contact
potential—provide only a boundary condition for the fermion
wavefunctions. This approximation becomes exact in the limit
of infinitely heavy impurities, where the problem reduces to
potential scattering, and remains accurate at large mass ratio
M/m � 1, for instance in a quantum gas mixtures of bosonic
133Cs and fermionic 6Li atoms. In this section we present the
derivation of the interaction V (R) induced between the two
heavy impurities (of arbitrary statistics) by the presence of the
Fermi sea, following Nishida [4].

Consider two infinitely heavy impurities at distance R with
positions R1,2 = ±R/2. The impurities have a short-range
attractive interaction with the fermions, which we model by
a zero-range Fermi pseudopotential. The action of the po-
tential is equivalent to imposing the Bethe-Peierls boundary
condition on the fermion wavefunction near an impurity at
position Ri,

ψ (x → Ri ) ∝ 1

|x − Ri| − 1

a
+ O(|x − Ri|). (1)

Here, a denotes the impurity-fermion scattering length that
fully characterizes the contact interaction. The fermion wave-
functions solve the free Schrödinger equation, subject to the
boundary conditions (1) at both R1 and R2. There are poten-
tially two bound states at negative energies E± = −κ2

±/2m <

0, where the inverse length scale of the bound states κ± > 0 is
given by

κ± = 1

a
+ 1

R
W (±e−R/a) (2)

in terms of the Lambert W function that solves x =
W (x)eW (x). Since real solutions exist for x ∈ (−1/e,∞), the
bound state κ± > 0 appears for distances R/a > ∓1: while
κ− exists only for positive scattering length and R > a > 0,
κ+ exists both for a < 0 at small separation R < |a| and for
a > 0 at arbitrary R. Hence, a fermion attracted to two im-
purities forms a κ+ bound state much more easily than one
attracted only to a single impurity, and this will have dra-
matic consequences for the scattering properties between two
impurities.

Besides the bound states, there is a continuum of fermion
scattering states at positive energy E = k2/2m > 0. For each
mode k, the fermion wavefunction sin(kr + δ±) at large dis-
tance r from both impurities acquires an s-wave phase shift

FIG. 2. Induced interaction potential V (R) between two heavy
impurities for negative, unitary, and positive interspecies scattering
length a (from left to right). Data shown for Cs-Li mass ratio M/m =
22.17.

with respect to the free wavefunction without impurities,
which is given by

tan δ±(k) = − kR ± sin(kR)

R/a ± cos(kR)
(3)

for the (anti)symmetric solution, where 0 � δ±(k) < π . In
the thermodynamic limit, the total energy change with and
without impurities can be expressed as

�E (R) = −κ2
+ + κ2

−
2m

−
∫ kF

0
dk k

δ+(k) + δ−(k)

πm
. (4)

At large separation the impurities no longer interact, and the
energy change approaches

�E (R → ∞) → 2μ, (5)

or twice the single-polaron energy (chemical potential)

μ = −εF
kF a + [1 + (kF a)2][π/2 + arctan(1/kF a)]

π (kF a)2
(6)

in terms of the Fermi energy εF = k2
F /2m. The resulting

Casimir interaction relative to the chemical potential,

V (R) = �E (R) − 2μ, (7)

is shown in Fig. 2. For short distance it is strongly attractive
as −c2/2mR2 from the bound-state contribution κ+, where
c = W (1) ≈ 0.567 143 solves c = e−c; this effect is already
present for a single fermion and gives rise to the Efimov
effect [17–19]. In the fermionic medium, the Pauli principle
requires that the induced interaction changes sign after an
average spacing between the fermions, similar to the RKKY
interaction in solids [21–23]. The strong attraction is thus
canceled at larger distances by the contribution from the Fermi
sea and crosses over near kF R 	 1 into an oscillating decay
cos(2kF R)/R3 at large distance. Specifically at unitarity, the
bound-state contribution −c2/2mR2 is present for all R and
is canceled by the Fermi-sea contribution 2μ + c2/2mR2 −
cos(2kF R)/2πmkF R3 + O((kF R)−4). For positive scattering
length, a substantial repulsive barrier develops that will be
able to capture a quasibound state, as we discuss in the next
section.

III. SCATTERING BETWEEN IMPURITIES

Given the induced potential V (R) between the impuri-
ties, we now generalize the approach of Ref. [4] to bosonic
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or distinguishable impurities and compute their scattering
properties in the s-wave channel. We still work in the
Born-Oppenheimer approximation where the heavy impuri-
ties move slowly, while the Fermi sea of light particles adjusts
almost instantaneously to their positions and produces the
potential. The stationary states of the impurities are then de-
scribed by the Schrödinger equation

[
−∇2

R

M
+ V (R) + 2μ − E

]
�(R) = 0 (8)

in the central potential V (R). The scattering properties are
encoded in the scattering phase shifts δind

	 (k) induced by the
medium in the 	 partial wave component. We compute the
s-wave phase shift by integrating the variable phase equation
[38]

k∂Rδind
	=0(k, R) = −MV (R) sin

[
kR + δind

	=0(k, R)
]2

. (9)

Usually, one imposes the boundary condition δind
	=0(k, R =

0) = 0 at R = 0 and integrates up to large R, where one reads
off the phase shift δind

	=0(k) = δind
	=0(k, R → ∞).

A. Efimov resonances

The short-range singularity of the induced potential
V (R → 0) = −α/R2 leads to a Hamiltonian that is bounded
from below only for weak attraction α < 1/4; for larger α

there are an infinite number of Efimov bound states [18].
In our case α = (M/2m)c2 is always above 1/4 in the
Born-Oppenheimer limit M � m, so the potential needs a reg-
ularization, which is physically provided by the repulsive core
of the van der Waals potential between impurities [34]. We
mimic the actual potential by a hard sphere of radius R0, where
the initial condition reads δind

	=0(k, R0) = −kR0, and integrate
R = R0, . . . ,∞ using a standard ordinary differential equa-
tion solver (DOP853). The cutoff radius R0 is tuned to match
the size of the lowest Efimov state in the real potential and is
therefore directly related to the three-body parameter (3BP)
which incorporates the relevant short-range physics [18,39].
As a specific example, in the Cs-Li system the heteronuclear
Feshbach resonance at 889 G has a(1)

− = −2130aB [40], which
is reproduced by the induced potential with R0 = 220aB. For
a typical fermion density of n = 1013 cm−3 in current exper-
iments [10,15] we thus obtain kF R0 = 0.1 and we use this
value in our plots to make quantitative predictions.

The bound-state spectrum for Eq. (8) is shown in Fig. 3 for
the example of 133Cs impurities in a 6Li Fermi sea. One ob-
serves that the medium facilitates binding for weak attraction
(shifting the onset to the left), but the repulsive barrier inhibits
binding compared to the vacuum case for strong attraction
[33].

B. Induced scattering length

For a given cutoff radius R0 and the corresponding Efimov
spectrum, we compute the resulting s-wave scattering phase
shifts δind

	=0(k) that are shown in Fig. 4. In the limit of small
k one can read off the induced impurity-impurity scattering
length aind shown in the figure and the effective range re from

FIG. 3. Energy spectrum of Cs-Cs-Li Efimov states vs impurity-
fermion scattering. The energies are given relative to the scattering
continuum 2μ. Shown are the first [n = 1, blue (lower) lines] and
second [n = 2, green (upper) lines] Efimov states, both in vacuum
(dashed) and in medium (solid), with cutoff radius R0 = 0.1k−1

F . The
Efimov bound states merge with the continuum at scattering lengths
a(n)

± , as indicated by the arrows for the first in-medium Efimov state.
In vacuum, length units are 10R0 and energy units 1/2m(10R0)2.

the effective range expansion

k cot
[
δind
	=0(k)

] = − 1

aind
+ re

2
k2 + O(k4). (10)

Equivalently, the scattering length can be obtained from the
variable phase equation (9) directly in the k → 0 limit,

∂Raind(R) = −MV (R)[R − aind(R)]2, (11)

with initial condition aind(R0) = R0 and the final result aind =
aind(R → ∞). The Efimov bound states lead to resonances in
the induced scattering length [41], which are understood ana-
lytically from the solution of Eq. (11) for the −α/R2 potential
with α > 1/4 for distances R0, . . . , R,

aind(R) = R

[
1 − 1

2α
+ s0

α
tan

(
arctan

1

2s0
− s0 ln

R

R0

)]

(12)

FIG. 4. Induced scattering phase shift δind
0 (k) for the potentials in

Fig. 2. The initial slope near k = 0 determines the induced scattering
lengths kF aind = −0.8, +0.7, and −1.0 from left to right. On the a >

0 side the phase shift steeply rises above π/2 indicating a quasibound
state. Data shown for Cs-Li mass ratio M/m = 22.17.
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FIG. 5. Induced interaction between two heavy impurities: in-
duced scattering length aind vs impurity-fermion interaction. From
top to bottom: exact solution of Schrödinger equation (11) with
cutoff kF R0 = 0.1 (blue solid line), Born approximation (13) (red
dash-dotted line), analytical weak-coupling Born approximation (15)
(red dashed line), and second-order perturbation theory (16) (green
dotted line). The exact aind diverges at the in-medium Efimov reso-
nances a(1)

± indicated by the arrows. Data shown for Cs-Li mass ratio
M/m = 22.17.

with s0 = √
α − 1/4 > 0 [42]. This solution is valid for dis-

tances R0 < R � |a|, k−1
F and shows that the continuous scale

invariance of the 1/R2 potential is broken down to a dis-
crete scaling symmetry. The solution repeats itself whenever
s0 ln(R/R0) is a multiple of π and hence is log-periodic in
R with a length scale factor of l = exp(π/s0). For the case
of 133Cs impurities in 6Li, the scale factor is l ≈ 5.6 in the
Born-Oppenheimer approximation, close to the experimen-
tally observed value of l ≈ 4.9 [35]. For larger distance R �
k−1

F the −α/R2 form of the potential is cut off by the Fermi
sea, and no Efimov bound states of size larger than k−1

F occur.
The full potential V (R) in Eqs. (4) and (7) is computed

numerically and agrees with known analytical limits for small
or large distance and weak or strong coupling [4]. The induced
scattering length for the full potential is shown in Fig. 5 for
kF R0 = 0.1 (blue solid line). In this case, aind exhibits two
scattering resonances at a = a(1)

± , where a bound state crosses
the continuum threshold. For smaller R0, the potential admits
more bound states and associated resonances at a = a(n)

± with
n > 1 (for comparison see Fig. 2(b) in Ref. [33]). In the
interval 1/a(n)

− < 1/a < 1/a(n)
+ the induced potential admits n

Efimov bound states, and the phase shift starts at δind
	=0(k →

0) = nπ in accordance with Levinson’s theorem, as shown for
n = 1 in the central panel of Fig. 4.

The resonances of aind(a) occur whenever an Efimov
bound state crosses the continuum threshold. This can be seen
in the energy spectrum in Fig. 3: for 1/a > 1/a(n)

− the potential
is deep enough to admit the nth bound state, but for even
stronger attraction this bound state eventually merges again
with the scattering continuum at 1/a = 1/a(n)

+ . Note that the
resonance positions a(n)

± (kF ) in medium depend on the density
and differ from the vacuum values a(n)

± (0), as discussed in
Refs. [31,33,34].

For the singular potential V (R), the exact induced scatter-
ing length aind can differ drastically from the one obtained in
Born approximation,

aBorn
ind =

∫ ∞

0
dR R2 MV (R). (13)

Here, the asymptotics at short distance [1/R2] and at large
distance [cos(2kF R)/R3] are integrable and no cutoff R0 is
needed. The resulting scattering length is shown in Fig. 5
(red dash-dotted line); as might be expected for a singular
potential, it does not approximate the exact solution well even
for weak coupling.

It is instructive to compare the induced scattering length to
the exact result in the weakly attractive limit 1/kF a � −1. In
this case, the full induced potential is given analytically for all
R as the sum of the singular attractive potential from the bound
state and the regular oscillating potential from the Fermi sea,

Vweak(R) = −�(|a| − R)

2mR2

(
W (eR/|a|) − R

|a|
)2

+ a2

2m

2kF R cos(2kF R) − sin(2kF R)

2πR4
+ O((kF a)3).

(14)

For weak coupling, we find an analytical expression for the
induced scattering length in Born approximation with R0 = 0
(red dashed line in Fig. 5),

aBorn
weak = M

2m

(
γ a − kF

π
a2 + O(a3)

)
, (15)

where γ = ∫ 1
0 dx[W (ex ) − x]2 = 2(1 − c[1 + c(1 +

c/3)]) ≈ 0.100 795. Figure 5 shows that the analytical
weak-coupling form (15) agrees with the numerical
Born solution (13) for |kF a| � 0.3. Finally, second-order
perturbation theory for weakly repulsive interaction yields
[43]

aPT
ind = − kF

2π

(M + m)2

Mm
a2 + O(a3) (16)

from the continuum of scattering states alone (green dotted
line in Fig. 5). This result at order O(a2) fully agrees with
the second-order term in the Born approximation (15) in the
Born-Oppenheimer limit M � m. However, the first term in
the Born approximation (15) that arises from the bound state
is of first order in a and therefore dominates over the contin-
uum contribution at weak coupling R0 < |a| � k−1

F . Hence,
the usual perturbation theory for repulsive impurities is un-
able to describe attractive impurities even at weak coupling
because it misses the leading bound-state contribution for
|a| > R0. In the exact solution of the Schrödinger equation,
the bound-state contribution can become arbitrarily large near
an Efimov resonance, depending on the value of the cutoff
radius R0. Only for very weak attraction with |a| � R0 the
bound-state contribution is small, and the induced scattering
is dominated by the second-order contribution (16), as is the
case in Ref. [14] where kF a ≈ −0.012, and in Ref. [15].
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FIG. 6. Scattering resonance at positive energy above the con-
tinuum threshold and quasibound states. Enhanced scattering occurs
at the upturn of the scattering phase shift δind

0 (k) (blue solid line)
at k = 1.12 kF , where cot δind

0 (k) has a zero crossing (green dotted
line). Correspondingly, the s-wave differential cross section σ0 (red
dashed line) exhibits a maximum at energies near εF . The data
shown are for the Cs-Li mass ratio M/m = 22.17 and kF R0 = 0.1
near the Efimov resonance at a = 0.536 k−1

F � a(1)
+ = 0.542 k−1

F . In-
set: for larger mass ratio M/m = 44.33 there is a well-developed
scattering resonance of Breit-Wigner form (17) with Eqbnd = 1.06εF

and �qbnd = 0.69εF . This arises from a quasibound state at a =
0.359k−1

F � a(1)
+ = 0.360k−1

F .

C. Quasibound states

Beyond the Efimov threshold 1/a > 1/a(n)
+ at positive scat-

tering length, the in-medium Efimov bound state is pushed out
of the potential to energies above the continuum threshold, but
it may be caught behind the repulsive barrier that is created by
the fermionic medium and the two-body bound states (right
panel of Fig. 2). How long the bound state can be caught
behind the barrier depends on the effective height of the po-
tential in the Schrödinger equation (8), which is proportional
to the mass ratio M/m. The larger the mass ratio, the longer
lived is the quasibound state even at positive energies. We find
long-lived states approximately for M/m � 40. In this case,
the Efimov bound state goes over into a quasibound state at
positive energies and with a small decay width, similar to the
collisionally stable quasibound states found in Ref. [44]. We
identify such a state when the scattering phase shift assumes
the form of a Breit-Wigner resonance at positive energies
E = k2/2m as shown in Fig. 6,

cot
[
δind
	=0(k)

] = −E − Eqbnd

�qbnd/2
+ · · · . (17)

From the position of the zero crossing and the slope we read
off the energy Eqbnd and the full width at half maximum
decay width �qbnd. For Cs-Li parameters M/m = 22.17,
Fig. 6 shows enhanced scattering at positive energies but
still large width �qbnd > Eqbnd so that we cannot yet speak
of a well-defined quasibound state. For larger mass ratio
M/m = 44.33, we find that for 1/a > 1/a+ the in-medium
Efimov state can turn into a well-developed quasibound state

as shown in the inset: it has a decay width �qbnd < Eqbnd

smaller than its energy.
Based on Refs. [19,33], it appears reasonable to assume

that the excited quasibound trimer state will eventually decay
into two polarons, which form the continuum threshold for
1/a > 1/a+. The character of these polaron states depends
on the scattering length across the polaron-to-molecule transi-
tion [26,28,29]. For strong binding 1/kF a > (1/kF a)c 	 0.9,
which is the situation depicted in Fig. 3 near a(1)

+ , each impu-
rity forms a tightly bound impurity-fermion dimer of energy
μ embedded in the residual Fermi sea [19,33]. For weaker
binding 1/kF a < (1/kF a)c, instead, each impurity forms a
Fermi polaron, which would describe the continuum threshold
near higher-lying Efimov states a(n>1)

+ .
A quasibound state is also manifest as a peak in the s-wave

scattering cross section (red dashed line in Fig. 6)

σ	=0(k) = 4π

k2
sin2

[
δind
	=0(k)

]
(18)

at positive energy. For a finite density of heavy impurities
in thermal equilibrium with the medium at T 	 Eqbnd there
will be enhanced scattering between the impurities, which
would lead to a greater mean-field shift in the impurity spectra
proportional to the impurity density.

Experimentally, the Efimov bound states in medium could
be observed as a medium-density-dependent shift of the three-
body loss peaks associated with the Efimov trimers [33]. The
quasibound state and scattering resonance at positive energies
above the continuum threshold would lead to an impurity-
density-dependent shift in the polaron spectrum, estimated at
a few percent in the case of Ref. [45], and to enhanced radio-
frequency association of Efimov trimers [20] beyond a(n)

+ .

IV. CONCLUSION

The induced interaction between attractive impurities in
a Fermi sea differs fundamentally from the RKKY interac-
tion between nuclear spins in an electron gas, or repulsive
impurities. While the continuum of scattering states yields a
similar oscillating potential at large distance, the appearance
of bound states implies a strong attraction at short distances.
This singular −1/R2 attraction gives rise to a series of three-
body Efimov bound states down to the cutoff scale. Whenever
a bound state crosses the continuum threshold, the induced
scattering length aind exhibits resonances and changes sign.
Attractive impurities can thus scatter strongly, and repulsively,
in distinction to the weak induced attraction for repulsive
impurities. For very weak attraction of order kF a ≈ −0.01,
instead, our prediction for the induced scattering length is just
slightly more attractive than in perturbation theory due to the
additional attraction by the bound state, consistent with recent
measurements [14,15].

While the impurity-impurity-fermion Efimov bound states
below the continuum threshold have been discussed earlier,
we find that at positive scattering length and large mass ratio
the Efimov states can turn into quasibound states at positive
energy. This corresponds to two impurities caught behind the
repulsive potential barrier created by the Fermi sea: they can
eventually tunnel through the barrier and escape, but as long
as they are close, there is an enhanced probability to form a
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deeply bound state. This three-body recombination leads to a
clear signature in experimental loss spectra [35–37].

Our investigation can be generalized to a dilute gas of
heavy impurities, where it has been shown that the total
Casimir energy is well approximated by a sum of pairwise
two-body energies [4,24]. It is then justified to apply our re-
sults to a thermal gas of impurities at temperature T , where the
scattering properties are evaluated at the thermal wave vector
λ−1

T = √
mT/2π . This leads to the prediction of an enhanced

mean-field shift when T 	 Eqbnd. Furthermore, if three im-
purities are all nearby it would be interesting to explore the
emergence of four-body impurity-impurity-impurity-fermion
bound states. For smaller mass ratio, corrections beyond
the Born-Oppenheimer approximation have to be included
[30,46], in particular the scattering of trimers by the Fermi sea,
which creates particle-hole excitations and alters the induced
potential [5].

For the related case of impurities in a Bose-Einstein con-
densate, recent studies found many-body bound states of two

impurities, or bipolarons, for moderately attractive interaction
[45,47–49]. It will be interesting to extend these studies to
the regime of strong attraction on the molecular side of the
Feshbach resonance, where the impurities have been shown
to strongly deform the surrounding Bose-Einstein conden-
sate [50,51]. This again gives rise to an oscillating induced
potential between the impurities that can be described using
nonlocal Gross-Pitaevskii theory [52].
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