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Universal behavior in few-boson systems close to the unitary limit, where two bosons become unbound, has
been intensively investigated in recent years both experimentally and theoretically. In this particular region,
called the unitary window, details of the interparticle interactions are not important and observables, such as
binding energies, can be characterized by a few parameters. With an increasing number of particles, the short-
range repulsion, present in all atomic, molecular, and nuclear interactions, gradually induces deviations from the
universal behavior. In the present paper, we discuss a simple way of incorporating nonuniversal behavior through
one specific parameter which controls the smooth transition of the system from a universal to nonuniversal
regime. Using a system of N helium atoms as an example, we calculate their ground-state energies as trajectories
within the unitary window and also show that the control parameters can be used to determine the energy per
particle in homogeneous systems when N → ∞.
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I. INTRODUCTION

Close to the unitary limit, the physical behavior and proper-
ties of few-body systems are driven and shaped by universality
and this has far-reaching consequences for N-particle systems.
At this limit, a two-body system has a bound state at its decay
threshold, with the two particles staying mostly outside the
region of their interaction. The properties of this system are
determined by one parameter, the two-body energy length aB,
defined from the two-body binding (aB > 0) or virtual (aB <

0) energy E2 = h̄2/ma2
B (m is the particle mass). In the limit

of a zero-range interaction, the two-body scattering length a
and the energy length are equal, a = aB, and the two-body
system shows a continuous scale invariance. For finite-range
interactions, a �= aB, and the difference, rB = a − aB, called
the finite-range parameter, defines the unitary window if the
condition rB/aB ≈ rB/a � 1 is satisfied.

The special nature of the unitary window shows up in a
dramatic way in the energy spectrum of three-body systems,
as shown by Efimov for the case of a zero-range attractive
interaction [1,2]. The system has a discrete scale invariance
which is manifest at unitarity by the Efimov effect: an in-
finite tower of geometrically-distributed energy states with
the neighboring energies ratios of ≈515. Intense experimental
efforts, notably in the field of ultracold quantum gases [3–8]
as well as theoretical studies [9,10] have been dedicated to
this subject, including larger systems [11–15] or those with
different symmetries [16–18].

A large class of systems inside the unitary window is well
described using a simple Gaussian interaction,

V (ri j ) = V0 e−r2
i j/r2

0 , (1)

with a variable strength V0 (ri j is the interparticle distance)
[14,19,20]. In this way, the universal behavior, exactly ver-
ified in the case of zero-range interactions, is extended to
include finite-range corrections [21]. Finite-range effects be-
come more important when the interparticle distance inside
the N-boson clusters gets sufficiently small, so the short-range
physics starts to manifest explicitly in a nonuniversal way
because of a different repulsive core in each particular system.
This effect shows up smoothly with an increasing number
of particles driving the system from a universal regime to a
nonuniversal one.

In this paper, we study the transition to nonuniversality
in a two-step analysis. First, we perform a Gaussian charac-
terization of the unitary window of the N-boson system by
constructing trajectories in the energy plane (E2, EN ) using
the interaction potential of Eq. (1). In this plane, any sys-
tem can be represented by a point, called the physical point,
determined when the E2 and EN ground-state energies are
simultaneously reproduced by the Gaussian parameters. In the
case of ultracold atomic gases, tunable Feshbach resonances
can be used to experimentally explore the unitary window
[22]. It can also be explored theoretically by varying the
interparticle potential. The movement of the system along the
path determined by the Gaussian form reveals its universal
character.

The second step of our analysis uses the effective field the-
ory (EFT) framework introduced to describe boson systems
with large two-body scattering lengths [23,24]. In this formal-
ism, the potential in Eq. (1) enters at leading order (LO); at the
same order, a three-body force is needed to counterbalance
the dependence introduced by the Gaussian range r0. The
strengths of the two- and three-body LO terms are determined
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FIG. 1. Binding momentum in terms of the inverse of aB for a
Gaussian potential, in units of the Gaussian range r0. The cases N =
2, 3, 4 are shown by the red, black, and blue solid lines, respectively
(left panel). Specific helium trimers and tetramers are located on the
plot, see text for details. As an example, the dashed lines mark the
location of point a.

by two control parameters, E2 and E3. In a universal regime,
the energies EN , N > 3 are completely determined by the two
control parameters, except for a residual range dependence
[25]. We explore this dependence and show that the range
of the three-body force, that could differ from the two-body
range r0, emerges as a nonuniversal scale parameter useful
to describe the N-boson systems inside the window. Using
helium systems as an example, by setting this parameter to
describe E4 together with E2 and E3, we show that energies
per particle, EN/N , as N → ∞ can be well reproduced.

II. GAUSSIAN CHARACTERIZATION FOR N BOSONS

The ground-state energies of N = 2, 3, 4 bosons along the
unitary window, obtained using the Gaussian interaction of
Eq. (1), are represented in Fig. 1 through their binding mo-
menta κN , defined from EN = h̄2κ2

N/m. They are plotted as
functions of the inverse of aB and all quantities are made
dimensionless by being scaled by the Gaussian range r0. The
figure relates few- and two-body energies in a unique way:
Gaussians with different ranges and strengths give results that
always lie on the same curves. At unitarity, the quantities

κ∗
3 r0 = 0.4883, (2)

κ∗
4 r0 = 1.1847 , (3)

are the same for all Gaussian interactions. These points are
highlighted in the left panel of Fig. 1 as well as the two points
located at the three- and four-atom threshold continuum,

a3
−/r0 = −4.37, (4)

a4
−/r0 = −1.96 , (5)

identified by the value of the scattering lengths a−
3 and a−

4 at
those thresholds. It is interesting to compare the ratio κ∗

4 /κ∗
3 =

2.42 to the ratio a3
−/a4

− = 2.23, showing the validity of the
approximate discrete scale invariance that strongly constrains

TABLE I. Dimer, trimer, and tetramer energies (in mK) for the
indicated potential (the labels indicate the points on Fig. 1). Values
(except for the HFD-HE2 potential) are from Ref. [29]. The last two
columns show the N = 3, 4 characteristic Gaussian ranges.

Potential E2 E3 E4 r (3)
0 (a0) r (4)

0 (a0)

a: HFD-HE2 [30] 0.8301 117.2 535.6 11.146 11.840
b: LM2M2 [31] 1.3094 126.5 559.2 11.150 11.853
c: HFD-B3-FCH [32] 1.4475 129.0 566.1 11.148 11.853
d: CCSAPT [33] 1.5643 131.0 571.7 11.149 11.851
e: PCKLJS [34] 1.6154 131.8 573.9 11.148 11.852
f: HFD-B [35] 1.6921 133.1 577.3 11.149 11.854
g: SAPT96 [36] 1.7443 134.0 580.0 11.147 11.850

the three- and four-body observables inside the universal win-
dow [20,26]. Moreover, the size of the range effects can be
estimated by comparing the above ratio to the zero-range ratio
κ∗

4 /κ∗
3 = 2.15 [12].

Real systems are located on the Gaussian plot of Fig. 1
through the energy ratio EN/E2. As an example, we dis-
cuss clusters of He atoms which are among a few physical
systems naturally existing inside the unitary window. Early
estimates of the two-body scattering length a ≈ 180 a0 and the
dimer energy E2 ≈ 1 mK were given in Ref. [27]. Recently,
E2 = 1.70 ± 0.15 mK was measured by Coulomb explosion
[28]. Due to the relatively large experimental uncertainty in
these values, we plot results of theoretical calculations for
these systems noticing that a few of them agree with the
measured values. We consider two-, three-, and four-body
energies calculated in Ref. [29] for a variety of realistic He-He
interactions shown in Table I. Using these results, we calculate
the ratios E3/E2 and E4/E2 and display the physical points,
corresponding to the interactions listed in Table I, in the
right panel of Fig. 1. A particular Gaussian range r0 can be
determined for each He-He potential from the corresponding
axis values, r0/aB or r0κN . Interestingly, the different r0/aB

(or r0κN ) axis values, associated with different He-He po-
tentials, correspond to an almost unique value of r0 in each
case of N : r (3)

0 for N = 3 and r (4)
0 for N = 4, both shown

in Table I.
The fact that all r0 values, determined by different realistic

He-He potentials, are practically the same for a given N allow
us to construct the following Gaussian potentials:

V (N )(ri j ) = V (N )
0 e−r2

i j/(r(N )
0 )2

, with N = 3, 4 . (6)

We will call r (N )
0 the characteristic range. Choosing spe-

cific V (3)
0 values, with the average range r (3)

0 = 11.147 a0,
the above potential can simultaneously reproduce the dimer
and trimer energies of different realistic He-He potentials.
Similarly, specific V (4)

0 choices can reproduce the dimer and
tetramer energies, with the average range r (4)

0 = 11.85 a0. The
potentials V (3) and V (4) can be thought of as low-energy
representations of the realistic interactions. We will call them
characteristic Gaussian potentials. Decreasing the Gaussian
strengths allows the unitary limit to be reached where the
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relations κ∗
3 r (3)

0 = 0.4883 and κ∗
4 r (4)

0 = 1.1847 can be used to
calculate the values

E∗
3 = 83.05 ± 0.05 mK, (7)

E∗
4 = 433.0 ± 0.5 mK . (8)

They should be compared to the values E∗
3 ≈ 84.0 mK and

E∗
4 ≈ 439.0 mK obtained for the realistic potentials once their

strength is varied to locate three- and four-body systems at the
unitary limit [37]. The quality of the description is around 1%,
which is a remarkable result.

The Gaussian energy curves coincide with those obtained
using reduced-depth realistic helium potentials. Moreover at
the three- and four-atom continuum, the characteristic ranges
predicts the values a−

3 = −48.7 a0 and a−
4 = −23.2 a0 in

agreement with the helium values at that point [37] and, if
divided by the van der Waals length, rvdW = 5.08 a0 the Gaus-
sian trajectory predicts the universal value observed in van der
Waals species a−

3 /rvdW ≈ −9.5 [10] and, for the four-body
case, the value a−

4 /rvdW ≈ −4.6 well verified by experiments
in 133Cs [5,38]. In addition, the pure numbers at the unitary
limit and at the three- and four-atom continuum can be com-
bined to deduce the almost model-independent quantity:

κ∗
3 a3

− = −2.13, (9)

κ∗
4 a4

− = −2.32 . (10)

The same quantity, in the three-body case, was estimated for
van der Waals species to be κ∗

3 a3
− ≈ −2.1 (see Ref. [10] and

references therein). Accordingly, the Gaussian characteriza-
tion of the universal window captures essential properties of
van der Waals species without making dynamical assump-
tions. Moreover, we predict this quantity to have a small
dependence on the number of particles. In other words, the
Gaussian characterization determines a path followed by the
realistic systems along the unitary window showing a very
limited dependence on the specific interactions. This can be
seen as evidence for universal behavior.

Next we use the Gaussian potential of Eq. (1) to character-
ize the unitary window for larger number of particles N . Using
the hyperspherical harmonic method [39,40], we calculate the
ground-state energies for a selected range of N and depict the
results in Fig. 2. The energies of the boson systems interacting
with the realistic HFD-HE2 potential are shown in the same
figure (solid squares). When this potential is multiplied by a
factor λ to reach the unitary limit, it gives the results indicated
by the solid circles. We can observe that at unitarity the ener-
gies EN are on top of the Gaussian trajectories until N = 10,
suggesting strongly an independence of the interaction details
and, with small deviations, for 10 < N � 20. Above N = 20,
noticeable differences are observed for N = 40 and 70 as the
short-range physics starts to play a role, resulting in a smooth
transition from a universal to a nonuniversal regime.

III. SOFT GAUSSIAN POTENTIAL

We have shown above that systems with low values of N
display universal behavior in the unitary window. However,
the description in terms of the characteristic range, r (N )

0 , dete-
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FIG. 2. The binding momentum per particle κN/
√

N in terms of
the inverse of aB for a Gaussian interaction (in units of the Gaussian
range r0) and for selected number of particles. For each N value,
the lines collect the results of every Gaussian potential. The solid
squares are the values of the HFD-HE2 potential, the position of
each point determines the axis values r0/aB and r0κN/

√
N , as shown

by the dashed (magenta) line in the N = 70 case, from which the
characteristics range r (N )

0 can be determined. The solid circles at the
unitary limit (vertical axis) show the values r (N )

0 κ∗
N/

√
N calculated

using the HFD-HE2 potential at unitarity, i.e., when the potential is
multiplied by the factor λ = 0.9792445.

riorates as N increases. To deeper analyze this transition, we
make use of the EFT framework for systems having a large
value of the two-body scattering length. At LO of this theory
[15,25,41], the potential consists of a two- plus three-body
term determined to reproduce the dimer and trimer energies.
We use the following soft Gaussian potential (SGP):

V = V0

∑

i< j

e−r2
i j/r2

0 + W0

∑

i< j<k

e−2ρ2
i jk/ρ

2
0 , (11)

with ρ2
i jk = (2/3)(r2

i j + r2
jk + r2

ki ). In the following, we use
the He-He potential HFD-HE2 as a reference potential to
make contact with a previous work [42], where saturation
properties of helium drops were studied from a LO descrip-
tion. For N = 2 (with h̄2/m = 43.281307 Ka2

0), this potential
gives a single bound state, E2 = 0.83012 mK, a scattering
length a = 235.547 a0, and the finite-range parameter rB =
7.208 a0. For N = 3 and N = 4, the HFD-HE2 ground-state
energies are given in Table I, obtained using the correlated
hyperspherical harmonic basis [43] and diffusion Monte Carlo
method, respectively. They are in good agreement with the
Green’s function Monte Carlo results of Ref. [44]. Reducing
the strength of the HFD-HE2 by the factor λ, we decrease the
He-He energy down to zero. Then we obtain E3 = 83.80 mK
and E4 = 439.6 mK in close agreement with the results of the
other realistic potentials.

For a chosen pair of the two- and three-body Gaussian
ranges r0 and ρ0, we fix the SGP strengths V0 and W0 to
reproduce the HFD-HE2 energies E2 and E3. Then we use
this SGP to calculate the tetramer energy E4. In Fig. 3, the
narrow (green) band shows E4 as a function of r0. The band
collects the results for different values of ρ0, its lowest part
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FIG. 3. E4 (green band), E5 (blue band), and E6 (orange band),
as functions of the two-body range r0, obtained with the three-body
range, 3 a0 � ρ0 � 11 a0. The reference energies of the HFD-HE2
potential are given as horizontal lines. The vertical line indicates
the reference rB value. Notice that the dimer and trimer energies are
always reproduced for all the SGP interactions considered.

is given by the lowest value of ρ0 considered, ρ0 = 3 a0,
reducing further this value no increase of E4 is obtained. This
means that for given values of r0 the possible values of E4

are limited and, more importantly, only a restricted range of
r0 values is compatible with the energy value given by the
reference realistic potential and indicated in Fig. 3 by the
green horizontal line. In the figure, the vertical line indicates
the r0 value at which both E2 and the two-body scattering
length a coincide with those of the reference potential HDF-
HE2. At this particular value, a − aB = rB ≈ 7.2 a0, the best
description of E4 is obtained. In Fig. 3, the largest value of r0

considered is equal to the characteristic range r (3)
0 , the one that

describes the trimer energy in the simple two-body Gaussian
model of Eq. (2). At this value, the three-body force is zero
and higher r0 values lead to an attractive three-body force not
considered in the present analysis. It should be noted that in
the region limited by r (3)

0 and the vertical line, the E4 band is
very narrow, indicating a low dependence on the three-body
range.

Figure 3 also shows the energy bands obtained for N = 5, 6
systems. In general, they are broader than the one correspond-
ing to the N = 4 case. However, with the SGP parameters
reproducing rB at the physical point, the N = 5, 6 bands
become narrow and, more importantly, pass through the ref-
erence HFD-HE2 energies. A detailed analysis of the results
indicates that the best, simultaneous description of E5 and E6

is obtained when the two-body term of the SGP reproduces
the finite-range parameter rB and when the three-body range
ρ0 is fixed to optimize the description of the tetramer energy.
The optimum set of these values is given in Table II with the
corresponding values of E4-E6 and the HFD-HE2 reference
energies, marked as the physical point. At this point, the SGP
parameters coincide with those of Ref. [42]. A similar analysis
at the unitary point produces the SGP parameters and results
given in the right part of Table II.

Now we extend our analysis to heavier systems following
a different strategy to the one that has already been used to

TABLE II. SGP parameters and the corresponding energies EN

or energies per particle EN/N at the physical and unitary points. The
values indicated with an asterisk (∗) are extrapolated results. The
energies corresponding to the HFD-HE2 potential (in the last row,
the HFD-B potential) are given too.

Physical point Unitary point

SGP HFD-HE2 SGP HFD-HE2
r0[a0] 10.0485 10.0485
V0[K] 1.208018 1.150485
ρ0[a0] 8.4853 8.4853
W0[K] 3.011702 3.014051

E4[K] 0.536 0.536 0.440 0.440
E5[K] 1.251 1.266 1.076 1.076
E6[K] 2.216 2.232 1.946 1.963

E10/10[K] 0.792(2) 0.831(2) 0.714(2) 0.746(2)
E20/20[K] 1.525(2) 1.627(2) 1.389(2) 1.491(2)
E40/40[K] 2.374(2) 2.482(2) 2.170(2) 2.308(2)
E70/70[K] 3.07(1) 3.14(1) 2.80(1) 2.92(1)
E112/112[K] 3.58(2) 3.63(2) 3.30(2) 3.40(2)
EN/N (∞)[K] 7.2(3)∗ 7.14(2) 6.8(3)∗ 6.72(2)

HFD-B [K] 7.33(2) 6.73(2)

study few-body systems close to the unitary limit at LO of the
EFT [15]. There, to reduce the residual range dependence of
the observables, the N � 6 binding energies have been studied
as r0 → 0 and extrapolated to the zero-range limit r0 = 0.
Instead, we optimize the ranges of the SGP. The two-body
range r0 has been fixed to reproduce two data, E2 and rB

(or equivalently the effective range) to include finite-range
corrections. The resulting two-body potential is of the same,
next-to-leading order that potentials with two derivatives [45].
Furthermore, fixing the three-body range ρ0 to optimize E4,
we eventually reduce the residual effects of higher order
forces. The final result is that these four observables, E2, rB,
E3, and E4, completely determine the SGP.

In the lower part of Table II, the energy per particle is
reported up to N = 112. The results for the infinite system
are given in the last two rows, where the last one includes the
HFD-B saturation energy. We observe that the SGP energies
follow the trend of those obtained with the realistic HFD-
HE2 interaction which has a strong repulsive core. The weak
repulsion in SGP introduced to describe correctly the trimer
is sufficient to guarantee saturation of the system. With the
selected value of ρ0, the HFD-HE2 energies are reproduced
for all N values within a 5% accuracy. An extrapolation to
the infinite system, using a liquid drop formula, maintains
the result within this limit (marked with an asterisk in the
table). This is a remarkable result considering the minimal
information included in the SGP.

We have discussed the property that different realistic He-
He potentials give the same value of E3 and the same value of
E4 when their strengths are reduced to locate them at unitarity.
So, the four observables determining the SGP are independent
of the potential used for its construction and, therefore, the
saturation energy predicted by the SGP will be the same for
all the He-He potentials. This suggests that all realistic He-He
potentials should predict the same saturation energy at the

063320-4



FEW BOSONS TO MANY BOSONS INSIDE THE UNITARY … PHYSICAL REVIEW A 102, 063320 (2020)

unitary limit. To verify this prediction, we have calculated the
saturation energy for the HFD-B model at the physical and
unitary points reported in the last row of Table II. Although
a difference is observed at the physical point, the latter is
extremely close to the result of the HFD-HE2 potential, con-
firming the collapse to a single value of the saturation energy
of the different He-He interactions at unitarity.

It should be noted that other modifications of the realis-
tic potentials as, for example, a controlled increase of the
repulsion or reduction of the attraction, are well described
by a Gaussian trajectory with constant range. Therefore, the
conclusions of the present analysis apply to those cases as
well. Other more complicate transformations represented by
Gaussian trajectories with variable ranges are at present under
investigation.

IV. CONCLUSIONS

We have shown that the universal behavior observed in
few-boson systems inside the unitary window can be char-
acterized by paths constructed using Gaussian potentials. For
bosonic helium clusters, this behavior is well established up
to N ≈ 20 and then smoothly deteriorates for larger N when
short-range physics starts to play an explicit role introduc-
ing a nonuniversal behavior that competes with the universal
characterization of the unitary window. Inside the universal
regime, the Gaussian representation explains why, at unitarity,
different He-He interactions give the same few-body binding
energies.

To map the transition from a universal to nonuniversal
regime, we used the EFT framework, introducing a SGP
having a two-body plus three-body term. Its parametrization,
constrained from four data points, i.e., the scattering length
and the dimer, trimer and tetramer binding energies, resulted
in a potential that predicted reasonably well the EN/N ratio for
all N , including the N → ∞ limit. To achieve this unexpected
result we performed an optimization of the Gaussian ranges,
r0 and ρ0, in order to reduce effects from higher order terms of
the effective expansion that could appear in the description of
more bound systems. In particular, the nonuniversal behavior
introduced by the intrinsic repulsive short-range scale was
mimicked by the properly chosen value of ρ0. Importantly,
our characterization can be readily explored in state-of-the-art
experiments in ultracold quantum gases, where a fine control
of the interaction strength is achieved, allowing a detailed
exploration of the unitary window. Finally, let us emphasize
that our results should be independent of the Gaussian form;
other representations of the zero-range interaction can be used
as well with the same conclusions [46].

ACKNOWLEDGMENTS

B.J.-D. and A.P. acknowledge fruitful discussions with
A. Sarsa. This work has been partially supported by
MINECO (Spain) Grant No. FIS2017- 87534-P and from
the European Union Regional Development Fund within
the ERDF Operational Program of Catalunya (project
QUASICAT/QuantumCat). N.K.T. acknowledges support
from the United Kingdom Science and Technology Facilities
Council (STFC) under Grant No. ST/L005743/1.

[1] V. Efimov, Phys. Lett. B 33, 563 (1970).
[2] V. Efimov, Yad. Fiz. 12, 1080 (1970) [Sov. J. Nucl. Phys. 12,

589 (1971)].
[3] T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B.

Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H.-C. Nágerl, and
R. Grimm, Nature 440, 315 (2006).

[4] M. Zaccanti, B. Deissler, C. D’Errico, M. Fattori, M. Jona-
Lasinio, S. Müller, G. Roati, M. Inguscio, and G. Modugno,
Nat. Phys. 5, 586 (2009).

[5] F. Ferlaino, A. Zenesini, M. Berninger, B. Huang, H.-C. Nägerl,
and R. Grimm, Few-Body Syst. 51, 113 (2011).

[6] O. Machtey, Z. Shotan, N. Gross, and L. Khaykovich, Phys.
Rev Lett. 108, 210406 (2012).

[7] S. Roy, M. Landini, A. Trenkwalder, G. Semeghini, G.
Spagnolli, A. Simoni, M. Fattori, M. Inguscio, and G.
Modugno, Phys. Rev Lett. 111, 053202 (2013).

[8] C. E. Klauss, X. Xie, C. Lopez-Abadia, J. P. DIncao, Z.
Hadzibabic, D. S. Jin, and E. A. Cornell, Phys. Rev Lett. 119,
143401 (2017).

[9] E. Braaten and H.-W. Hammer, Phys. Rep. 428, 259 (2006).
[10] P. Naidon and S. Endo, Rep. Prog. Phys. 80, 056001 (2017).
[11] H. W. Hammer and L. Platter, Eur. Phys. J. A 32, 113 (2007).
[12] A. Deltuva, Phys. Rev. A 82, 040701(R) (2010).
[13] J. von Stecher, J. D’Incao, and C. Greene, Nat. Phys. 5, 417

(2009).

[14] A. Kievsky, N. K. Timofeyuk, and M. Gattobigio, Phys. Rev. A
90, 032504 (2014).

[15] B. Bazak, M. Eliyahu, and U. van Kolck, Phys. Rev. A 94,
052502 (2016).

[16] A. Kievsky and M. Gattobigio, Few-Body Syst. 57, 217 (2016).
[17] S. König, H. W. Grießhammer, H.-W. Hammer, and U. van

Kolck, Phys. Rev. Lett. 118, 202501 (2017).
[18] M. Gattobigio, A. Kievsky, and M. Viviani, Phys. Rev. C 100,

034004 (2019).
[19] A. Kievsky and M. Gattobigio, Phys. Rev A 92, 062715

(2015).
[20] R. Álvarez-Rodríguez, A. Deltuva, M. Gattobigio, and A.

Kievsky, Phys. Rev. A 93, 062701 (2016).
[21] M. Gattobigio, M. Göbel, H.-W. Hammer, and A. Kievsky,

Few-Body Syst. 60, 40 (2019).
[22] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod.

Phys. 82, 1225 (2010).
[23] P. F. Bedaque, H. W. Hammer, and U. van Kolck, Phys. Rev.

Lett. 82, 463 (1999).
[24] P. Bedaque, H.-W. Hammer, and U. van Kolck, Nucl. Phys. A

676, 357 (2000).
[25] J. Carlson, S. Gandolfi, U. van Kolck, and S. A. Vitiello, Phys.

Rev. Lett. 119, 223002 (2017).
[26] A. Deltuva, A. Kievsky, M. Gattobigio, and M. Viviani, Phys.

Rev. C 102, 064001 (2020).

063320-5

https://doi.org/10.1016/0370-2693(70)90349-7
https://doi.org/10.1038/nature04626
https://doi.org/10.1038/nphys1334
https://doi.org/10.1007/s00601-011-0260-7
https://doi.org/10.1103/PhysRevLett.108.210406
https://doi.org/10.1103/PhysRevLett.111.053202
https://doi.org/10.1103/PhysRevLett.119.143401
https://doi.org/10.1016/j.physrep.2006.03.001
https://doi.org/10.1088/1361-6633/aa50e8
https://doi.org/10.1140/epja/i2006-10301-8
https://doi.org/10.1103/PhysRevA.82.040701
https://doi.org/10.1038/nphys1253
https://doi.org/10.1103/PhysRevA.90.032504
https://doi.org/10.1103/PhysRevA.94.052502
https://doi.org/10.1007/s00601-016-1049-5
https://doi.org/10.1103/PhysRevLett.118.202501
https://doi.org/10.1103/PhysRevC.100.034004
https://doi.org/10.1103/PhysRevA.92.062715
https://doi.org/10.1103/PhysRevA.93.062701
https://doi.org/10.1007/s00601-019-1504-1
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/PhysRevLett.82.463
https://doi.org/10.1016/S0375-9474(00)00205-0
https://doi.org/10.1103/PhysRevLett.119.223002
https://doi.org/10.1103/PhysRevC.102.064001


A. KIEVSKY et al. PHYSICAL REVIEW A 102, 063320 (2020)

[27] R. E. Grisenti, W. Schöllkopf, J. P. Toennies, J. R. Manson, T. A.
Savas, and Henry I. Smith, Phys. Rev. A 61, 033608 (2000).

[28] M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L. Ph.
H. Schmidt, M. Schöffler, A. Czasch, W. Schöllkopf, R. E.
Grisenti, T. Jahnke, D. Blume, and R. Dörner, Science 348, 551
(2015).

[29] E. Hiyama and M. Kamimura, Phys. Rev A 85, 062505 (2012).
[30] R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and G. T.

McConville, J. Chem. Phys. 70, 4330 (1979).
[31] R. A. Aziz and M. J. Slaman, J. Chem. Phys. 94, 8047 (1991).
[32] A. R. Jansen and R. A. Aziz, J. Chem. Phys. 107, 914 (1997).
[33] M. Jeziorska, W. Cencek, K. Patkowski, B. Jeziorski, and K.

Szalewicz, J. Chem. Phys. 127, 124303 (2007).
[34] W. Cencek, M. Przybytek, J. B. Mehl, J. Komasa, B. Jeziorski,

and K. Szalewicz, J. Chem. Phys. 136, 224303 (2012).
[35] R. A. Aziz, F. R. W. McCourt, and C. C. K. Wong, Mol. Phys.

61, 1487 (1987).
[36] T. Korona, H. L. Williams, R. Bukowski, B. Jeziorski, and K.

Szalewicz, J. Chem. Phys. 106, 5109 (1997).

[37] E. Hiyama and M. Kamimura, Phys. Rev A 90, 052514
(2014).

[38] F. Ferlaino, S. Knoop, M. Berninger, W. Harm, J. P. DIncao,
H. C. Nagerl, and R. Grimm, Phys. Rev. Lett. 102, 140401
(2009)

[39] N. K. Timofeyuk, Phys. Rev C 78, 054314 (2008).
[40] M. Gattobigio, A. Kievsky, and M. Viviani, Phys. Rev A 86,

042513 (2012).
[41] A. Kievsky, M. Viviani, D. Logoteta, I. Bombaci, and L.

Girlanda, Phys. Rev. Lett. 121, 072701 (2018)
[42] A. Kievsky, A. Polls, B. Juliá-Díaz, and N. K. Timofeyuk, Phys.

Rev A 96, 040501(R) (2017).
[43] P. Barletta and A. Kievsky, Phys. Rev. A 64, 042514

(2001).
[44] V. R. Pandharipande, J. G. Zabolitzky, S. C. Pieper, R. B.

Wiringa, and U. Helmbrecht, Phys. Rev. Lett. 50, 1676
(1983).

[45] U. van Kolck, Nucl. Phys. A 645, 273 (1999).
[46] M. Gattobigio and A. Kievsky, Phys. Rev A 90, 012502 (2014).

063320-6

https://doi.org/10.1103/PhysRevA.61.033608
https://doi.org/10.1126/science.aaa5601
https://doi.org/10.1103/PhysRevA.85.062505
https://doi.org/10.1063/1.438007
https://doi.org/10.1063/1.460139
https://doi.org/10.1063/1.474444
https://doi.org/10.1063/1.2770721
https://doi.org/10.1063/1.4712218
https://doi.org/10.1080/00268978700101941
https://doi.org/10.1063/1.473556
https://doi.org/10.1103/PhysRevA.90.052514
https://doi.org/10.1103/PhysRevLett.102.140401
https://doi.org/10.1103/PhysRevC.78.054314
https://doi.org/10.1103/PhysRevA.86.042513
https://doi.org/10.1103/PhysRevLett.121.072701
https://doi.org/10.1103/PhysRevA.96.040501
https://doi.org/10.1103/PhysRevA.64.042514
https://doi.org/10.1103/PhysRevLett.50.1676
https://doi.org/10.1016/S0375-9474(98)00612-5
https://doi.org/10.1103/PhysRevA.90.012502

