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Topological transition from superfluid vortex rings to isolated knots and links
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Knots and links are fundamental topological objects that play a key role in both classical and quantum fluids.
In this paper, we propose a scheme to generate torus vortex knots and links through the reconnections of vortex
rings perturbed by Kelvin waves in trapped Bose-Einstein condensates, which makes it possible to generate
topologically complex structures from topologically trivial objects controllably. The transfer of helicity between
knots, links, and coils occur with different pathways which can be controlled through designing specific initial
states. The generation of a knot or link can be achieved by setting the parity of the Kelvin wave number. The
stability of knots and links can be greatly improved with tunable parameters, including the ideal relative angle
and the minimal distance between the initial vortex rings.
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I. INTRODUCTION

Knots and links are of great interest in many areas of
science including physics, chemistry, and biology. Although
they commonly form in nature and everyday occurrences we
have all experienced, it is difficult to achieve the controllable
formation of these structures with complex topologies. Exper-
imental and theoretical observations of knots and links exhibit
highly nonlinear dynamics, which is vital for understand-
ing various persistent phenomena and turbulent behaviors,
ranging from water [1,2], superfluid systems [2–9], plasma
[10,11], and agitated strings [12] to liquid crystals [13,14], and
with increasing importance in a variety of scenarios, such as
synthesising DNA and/or RNA in biological systems [15–21]
and molecular designing in chemistry [22–25]. In quantum
fluids, knots and links are the tangled filaments of vortices.
Ultracold atomic Bose-Einstein condensates (BECs) provide
a controllable platform for both comprehensive theoretical
studies of these topological excitations and direct observa-
tions of their dynamics using tunable parameters. The discrete
filamentary nature of vortices is an advantage of quantum
fluids in studies of vortex interactions and reconnections over
ordinary fluids. Due to the similar behaviors that occur in
viscous classical fluids and quantum fluids [1,2,4,15,26], it
is helpful to understand various persistent phenomena and
turbulence in classical fluids by studying the corresponding
quantum counterpart.

Great efforts have been made to create knots and links
in different classical contexts. For example, isolated trefoil
vortex knots and pairs of linked vortex rings were created in
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water using a method of accelerating specially shaped hydro-
foils produced by 3D printing technology [1], and isolated
optical vortex loops in the forms of knots and links were
realized by optical beams using algebraic topology [27]. In a
recent experiment, a trefoil optical vortex knot was generated
through a distribution of single photons [28]. There are also
many others, including those in biology and chemistry, to ob-
tain specific functions via different geometric configurations
[15–25].

Although it is easy to create structures with trivial topology
(vortex rings) or turbulent vortex tangles experimentally, a
major challenge is the ability to create nontrivial topologies
in a reproducible way. A prototype structure with relative
simple nontrivial topology is clearly the torus knot. Unfor-
tunately, attempts to create reproducible knots by colliding
vortex rings have not been successful [29]. Moreover, most
of the theoretical studies focus on the dissolving of knots and
links [2,4,7,20,30–33] or head-on collisions [34,35], where
only standard reconnections occur. In this process, the reduced
complexity of the topological structures is identified through
stepwise reduction, which shows the transfer of helicity of the
system evolves only in one direction from knotted (linked)
structures to helical coils [4,36]. In most cases, topological
complex structures will decay into simpler ones [4,7,8], but
the opposite process has also been observed in turbulent tan-
gles [29,37].

It was found that reconnecting vortex lines generally sep-
arate faster than they approach, leading to the irreversibility
of the reconnection events [33,38,39]. The linear momentum
and energy exchanges between the incompressible (vortices)
and compressible (density waves) degrees of freedom of the
superfluid were determined quantitatively for a better under-
standing of the mechanism of vortex reconnection in quantum
fluids [33,38]. Kelvin modes have reported direct evidence in
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a single-vortex BEC [40,41]. During the reconnection pro-
cess, cusps are generated and the vortex lines are excited
by Kelvin waves, helical perturbations that travel along the
vortices, as they relax [42,43]. In turn, the Kelvin waves
provide a source of perturbations for the motion of vortices.
The Kelvin wave cascade generated in superfluid turbulence
reflects the importance of Kelvin waves and reconnections in
the transfer of energy [42], which may be exploited to stabilize
vortex structures. The knot and link dynamics with Kelvin
perturbations in confined systems remains a topic of research.
The objective of our study is to make the reconnections of
vortices occur controllably and then form the complex struc-
tures wanted in BECs. Generally, condensates are confined in
magneto-optical traps experimentally, which are suitable for
exploring systems with different geometries. In the main text,
we consider harmonically trapped systems as examples. The
systems with box-trapping potentials and periodic boundary
conditions are discussed in Appendixes D and E, respectively.

II. MODEL FOR NUMERICAL SIMULATIONS

To achieve the goal of generating knots and links, we use
topologically trivial objects, that is, vortex rings in a spherical
BEC, as building blocks. A vortex ring is a stable nonlinear
excitation mode that can be simply described as a vortex line
that has been bent into a closed loop. In a trapped BEC, a
vortex ring moves in response to the effect of the nonuni-
form trap potential and the external rotation, in addition to
self-induced effects caused by the local curvature of the ring
[44]. By introducing Kelvin waves into the system, the vortex
ring is modified by periodic distortions, which reduces the
translational self-induced velocity of the vortex ring [45,46]
and adds helicity to the vortex ring. In ideal fluids, which lack
viscosity, helicity [47] is a conserved quantity that measures
the degree of knottedness and entanglement of a fluid flow.
Helicity can be stored by twisting, writhing (coiling and knot-
ting), and linking [11]. In quantum fluids, helicity varies with
topology-changing reconnections and changes of geometry in
helical vortices. We discuss the evolution of helicity in detail
in Appendix A.

The interaction between vortices is another factor that
plays an important role in vortex dynamics and leads to in-
teresting phenomena. In homogeneous systems, one of the
most impressive sights occurs when two same-sized vortex
rings placed front to back move together in the same direc-
tion by leapfrogging through each other [48]. When one of
the rings is helically wound initially, the centerline helicity
varies considerably, and the leapfrogging motion occurs due
to the stretching and compressing of the helical ring [2,26].
However, the reconnections do not occur between these inde-
pendent rings.

At sufficiently low temperatures, the macroscopic behavior
of a trapped BEC with N atoms is well characterized by the
Gross-Pitaevskii (GP) equation, which is useful for studying
topological vortex excitations,

ih̄
∂ψ

∂t
=

(
− h̄2

2m
∇2 + Vtr (r) + g|ψ |2

)
ψ , (1)

where ψ is the wave function, the coupling constant g =
4π h̄2as/m is related to the s-wave scattering length as of the

atoms, and m is the mass of the atoms. In this study, we use
an isotropic harmonic trap Vtr(r) = mω2r2/2, where ω is the
trap frequency. The oscillation length of the trap and unit of
time are a0 = √

h̄/mω and t0 = 1/ω, respectively.
In our simulations, the isotropic trap frequency is ω =

2π × 75 Hz. The bulk s-wave scattering length is as =
5.4 nm and the mass m = 1.443 × 10−25 kg for the 87Rb
BEC. We use a0 = √

h̄/mω and t0 = 1/ω as the units of
length and time, respectively. In the calculations, 151 ×
151 × 151 grids with steps �x = �y = �z = √

2a0/10 are
used in a uniformly discretized physical space. A small
time step, �t = 0.001t0, is chosen to ensure the accuracy
of the results. The characteristic radius (Thomas-Fermi ra-
dius) of the BEC cloud RTF =

√
2μTF/mω2, where μTF =

(15ash̄
2√mω3N0)2/5/2 is the corresponding chemical poten-

tial with N0 being the number of atoms. As the healing
length ξ takes its minimum value at the point of the highest
density, one can get ξ = h̄/

√
2mμTF under Thomas-Fermi

approximation. For the parameters employed in this work,
we have RTF/ξ = 33.50. The temporal evolution of the
superfluid order parameter was computed by numerically inte-
grating the GP equation using the Crank-Nicolson method and
fourth-order Runge-Kutta method, which give quantitative
agreement.

In a spherically trapped condensate, two unperturbed vor-
tex rings of similar size can undergo a leapfrogging motion
back and forth without reconnections. This process occurs
when only one vortex ring is perturbed by Kelvin waves. In
a trapped condensate, when the minimum distance between
the vortices reaches the order of the Thomas-Fermi radius RTF

for the shortest direction in the condensate, the vortices start
to rotate to arrange themselves in an antiparallel orientation,
followed by reconnection in a direction orthogonal to their
mutual alignment before final separation [43,49]. This process
is a general characteristic of reconnection events, even in
DNA biology [19,50]. The initial relative orientation and ve-
locity of the vortex lines are crucial factors that influence the
evolution of the vortices in a trapped condensate [43,51]. The
objective of the study is to create knots or links of different
topological types in a trapped condensate. Thus, we begin
with two separated vortex rings perturbed by helical Kelvin
waves of a given amplitude and azimuthal wave number to
ensure that reconnections occur.

We label links and knots using the generalized method
proposed by Scott and Dror called Knot Atlas [52]. The first
topologically nontrivial knot is the trefoil knot K3-1 with a
crossing number and topological writhe of nc = 3 and nw = 3,
respectively. For links, the second nontrivial link is Solomon
link L4a1 with nc = nw = 4. In the following paragraph, we
use these two topological structures as examples to describe
our scheme for generating knots and links with different
topologies.

A vortex ring is formed by a loop in a vortex line.
Suppose that a vortex ring is initially placed on the xOy
plane and symmetrically rotated about the z axis; in this
case, it can be considered as an assembly of 2D vortex
dipoles in the rOz plane. A sufficiently accurate descrip-
tion of a two-dimensional vortex centered at the origin
of the rOz plane can be given by the wave function
ψ2D(r, z) = √

ρ(l ) exp [iθ (r, z)], with ρ(l ) = l2(a1 + a2l2)/
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FIG. 1. Initial state and geometric evolution from vortex rings to a trefoil vortex knot. (a), (b) Schematic diagram of a vortex ring perturbed
by Kelvin waves with wave number n = 3. The unperturbed red ring is used as a reference. (c), (d) Example of the density isosurface of a trefoil
vortex knot in a spherical condensate and a cross section of the corresponding phase distribution. (e)–(h) Four successive typical snapshots that
show how two distorted vortex rings tie into a K3-1 trefoil vortex knot and then break up again. The trefoil vortex knot emerges at 1.0t0 and
decays at 3.2t0. The initial radii and the minimal distance of the upper and lower vortex rings are R1 = 2.0a0, R2 = 2.3a0, and dmin = 1.0a0,
respectively. The amplitudes of the Kelvin waves for the upper ring are Bxy1 = 0.8a0 and Bz1 = 0.3a0, and for the lower ring, Bxy2 = 0.4a0 and
Bz2 = 0.2a0. The initial relative angle between the rings is α = π/3, as shown in (e).

(1 + b1l2 + b2l4), θ (r, z) = atan2(z, r), r=
√

x2+y2, and
l=√

r2 + z2, where a j and b j are constants, and atan2(...)
is the extension of the arctangent function with a principal
value in the range of (−π, π ]. The vortex rings modified by
Kelvin waves with periodic distortion can be initialized by a
three-dimensional wave function [7,8,46],

ψ3D(x, y, z) = ψ2D{r − R1 − Bxy1sin[nθ (x, y) + nα],

× z − Z0 − Bz1cos[nθ (x, y) + nγ ]}
× ψ∗

2D{r + R1 − Bxy1sin[nθ (−x,−y) + nα],

× z − Z0 − Bz1cos[nθ (−x,−y) + nγ ]}
× ψ2D{r − R2 − Bxy2sin[nθ (x, y)],

× z + Z0 − Bz2cos[nθ (x, y)]}
× ψ∗

2D{r + R2 − Bxy2sin[nθ (−x,−y)],

× z + Z0 − Bz2cos[nθ (−x,−y)]}, (2)

where Bxy j and Bz j ( j = 1, 2) are the amplitudes in the radial
and axial directions of the Kelvin waves applied for the jth
vortex ring, respectively, and n is the wave number of the
Kelvin wave perturbations for both rings. The initial rotation
of the upper vortex ring around the z axis is given by α,
and γ is the angle of inclination with respect to the unper-
turbed ring. Then, the minimal offset between the two rings
is dmin = 2Z0 − Bz1 − Bz2. The symmetrical placement of the
two coaxial rings with respect to the xOy-plane results in n

pairs of points between the two rings with the same distance
dmin.

In superfluid systems without fluctuations, the recon-
nection of those points with a minimum distance occurs
simultaneously. In Ref. [2], the simultaneous reconnections
during the dissolution of knots reduced the complexity of the
topology. In Ref. [4], distortions were applied to knots and
links, and simultaneous reconnections were avoided during
the untying process.

Figures 1(a) and 1(b) show the relevant parameters for
perturbing a vortex ring using helical Kelvin waves, where R0

is the radius of the unperturbed ring, shown in red; Bxy and Bz

are the amplitudes of the Kelvin perturbations in the xOy plane
and z direction, respectively; and dmin is the minimal initial
offset between the two rings along the propagation axis. If
dmin is not specially given, we set dmin = a0. The relative angle
α between the rings is shown in the subplot of Fig. 1(e). Two
perturbed rings with radii less than the equilibrium radius [53]
and the same winding number move in the same direction.
The equilibrium radius can be reached when the precession
due to the inhomogeneity of the condensate is balanced by
the induced velocity resulting from the sum of the velocity
contributions from each element on the vortex ring. A vortex
ring with an equilibrium radius is in an unstable equilibrium
state where there is no relative motion between the ring and
the condensate cloud [53,54]. The advantage of this system is
that it has a well-controlled initial state that can be created
within a spatially confined region and reconnection occurs
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FIG. 2. Generation of a L4a1 Solomon vortex link. (a)–(f) Six successive snapshots that show how two perturbed vortex rings with Kelvin
wave number n = 4 evolve into the L4a1 vortex link and then break up again. The link appears twice between 0.7t0 and 0.8t0 (c) and between
1.1t0 and 2.5t0 (e). All other parameters are the same as those in Fig. 1.

naturally due to the different velocities and perturbations of
the vortex rings. In addition, the initial parameters can be
easily adjusted, which allows us to study the stability of the
knots and links generated. Figures 1(c) and 1(d) show the
isosurface and corresponding phase distribution of the trefoil
structure in our system as an example.

III. RESULTS

A. Generation of a trefoil knot

To generate a trefoil structure, the rings are initially per-
turbed by helical Kelvin waves with an odd wave number,
n = 3, copropagating in the z direction in our system. Sim-
ulations are performed with the initial radii of the vortex rings
set to R1 = 2a0 (blue radius at the top) and R2 = 2.3a0 (green
radius at the bottom), as shown in Fig. 1(e), and the initial
positions of the two rings in the z direction are z = 0.75a0

and z = −0.75a0, respectively. We note that the ranges of the
radii of the initial vortex rings are limited because small rings
cannot resolve the sound pulse and large rings require many
grid points [55]. By chosen appropriate parameters, we ensure
that the top ring has a higher velocity than the bottom ring,
which is an important factor for the association of the two
rings. We note that the interaction between rings dominates in
our system configuration.

A typical time sequence that illustrates the collision and
connections of the initial unlinked vortex rings in Figs. 1(f)–
1(h) shows some typical topological structures that form
during the evolution. As the radii of the rings stretch and
shrink during the movement of the rings along the z axis,
the top ring catches up with the bottom ring, and connec-
tions occur at approximately t = 0.9t0 via three simultaneous

reconnection events, as shown in Fig. 1(f). A trefoil knot K3-1
with a clear structure and propagation direction identical to
that of the initial unlinked rings appears in the condensate
cloud, as shown in Fig. 1(g). The trefoil knot exists in the
z < 0 space from t = 1.0t0 to t = 3.2t0. At approximately
t = 3.3t0, the knot breaks up via three simultaneous self-
reconnection events, as shown in Fig. 1(h), before decaying
into two independent rings. In this case, the bridge struc-
tures in Figs. 1(f)–1(h) are formed through topology-changing
reconnections, which alter the topology of the system. In
Supplemental Movie1-K3-1.mp4 [56], we show the time evo-
lution of the vortex structures with another set of initial
parameters which make the trefoil knot exist longer.

B. Generation of a Solomon link

If the wave number of Kelvin waves is chosen to be an
even number, n = 4, the vortex link L4a1 (Solomon link) is
generated via collisions and reconnections of the unlinked
vortex rings as shown in Fig. 2. All the other initial conditions
are the same as those used in Fig. 1 a. During evolution,
the rings perturbed by Kelvin waves distort and reconnect at
approximately t = 0.6t0, as shown in Fig. 2(b). In Fig. 2(c),
we show that at t = 0.7t0, the link L4a1 is generated in the
trapped condensate for the first time after the free evolution of
the initial rings. However, the link configuration is unstable,
and another reconnection event occurs at t = 0.9t0, as shown
in Fig. 2(d). Then, the bridge structure evolves into a vortex
link at t = 1.5t0, and this link survives much longer than the
previous one; another bridge structure appears at t = 2.6t0, as
shown in Fig. 2(f), and then unties to form two highly dis-
torted vortex rings (also see Supplemental Movie2-L4a1.mp4
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FIG. 3. Torus vortex links and knots generated with crossing number up to n = 9. (a) L2a1 link at 2.0t0. (b) K5-1 knot at 1.5t0. (c) L6a3
link at t = 1.5t0. (d) K7-1 knot at t = 1.5t0. (e) L8a14 link at 1.2t0. (f) K9-1 knot at 1.0t0. (g) Standard torus links and knots with crossing
number up to 9 for KnotPlot Software configurations. All parameters are the same as those in Fig. 1, except for the Kelvin wave number, which
equals the crossing number of the knots or links.

[56]). We can clearly see that the combination of the vortex
rings and the reconnection of the link L4a1 occur through
intermediate events with the bridge structures of four simulta-
neous reconnections, as shown in Figs. 2(b), 2(d), and 2(f).

C. General cases of knots and links

In our dynamic process, two types of reconnections exist:
topology-changing and topology-conserving reconnections.
As shown in Figs. 1(f) and 1(h) and Figs. 2(b) and 2(f), the
states are topology-changing reconnections, that is, two bridge
states for the transitions between different topologies. The
state shown in Fig. 2(d) is classified as a topology-conserving
reconnection because the before and after states are all links.
The same topology can be obtained with very different ge-
ometries. In this paper, we show that for states with the same
topology, the geometry is a crucial factor that determines
the next step in the evolution. Although the bridge states in
Figs. 1(f) and 1(h) have the same topology and reconnection
mechanism, they correspond to inverse dynamical processes.

Notably, the values of the number of the reconnection
points, the wave number of the Kelvin waves used to perturb
the vortex rings, the crossing number, and the topological
writhe of the knot and/or link generated are the same in our

cases. A general rule can thus be discerned: the type of topol-
ogy generated by two perturbed rings, a knot or a link, is only
determined by the parity of the wave number of the Kelvin
wave perturbations, which is related to the crossing number
and topological writhe of the knots or links generated. Even
and odd Kelvin wave numbers applied in a pair of vortex rings
can help to produce links and knots, respectively. Following
this rule, we can obtain any type of torus knot or link. Exam-
ples with crossing number up to 9, except for 3 and 4, which
have already been discussed, are shown in Figs. 3(a)–3(f), and
the types of knots or links obtained are L2a1, K5-1, L6a3,
K7-1, L8a14, and K9-1. The standard configuration of torus
knots and links is shown in Fig. 3(g).

IV. DISCUSSION

A. Topological evolution of the vortices

Knots and links with high crossing numbers are much
more unstable than those with low crossing numbers. As the
wave number of helical Kelvin waves increases, the instability
of the vortex ring itself increases [46], and the decreasing
existing time of the ring, which in turn decreases the exist-
ing time of the generated knots and/or links. For n > 6, the
created knots and/or links decay rapidly. In Ref. [57], basic
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FIG. 4. (a), (b) The effect of the Kelvin wave number n and the relative angle α between the vortex rings on the topological evolution of
the vortices. (c), (d) The effect of the radius of the lower ring R2, the radial amplitude of the Kelvin waves of the lower ring Bxy2, the axial
amplitude of the Kelvin waves of the lower ring Bz2, and the initial offset between the two rings dmin on the topological evolution with the wave
number n = 3 and n = 4 of the initial vortex rings, respectively.

topological counting rules were developed to estimate the
relative stability of frequently encountered knots and tangles.
In Fig. 4(a), we show the topological transition of the vortex
knots and/or links generated with crossing numbers ranging
from 3 to 6. The topological transition of a trefoil knot with the
initial relative angle between the two vortex rings α is shown
in Fig. 4(b). Our results show that there is an ideal angle
α = π/n for the generated knots and/or links with crossing
number n that yields a stable state. The blue regions give the
time periods when the knot and/or link survives.

It shows that the geometrical parameters of the vortices,
such as macroscopic reconnection angle and concavity pa-
rameter, influence the linear momentum and energy transfers
[39]. This energy transfer influences the stability of the vortex
structures in turn [38,55]. In our results,the effects of other
parameters, such as the initial radius of the bottom ring R2,
the planar amplitude of the Kelvin waves Bxy2, the vertical
amplitude of the Kelvin waves Bz2, and the initial offset dmin

on the topological transition of the generated knots and links
are analyzed. The results for the trefoil knot (K3-1) are shown
in Fig. 4(c) and those for the Solomon link (L4a1) in Fig. 4(d).
When studying the effects of one parameter, all the others
parameters are held constant. Among these parameters, by
choosing an appropriate value of the initial offset dmin, the
topological structure we want can exist much longer, as shown
in the last column in Fig. 4. In a system with a homogeneous
background, the intensity of the collision of vortex rings mov-
ing toward each other depends on dmin [55]. The smaller the
offset is, the more violent the collision is, which induces more
energy loss during the reconnection process and decreases the
energy of the created topological objects. However, there is
a threshold for the value of the offset that makes the recon-
nection of two rings possible. In Ref. [38], the energy transfer
from the incompressible (kinetic) part into its compressible
counterpart (density waves) during the vortex reconnection
process was studied theoretically by the developed matching
theory.

For the initial radii of the rings, similar values of R1 and R2

make reconnection easier, which results in a longer existing
time of the knots and links. We found that the larger the

relative planar distortion of the rings (Bxy) is, the longer the
existing time of the knots and links is, and the effects of
vertical distortion Bz on the knots and links varied. We note
that there should be a set of optimal initial parameters for
generating a knot and/or link which is as stable as possible.
The number of events associated with generating or breaking
up knots and/or links also depends on the initial condition
chosen. The possibility of links appearing is twice as high as
that for knots. However, the existing time of the first appear-
ance is quite short. To ensure that there are no connections
between the vortex structures and the condensate surface for
all parameters, we limit the time period to 4t0. Appendix B
Fig. 6 and Movie1-K3-1.mp4 [56] show some long-time dy-
namics.

B. Length of the vortex structures

To quantify the topological evolution of the vortices, we
compute the vortex length as a function of time, as shown
in Fig. 5. The position of each vortex filament is found by
numerically searching the minima of the density field within
the condensate cloud. Then, the vortex lines are obtained
by connecting these points smoothly while excluding a few
isolated points induced by numerical errors. Moreover, the
length of the knot and/or link can be calculated by accumu-
lating the distance of neighbor points along the vortex line.
A linked or knotted vortex structure must stretch to expand
as it unties in a homogeneous system [4]. In a harmonic
trap, when a vortex ring moves from a high density region
toward a low density region, the radius of the ring increases
gradually [53]. The variation in length reflects the complex
interacting process of vortex structures in a harmonic trap.
During the untying process of knots and links, the length
of these structures increases. However, the decrease in the
vortex length during the formation of knots and links is not
obvious because this length also increases when these struc-
tures move toward the edge of the condensate cloud. A recent
study [43] observed the boundary effects on vortex dynamics
that allow double reconnections, rebounds, and ejections of
vortex lines in a cigar-shaped atomic BEC in addition to
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FIG. 5. Length L of the vortex structures as a function of time t in a harmonic trap BEC. (a)–(d) A trivial link is perturbed by Kelvin
waves with wave numbers n = 2, 3, 4, 5, respectively. The dashed blue lines indicate the transitions between different topologies. The red
open circles indicate the time period when a knot and/or link (colored patterns) can be clearly identified, and the green circles represent the
topology-conserving reconnections.

standard reconnections in infinite uniform fluids. Between
different topologies, the lengths of vortex structures, except
for topology-conserving intermediate structures, vary consid-
erably.

C. Pathways of topological transitions

In the above discussions, the initial vortex rings are
all coaxial, and all the reconnections at different points
on the vortex rings occur simultaneously, which results in
rings-knot-rings and rings-link-rings transitions. However, the
simultaneous reconnections do not affect the intrinsic physics;
that is, a transition can develop in both directions between
a complex topology and a simple topology in a confined
system. In Appendix C, we show that by further deforming the

initial rings or changing their relative positions, the sequence
of reconnection events can be controlled. New pathways of
the topology transition are provided, such as rings-link-knot-
link-rings and rings-link-ring-link-rings, through successive
reconnections, even though the wave number of the Kelvin
perturbations n is odd (Appendix C Figs. 7 and 8), which
provides further evidence of the transition between a simple
topology and a complex topology in both directions.

V. CONCLUSION

In conclusion, we find that torus vortex knots and links
can be generated through reconnection of vortex rings in a
confined superfluid BEC. Kelvin wave perturbations played
synergistic roles in forming and stabilizing vortex knots and

FIG. 6. Generation of a trefoil vortex knot in a spherical condensate. (a) Five successive snapshots with top views and side views that show
the dynamics of trivial links for Kelvin wave number n = 3. T is the irreducible contribution to the helicity originating from the global vortex
topology. (b)–(d) Trajectories of two vortex points in the half yOz plane (y > 0).
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FIG. 7. Rings-link-knot dynamics in a spherical condensate. Six successive snapshots show the dynamics of trivial links for Kelvin wave
number n = 3. The top ring is initially distorted by a dimensionless strength of 0.3 to overcome the periodic Kelvin wave perturbations.

links in this process. Notably, even Kelvin wave numbers
produced links and odd Kelvin wave numbers produced knots.
We show the dependence of the stability of the generated
knots and links on the various parameters of the system. The
initial relative angle of the two vortex rings is crucial for the
knots and links to survive for a long time. The critical value of
the relative angle is π/n. The variation of the vortex length
during the topological evolution is calculated, and the ten-
dency of which coincides with the results in Ref. [4]. Mostly,
vortex knots and links untied monotonically, which simplified
their topology at each step [1,2,26]. However, in classical and

superfluid turbulent tangle, structures with simple topologies
can form complex vortex structures [9,29,37,58]. But this pro-
cess is not reproducible and controllable. In a trapped system,
the transition between trivial and complex topologies occurs
in both directions while the knot and/or link comes and goes
in the course of time.

In the main text, we discussed the evolution of the vor-
tices in systems with a harmonic trap. In Appendixes D and
E, we also show that all these results can be achieved in
BEC systems with box-trapping potentials or with periodic
boundary conditions. The simplicity and robustness of our

FIG. 8. Rings-link-ring dynamics in a spherical condensate. Three successive snapshots show dynamics of trivial links with Kelvin wave
number n = 3. (a) The top ring is initially distorted by a dimensionless strength 0.5. (b) The top ring is displaced away from the trap center
over a dimensionless distance 0.5 in the y direction.
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FIG. 9. Dynamics of vortex structures with box potential. (a) Initial condition of two vortex rings (thick blue and green lines) with Kelvin
wave perturbations n = 3 and box potential. The doted blue and green lines are the projections to the xOy, xOz, and yOz planes. (b) Three
typical isosurfaces of the vortex structures at time t = 0, 3.0t0 6.0t0, which show the trivial link, knot, and trivial link evolution. The parameters
used are the same as those in Fig. 1 in the main text.

method provides a framework for discovering knots and links
with complex topologies, which might be of great interest in
the strategic design of topologically complex structures with
chemical and biological molecules, and in understanding the
evolution and mechanisms of confined turbulent systems.
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APPENDIX A: HELICITY

As the only other known quadratic invariant besides en-
ergy, helicity has important significance for an ideal classical
fluid in three dimensions. It is generally accepted that helicity
is composed of several contributions among which internal (or
intrinsic) twist makes up an important component. However, it
is not obvious how a structureless vortex filament can acquire
an internal twist contribution [36]. In our systems, we only
consider the centerline helicity because a twist requires addi-
tional information about the fine structure of the vortex core,
which is challenging to obtain experimentally [2,4]. Thus, the
centerline helicity is given by

Hc = �2

(∑
i �= j

Lki j +
∑

i

Wri

)
, (A1)

where Lki j is the linking number between vortex lines i and j,
Wri is the 3D writhe of line i, which includes contributions
from knotting in addition to helical coils. The circula-
tion of vortices is quantized and given by � = ∮

C v()d =
4π h̄/(2m), where v is the flow velocity. There is an irre-
ducible contribution T to the helicity Hc that originates from
the global vortex topology, which is not removable, even by
the long-scale smoothing of the length of the vortex filament
[2,4]. This effective knotting and/or linking number with inte-
ger values can be used to identify the transfer of helicity across
scales between knots and/or links and helically distorted coils
through reconnection events. In Figs. 6–8, we show the value

FIG. 10. Dynamics of vortex structures under periodic boundary
conditions. Three typical isosurfaces of the vortex structures at time
t = 0, 2.5t0 9.0t0, which show the trivial link, knot, and trivial link
evolution. The parameters used are the same as those in Fig. 1 in the
main text.
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of T at some typical time steps during the formation process
of two perturbed vortex rings with Kelvin wave number n = 3.
The value of T can also be used to identify topology-changing
and topology-conserving reconnections.

APPENDIX B: OSCILLATION OF A TREFOIL KNOT

Considering the oscillatory nature of a vortex ring in a
harmonically trapped condensate, we expect the structures
generated through the reconnections of two rings to also os-
cillate in the condensate cloud, which makes the existing time
of the knots and/or links longer. As mentioned in the main
text, there is a set of optimum initial parameters that makes
the existing time of the knots and/or links much longer than
that of other structures. As shown in Fig. 6, the movement of
the vortex structures can last up to 8.4t0 without connections
with the condensate surface. We provide five typical snapshots
of the density isosurface during the formation and dissolution
of trefoil knots. For the given initial parameters, the trefoil
that appears initially survives from 0.7t0 to 8.3t0. We can
track the trajectory of the two vortex points in the half yOz
plane with (y > 0), as shown in Fig. 6(b). Figures 6(c) and
6(d) show the evolution of the positions of the two vortex
points over time in the z and y directions, respectively. The
relative positions of these two points continually change and
they exchange their positions occasionally. This type of move-
ment in the entire space provides a source for reconnection
and separation events. We show the evolution of the system
from t = 0 to 15t0 in Supplemental Movie1-K3-1.mp4 [56],
which displays the Rings-Knot-Rings-Knot-Rings oscillation
clearly.

APPENDIX C: SUCCESSIVE RECONNECTIONS

In the main text, the initial conditions we chose are highly
symmetric, which reflects the physics of the reconnections
of the two vortex rings. However, the conditions for creating
knots and/or links via the reconnection of two perturbed vor-
tex rings are not highly restrictive. For the initial conditions
set in the main text, all reconnections at different points on
the two rings occur simultaneously because the deformation
of the rings induced by Kelvin waves is periodic and there are
no fluctuations in the system. If we introduce extra distortions
that change the amplitude of deformation at different nodes
of the top vortex ring, as shown in Fig. 7 (t = 0), the process
involving the periodic change in the shape of the vortex ring
is disrupted. Then the reconnections can occur successively
in time. After the first two reconnections are complete, an
L2a1 link emerges at 0.8t0, followed by another reconnection
at 1.3t0. A trefoil knot arises after the third reconnection at
1.5t0, and it turns into a link and then two rings through
successive reconnections in the subsequent dynamic process.
Because the resolution of the complex topology (trefoil knot
in this case) is just the reverse of the formation process and
follows similar untying dynamics as those in Ref. [4], we do
not show it in Fig. 7. By adjusting the initial deformation of
the top vortex ring, rings-link-knot-link-rings dynamics are
successfully achieved in our confined system, which again
demonstrates that the evolution between a simple topology
and a complex topology can develop in both directions. We

note that due to the inhomogeneous density distribution of the
harmonically trapped condensate, the complete loop of rings
to rings may be disrupted at any stage by the connections
of the vortices with the condensate surface. If we shift the
relative initial positions of the two vortex rings to make them
slightly noncoaxial, the same results can be obtained as those
yielded by adjusting the deformation.

Strong additional asymmetric deformation and the large
noncoaxial displacement of the vortex rings can provide new
pathways for topology transitions. In Fig. 8(a), we show the
results of applying stronger additional deformation to the top
vortex ring rather than that applied in Fig. 7(a). An L2a1 link
emerges at 2.5t0 after two successive reconnections, and this
link turns into a ring through another reconnection at 3.5t0.
The same things occur when we displace the center of the top
vortex ring away from the z axis by 5a0, as shown in Fig. 8(b).
In these two cases, a topology transfer process, rings-link-
ring-link-rings, is observed. As in Fig. 7, we only show the
first half of the dynamic process. As described in Refs. [2,31],
the stepwise simplification during DNA untying or vortex
knots and/or links dissolution in viscous fluids for an L2a1
linked configuration (a K3-1 knotted configuration) should
follow the link-ring-rings pathway (knot-link-ring-rings) with
decreasing crossing numbers.

APPENDIX D: BOX POTENTIAL

To verify the mechanism of achieving transitions from a
simple topology to a complex one is not affected by the
boundary conditions, we also performed calculations with the
box potential and they yielded similar results. We employ a
box potential in the form

Vbox(r) =
{

V0, |x|, |y|, |z| = 7.5a0

0, |x|, |y|, |z| < 7.5a0,
(D1)

with potential height Vbox to replace Vtr in the GP equation in
the main text. The size of the system remains 151 × 151 ×
151. This substitution can be experimentally achieved using
two digital micromirror devices [59]. By loading 9 × 105

atoms into a trap, a cubic density profile is produced. Fig-
ure 9(a) shows the initial state of a pair of unlinked vortex
rings with Kelvin wave perturbations in the box potential.
The parameters are the same as those used in the harmonic
trap for creating a trefoil K3-1 knot (Fig. 1 in the main
text). In Fig. 9(b), three typical time sequences illustrate the
initial state, trefoil knot, and trivial link during the dynamic
process. The topology transition of rings-knot-rings is the
same as that in a harmonic trap (Supplemental Movie3-K3-
1box.mp4 [56]). For Kelvin wave number n = 4, we can also
repeat the rings-link-rings transition (Supplemental Movie4-
L4a1box.mp4 [56]). Moreover, for successive reconnections,
we can achieve rings-link-knot-link-rings and rings-link-ring-
link-rings dynamics.

APPENDIX E: PERIODIC BOUNDARY CONDITIONS

We also checked the results of the systems with periodic
boundary conditions. We demonstrated that for sufficiently
close leapfrogging vortex rings with perturbed Kelvin waves
on them, a series of reconnections can happen, and a
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topologically more complex vortex structure can be created
in an unbounded domain. To ensure that the phase matches
across periodic boundaries, a constant gradient should be

added [2]. The topological evolution from a trivial link to
a trefoil in a system with a periodic boundary condition is
demonstrated as shown in Fig. 10.
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