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We exactly solve the two-body and three-body problems in the mixture of alkaline-earth-metal(like) (AE)
and alkali-metal atomic gases in the presence of three-dimensional isotropic spin-orbit (SO) coupling. The SO
coupling is implemented by the Raman scheme that couples the ground state of the AE atom with different
nuclear spin. The interaction between AE and alkali-metal atoms is tuned to be near resonant by Feshbach reso-
nance, while the interaction between the two AE atoms is negligible. We present the Skorniakov–Ter-Martirosian
(STM) equation for the three-body system composed of two SO coupled AE atoms and one alkali-metal atom.
By solving the STM equation in the zero angular momentum sector, we obtain the energy spectrum and find a
nonuniversal Efimov trimer and a universal Kartavtsev-Malykh (KM) trimer in different parameter windows of
the mass ratio. In the region where the KM trimer is present, strong SO coupling can stabilize the KM trimer to
be the ground state, such that experimental realization and observation can be expected.
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I. INTRODUCTION

The mixture of ultracold atomic gas provides a new per-
spective for the study of few- and many-body physics, where
the atomic mass ratio and statistics can be controlled with
high flexibility. Many dual-element alkali-metal and alkaline-
earth-metal(like) (AE) atomic gas mixtures have been cooled
to quantum degeneracy, including the Bose-Bose mixture
[1–3], the Fermi-Fermi mixture [4], and the Bose-Fermi mix-
ture [5–11]. In particular, the recent realization of a mixture
of alkali-metal and AE atoms has attracted increasing interest
[12,13]. Such a system is a promising platform to simulate the
px + ipy topological superfluid and Kondo physics [14,15].
The Feshbach resonances between alkali-metal and AE atoms
were successfully observed by an experimental group from
Amsterdam [16], unlocking even more opportunities for the
investigation of novel few- and many-body quantum phenom-
ena. Near these Feshbach resonances, the interaction is almost
independent of the nuclear spin of the AE atoms, such that the
system acquires an approximate SU(N) symmetry of nuclear
spins.

The synthetic spin-orbit (SO) coupling realized between
two hyperfine states of alkali-metal atoms by Raman coupling
has greatly enriched the tool kit of ultracold atomic gases
[17–23] and has advanced the study of topological quantum
states and novel superfluid phases [24–27]. From the view-
point of the few-body physics, such a technique also supplies
a new knob to control two- and three-body bound states.

*renzhang@xjtu.edu.cn
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Specifically, in the presence of SO coupling, the two-body
bound state becomes more favorable due to the enhance-
ment of the low-energy density of states [28]. For the case
of three-body problems, previous works found two types of
three-body bound states, i.e., the Efimov trimer and the uni-
versal Kartavtsev-Malykh (KM) trimer, and the latter state is
energetically more favorable than the former option [29–31].
In addition, the conventional scaling law for the usual Efimov
trimer vanishes owing to the presence of SO coupling, while
a generalized radical scaling law still exists [30,32].

The Raman scheme of SO coupling is also extended to
the system of AE atoms, where two of the nuclear spin states
labeled by (↑,↓) are coupled [33,34]. In this paper, we focus
on the three-body system composited by one alkali-metal
atom and two fermionic AE atoms with nuclear spins up and
down, which are coupled by a three-dimensional isotropic SO
coupling. Thanks to the Feshbach resonance between AE and
alkali-metal atoms, the interspecies interaction can be tuned to
be much larger than that between the two AE atoms, such that
the latter can be safely neglected. Moreover, due to the SU(N)
symmetry, the interaction between AE and alkali-metal atoms
is taken to be identical for the two nuclear spin states of AE
atoms. By solving the two-body and three-body problems of
such a system, we find that the SO coupling enhances the exis-
tence of the two-body bound state, and more importantly, the
nonuniversal Efimov trimer and universal KM trimer with a
generalized scaling law can be obtained in different parameter
windows of the mass ratio.

This paper is arranged as follows. In Sec. II, we present
a brief review of the SO coupled two-body problems and
emphasize the enhancement of low-energy density of states
by SO coupling. In Sec. III, we present the derivation of the
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general Skorniakov–Ter-Martirosian (STM) equation, which
is further simplified in Sec. IV by noticing the conservation
of total angular momentum. We then derive the partial-wave
STM equation and obtain a solvable integral equation for the
three-body eigenenergy in the zero total angular momentum
sector. In Sec. V, we numerically solve for the eigenenergy of
trimer states and analyze the mass-ratio effect on the existence
and stability of Efimov and KM trimers. Finally, a summary
is presented in Sec. VI.

II. TWO-BODY BOUND STATES

Before embarking on the three-body problem, let us briefly
review the solutions to the two-body problems of an SO
coupled AE atom and an alkali-metal atom. The two-body
Hamiltonian is written as

Ĥ2b = Ĥ0
2b + V̂12,

Ĥ0
2b = p̂1

2m
+ p̂2

2

2M
− λp̂2 · σ̂

M
, (1)

V̂12 = gδ(r1 − r2)I,

where p̂1 and r1 are, respectively, the momentum and coordi-
nate operators of the alkali-metal atom with mass m and p̂2

and r2 are the corresponding operators of the AE atom with
mass M. The momentum of the AE atom is SO coupled to its
spin operator σ̂ spanned by the ↑ and ↓ nuclear spin states via
an isotropic form with strength λ. The interaction between the
alkali-metal and AE atoms V̂12 is assumed to be independent
of the nuclear spin states and proportional to the identity ma-
trix I in spin space. In the following discussion, we define the
mass ratio as μ ≡ M/m. The interaction strength g is related to
the s-wave scattering length as via the renormalization relation

1

g
= Mm

2π (M + m)as
− 1

�

∑
k

2Mm

k2(M + m)
, (2)

where the natural unit h̄ = 1 is taken for simplicity, � is the
quantization volume, and as can be controlled by Feshbach
resonance [16].

Since the interaction is invariant under the spin rotation,
it is diagonal in the basis {|k,↑〉, |k,↓〉}, with k being the
relative momentum. Nevertheless, the SO coupling breaks
the spin-rotation symmetry. It is straightforward to prove
that the kinetic Hamiltonian is diagonal in the helicity basis
{|k1; k2, α〉}, with α = ± and

|k1; k2, α〉 =
∑

σ=↑,↓
γ σ

k2,α
|k1; k2, σ 〉, (3)

where the coefficients are defined as γ
↑
k,+ =

e−i
φk
2 cos θk

2 , γ
↓
k,+ = ei

φk
2 sin θk

2 , γ
↑
k,− = −e−i

φk
2 sin θk

2 , and

γ
↓
k,− = ei

φk
2 cos θk

2 . Here, θk and φk are the azimuthal angles
of k. The total momentum of the two-body system is a
conserved quantity, and the eigenstate with total momentum
K can, in general, be written as

|�2b〉 =
∑
α=±

∫
dkψα (K − k2; k2)|K − k2; k2, α〉. (4)

FIG. 1. Two-body binding energy Eb as a function of (a) s-wave
scattering length as and (b) and (c) SOC strength λ for different mass
ratios μ. For (a), the total momentum |K| = 0. For (b) and (c) we take
1/(λas ) = 0, 1, respectively, as denoted by the pink arrows. There
are two bound states at small |K|, and their binding energies are
denoted by the same type of curves.

By solving the Lippmann-Schwinger equation, we obtain the
algebraic equation for the two-body bound-state energy E
(Appendix A)

D(E )2 − Y (E )2 = 0, (5)

where D(E ) and Y (E ) represent

D(E ) ≡ −
μ/as − (μ|K|+λ)D−(E )+(μ|K|−λ)D+(E )

2|K|(1+μ)

2π (1 + μ)
,

(6)

Y (E ) ≡ −Y+(E )D−(E ) + Y−(E )D+(E )

12π (1 + μ)2μK2
.

The quantities in the expressions above are D±(E ) =√
μ(|K| ± λ)2 − 2(1 + μ)(ME + λ)2 and Y±(E ) = μ(K2 ±

λ|K| + λ2) + 3μ2K2 − 2(1 + μ)(ME + λ2). Without loss of
generality, we choose λ > 0 hereafter.

By solving Eq. (5), we obtain the two-body bound-state
spectrum. In Fig. 1, we show the binding energy Eb =
E − E (2b)

th as the function of interaction strength and total
momentum for different mass ratios, where E (2b)

th = (|K| −
λ)2/2(M + m) − λ2/2M. In Fig. 1(a), we illustrate the bind-
ing energy as a function of s-wave scattering length as for the
|K| = 0 sector. Notice that a bound state exists even in the
BCS regime with as < 0. This is because the SO coupling
enhances the low-energy density of the state [23], which fa-
vors the existence of a bound state. However, the mass-ratio
dependences of the shallow and deep bound states are quite
different.

For the shallow bound state in the BCS regime or near the
unitary, the binding energy is smaller than or comparable to
λ2/M. So the SO coupling dominates the interaction when
it comes to the bound state. According to Eq. (1), the SO
coupling is suppressed when the mass ratio increases. Thus,

063313-2



UNIVERSAL AND EFIMOV TRIMERS IN AN … PHYSICAL REVIEW A 102, 063313 (2020)

the binding energy becomes smaller when the mass ratio
increases, as shown in the inset of Fig. 1(a). In Fig. 1(b) we
show the binding energy with finite total momentum at the
unitary. There are two bound states for small |K|, and they are
degenerate at |K| = 0. With increasing |K|, one of the bound
state disassociates into two atoms. For both of the shallow
bound states, the binding energies hold the same dependence
on the mass ratio and are both reduced with increasing mass
ratio.

For the deeply bound state in the deep Bose-Einstein-
condensate regime, the binding energy is much larger than
λ2/M. Then, the SO coupling in this regime is negligible, and
the binding energy approximates to

Eb � − 1

Ma2
s

(1 + μ), as as → 0+. (7)

Thus, the bound state is enhanced when the mass ratio is
increased, as illustrated in Fig. 1(a). Like for the shallow
bound state, we calculate the binding energy with finite mo-
mentum at 1/(λas) = 1 as shown in Fig. 1(c). There are two
bound states as well, and they are degenerate at |K| = 0. In
comparison to the BCS regime, here the two bound states are
stable in a much wider region of momentum and disassociate
into two atoms only at a larger value of |K|.

It is obvious that the binding energy takes its maximum
at |K| = 0. The two-body bound-state energies serve as one
of the threshold energies for the three-body bound state dis-
cussed in the following section.

III. THREE-BODY PROBLEM AND STM EQUATION

For the three-body system composited by two SO coupled
AE atoms and one alkali-metal atom, the Hamiltonian is writ-
ten as Ĥ3b = Ĥ0

3b + V̂12 + V̂13, with

Ĥ0
3b = p̂2

1

2m
+

∑
i=2,3

(
p̂2

i

2M
− λp̂i · σ̂

M

)
,

V̂12 = gδ(r1 − r2)I2 ⊗ I3, (8)

V̂13 = gδ(r1 − r3)I2 ⊗ I3.

Here we label the two AE atoms by 2 and 3. I2 and I3 are
the identities spanned by the spins of the AE-2 and AE-
3 atoms, respectively. The other notations are the same as
those for the two-body case in the preceding section. Before
proceeding further, we would like to emphasize the main
difference between our model and the previous ones [29–31].
In Refs. [29,30], the three-body system is composited by two
identical fermions and another SO coupled atom, and the
interaction exists between fermions and the SO coupled atom.
The authors of Ref. [31] considered a system composited by
two SO coupled two-component fermions and a third atom.
However, the interaction exists only between one of the two
components and the third atom. Thus, our system is quite
different from these existing works, and we will show that the
physics changes as well.

Similar to the two-body problem, the Lippmann-
Schwinger equation for the three-body problem is written as

|�3b〉 = Ĝ3b(V̂12 + V̂13)|�3b〉, (9)

where Ĝ3b = (E − Ĥ0
3b)−1 is the free Green’s function opera-

tor. Notice that Eq. (9) is basis independent; that is, it can be
projected to either the helicity basis or the spin basis. Since
the free Green’s function Ĝ3b is diagonal in the helicity basis,
we project Eq. (9) into the helicity basis and rewrite the wave
function as

�3b(K − k − q; k, α; q, β )

=
∑

σ=↑,↓

F σ
β (q)γ σ∗

k,α − F σ
α (k)γ σ∗

q,β

E − E0(K − k − q; k, α; q, β )
. (10)

Here α, β = ± are helicity indices, K is the total momentum,
and

E0(k1; k2, α; k3, β )

= k2
1

2m
+ (k2 + αλ)2

2M
+ (k3 + βλ)2

2M
− λ2

M
(11)

is the kinetic energy in the presence of SO coupling. The
auxiliary function F σ

α (k) is defined as

F σ
α (k) = g

(2π )3

∫
dq

∑
α′

�(K − k − q; k, α; q, α′)γ σ
q,α′ .

(12)

By multiplying
∫

dk
∑

α=± γ σ
k,α on both sides of Eq. (10), we

obtain the self-consistent equation for the auxiliary function

F σ
β (q) =

∑
α=±

∑
σ ′=↑,↓

g

(2π )3

×
∫

dkγ σ
k,α

F σ ′
β (q)γ σ ′∗

k,α − F σ ′
α (k)γ σ ′∗

q,β

E − E0(K − k − q; k, α; q, β )
. (13)

This is the STM equation for our system. In principle, by
solving Eq. (13), one finds the three-body bound-state energy
and the corresponding wave function. It is worth pointing
out that the STM equation in our system is four-dimensional,
which is different from those discussed in Refs. [29,30], where
it takes a spinor form.

IV. PARTIAL-WAVE EXPANSION

In the presence of SO coupling, our system still acquires
the spatial translational symmetry and a combined symmetry
of spatial and spin rotation. Furthermore, we restrict the dis-
cussion in the subspace with zero total momentum K = 0, in
which case we will have [P̂, Ĵ] = 0, and thus, the total angular
momenta j and mj are also conserved quantities, where j and
mj are the eigenvalues corresponding with the total angular
momentum operators Ĵ and Ĵz. However, we stress that our
approach can be extended to the general case.

Using the unitary transformation defined in Eq. (3), one
can expand the three-body wave function in the spin basis

�3b(−k − q; k, α; q, β )

=
∑

σ=↑,↓,σ ′=↑,↓
γ σ∗

k,αγ σ ′∗
q,β ψ3b(−k − q; k, σ ; q, σ ′), (14)
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where ψ3b(−k − q; k, σ ; q, σ ′) is the three-body wave func-
tion component, which can be further expanded as follows:

ψ3b(−k − q; k, σ ; q, σ ′)

=
∑
( ji,Ji )

∑
(mji ,mJi )

ϕ j1, j2,J1,J2 (k, q)

×
[
〈 j1, mj1 ;

1

2
, σ

∣∣∣∣J1, mJ1

〉〈
j2, mj2 ;

1

2
, σ ′

∣∣∣∣J2, mJ2

〉

×〈J1, mJ1 ; J2, mJ2 | j, mj〉Y mj1
j1

(�k )Y
mj2
j2

(�q)

]
. (15)

In the above expression, ji, Ji = 0, 1, 2, . . . respectively label
the quantum numbers of the orbital and total angular momenta
of particle i = 1, 2, while mji = − ji,− ji + 1, . . . , ji − 1, ji
and mJi = −Ji,−Ji + 1, . . . , Ji − 1, Ji are the corresponding

magnetic quantum numbers. In addition, �k denotes the solid
angle of k, and Y

mji
ji

(�k ) denotes the spherical harmonic
function. Substituting Eqs. (14) and (15) into Eq. (12), we
obtain the partial-wave component of the auxiliary function
and hence the three-body wave function. The expansion in
Eq. (15) is valid as long as the total angular momentum is
conserved. Thus, our derivation, in principle, is applicable to
any j sector.

In the following discussion, we assume that the total angu-
lar momentum is zero, that is, j = mj = 0, and F σ

α (k) can be
significantly simplified. In such a case, we have J1 = J2 and
mJ1 = −mJ2 . Moreover, since only the s-wave interaction is
considered in our system, integration over q in Eq. (12) leads
to j2 = mj2 = 0. Then, we find J1 = J2 = 1/2 and mJ1 =
−mJ2 = −σ ′, which leads to (i) j1 = 0, mj1 = 0 and (ii) j2 =
1, mj2 = ±1, 0. A straightforward calculation shows that

F↑
+ (k) = −γ

↑
k,−

(
f0(k)Y 0

0 (�k )√
2

+ f1(k)Y 0
1 (�k )√
6

)
− γ

↓
k,− f1(k)Y −1

1 (�k )√
3

, (16)

F↓
+ (k) = −γ

↓
k,−

(
f0(k)Y 0

0 (�k )√
2

− f1(k)Y 0
1 (�k )√
6

)
+ γ

↑
k,− f1(k)Y 1

1 (�k )√
3

, (17)

F↑
− (k) = γ

↑
k,+

(
f0(k)Y 0

0 (�k )√
2

+ f1(k)Y 0
1 (�k )√
6

)
+ γ

↓
k,− f1(k)Y −1

1 (�k )√
3

, (18)

F↓
− (k) = γ

↓
k,+

(
f0(k)Y 0

0 (�k )√
2

− f1(k)Y 0
1 (�k )√
6

)
− γ

↑
k,+ f1(k)Y 1

1 (�k )√
3

, (19)

where f0(k) and f1(k) are the functions to be determined by the STM equation (13). It should be noticed that there are only two
instead of four linearly independent functions, and this simplification exists only in the j = 0 sector.

To obtain the equation for f0(k) and f1(k), we substitute Eqs. (16)–(19) into Eq. (13) and obtain the partial-wave STM
equation (Appendix B)[

W+(k) − D+(k) 0
0 W−(k) + D−(k)

][
f+(k)
f−(k)

]

=
∫ �

0

q2dq

(2π )3

[
K−,−

0 (k, q) − K−,−
1 (k, q) −K+,−

0 (k, q) − K+,−
1 (k, q)

K−,+
0 (k, q) + K−,+

1 (k, q) K+,+
1 (k, q) − K+,+

0 (k, q)

][
f+(q)

f−(q)

]
, (20)

where � is the three-body parameter [35–37], f±(k) ≡ f1(k) ± f0(k), and

D±(k) = − 1

2π (1 + μ)

{
μ

as
− (μk + λ)

√
μ(k − λ)2 + (1 + μ)[k2 − 2(ME + λ2) ∓ 2kλ + λ2]

2(1 + μ)k

− (μk − λ)
√

μ(k + λ)2 + (1 + μ)[k2 − 2(ME + λ2) ∓ 2kλ + λ2)]

2(1 + μ)k

}
, (21)

W±(k) = − 1

12π (1 + μ)2k2
({(2k2 + kλ + λ2) + 4μk2 − (1 + μ)[2(mE + λ2/μ) − (1/μ − 1)k2 ± 2kλ/μ − λ2/μ)]}

×
√

μ(k − λ)2 + (1 + μ)μ(k2 − 2(mE + λ2/μ) + (1/μ − 1)k2 ∓ 2kλ/μ + λ2/μ)

−{(2k2 − kλ + λ2) + 4μk2 − (1 + μ)[2(mE + λ2/μ) − (1/μ − 1)k2 ± 2kλ/μ − λ2/μ]}
×

√
μ(k + λ)2 + (1 + μ)μ[k2 − 2(mE + λ2/μ) + (1/μ − 1)k2 ∓ 2kλ/μ + λ2/μ]), (22)

Kα=±,β=±
0 = π

kq
ln

[
1 + 4μkq

2ME − (k + αλ)2 − (q + βλ)2 − μ(k + q)2

]
,

Kα=±,β=±
1 = −2π

kq
+ π

2ME − (k + αλ)2 − (q + βλ)2 − μ(k2 + q2)

2μk2q2

× ln

[
1 + 4μkq

2ME − (k + αλ)2 − (q + βλ)2 − μ(k + q)2

]
. (23)
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FIG. 2. Three-body bound-state energy as a function of the s-wave scattering length for different mass ratios. (a) μ = 5. There exist only
nonuniversal three-body bound states. (b) μ = 12. One universal bound state (blue dashed line, circles, and crosses) and a nonuniversal bound
state coexist, and the universal one is the shallowest. (c) μ = 173/6. There are two sets of nonuniversal bound states.

The physical meaning of Eq. (20) can be understood as
follows. For the case λ = 0, Eq. (20) can be significantly
simplified as[

1

as
−

√
(1 + 2μ)k2 − 2μ(1 + μ)E

1 + μ

]
fl (k)

= 2(−1)l+1

π

∫ �

0
q2dqK0

l (k, q) fl (q), (24)

where the index l = 0, 1 and

K0
l (k, q) =

∫ 2π

0
dθkq

Pl (cos θkq) sin θkq

2μE − k2 − q2 − μ(k + q)2
, (25)

with θkq denoting the angle between k and q. Clearly, f0(k)
represents the wave function of a three-body system com-
posed of interacting identical bosons with angular momentum
l = 0, and f1(k) is the wave function of a three-body system
of two-component fermions with angular momentum l = 1. It
is known that in the three-boson system nonuniversal Efimov
states with a discrete scaling law exist [38]. In the three-body
system of two-component fermions, however, the universal
KM trimers with a continuous scaling law exist. The first
KM trimer emerges when the mass ratio μ � 8.172, and the
second one appears when 12.917 � μ < 13.606. If the mass
ratio is further increased beyond 13.606, Efimov trimers start
to emerge [35–37,39–41].

Our system is composited of three distinguishable particles
with s-wave interaction. In the absence of SO coupling, the
sectors with angular momentum l = 0 and l = 1 thus cor-
respond to the bosonic and fermionic systems, respectively.
When the SO coupling is turned on, the total angular momen-
tum j becomes a good quantum number. In the j = 0 sector,
f0(k) and f1(k) are coupled by SO coupling, as indicated by
Eq. (20).

V. MASS-RATIO EFFECT AND EFIMOVIAN
SCALING LAW

By solving Eq. (20), we obtain the three-body bound-state
energy and show the result as a function of the s-wave scatter-
ing length as for different mass ratios μ in Fig. 2, from which
one can easily observe different types of three-body bound

states for different mass ratios. When the mass ratio is small, a
series of nonuniversal three-body bound states whose binding
energies are dependent on the three-body parameter � exists,
as can be found in Fig. 2(a) for μ = 5. With increasing the
mass ratio to μ = 12, a KM trimer emerges, as illustrated by
the blue dashed curve in Fig. 2(b). The bound-state energy of
that KM trimer is apparently independent of the three-body
parameter. By further increasing the mass ratio, the universal
KM trimer disappears, and more nonuniversal trimers emerge,
as depicted in Fig. 2(c), where a mixture of 173Yb and 6Li is
considered as an example. The nonuniversal trimers fall into
two classes labeled by the red (light gray) and blue (dark gray)
curves. Our results so far are qualitatively consistent with the
case without SO coupling, i.e., λ = 0, where the nonuniversal
trimers are the Efimov states with discrete scaling law. Two
natural questions then arise in the presence of SO coupling:
(1) Is the nonuniversal trimer still the Efimov state? (2) If so,
does the scaling law need to be modified?

To address these two questions, we calculate the three-body
bound-state energy as a function of the SO coupling strength
λ for different mass ratios. In the absence of SO coupling,
the KM trimer satisfies the continuous scaling law as → ξas,
E → ξ−2E . Thus, the three-body bound-state energy E = 0
at unitarity. However, for the Efimov trimer, the three-body
parameter breaks the continuous scaling law into a discrete
scaling law. In Fig. 3, we confirm these statements at λ = 0.
As indicated by the red (medium gray) squares in Fig. 3(a) and
red (medium gray) and blue (dark gray) squares in Fig. 3(c),
the scaling law in such circumstances reads En+1/En = e2π/sl

0 ,
where the superscript l = 0, 1 corresponds to the total orbital
angular momentum and s0

0 ≈ 0.997 for μ = 5, s0
0 ≈ 2.243,

and s1
0 ≈ 1.650 for μ = 173/6. For the case μ = 12, a uni-

versal KM trimer (blue dash-dotted lines) and nonuniversal
trimers (red solid lines) with s0

0 ≈ 1.499 exist.
When the SO coupling ramps up, we observe that the three-

body bound-state energy becomes larger, which is also owing
to the enhancement of the low-energy density of states by
SO coupling. The three-body bound state eventually merges
to the two-body bound state (green dashed curves in Fig. 3)
for sufficiently strong SO coupling. As indicated in Ref. [30],
the three-body bound states ψ (e−π/sl

0 R) and ψ (R) satisfy the
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FIG. 3. Three-body bound-state energy as a function of the SO coupling strength λ for different mass ratios. The inset shows results near
λ/� = 0. (a) μ = 5 and 1/(λas ) = 0; the Efimov trimers represented by the red triangles satisfy the scaling law in Eq. (27) with s0

0 ≈ 0.997.
(b) μ = 12 and 1/(λas ) = 3. There exists an Efimov trimer with s0

0 ≈ 1.499 and a universal KM trimer, and the latter is energetically favorable
at sufficiently strong SO coupling. In our calculation, � is large enough that the universal KM trimer energies have converged. (c) μ = 173/6
and 1/(λas ) = 0. There exists a series of Efimov trimers which fall into two classes denoted by red solid and blue dash-dotted curves with
s0

0 ≈ 2.243 and s1
0 ≈ 1.650, respectively.

same Shrödinger equation if we perform the following scaling
transformation:

E → Ee2π/sl
0 , λ → λeπ/sl

0 ,
(26)

as → ase
−π/sl

0 , R → Re−π/sl
0 .

As a result, the nonuniversal trimer energy satisfies the scaling
law

En+1(λ, as)

En
(
λeπ/sl

0 , ase−π/sl
0
) = e−2π/sl

0 . (27)

In Fig. 3(a), we verified this scaling relation as indicated by
the three red triangles. So the nonuniversal trimers in our
system are the Efimov states with a modified discrete scaling
law which involves SO coupling. When the mass ratio is larger
than the critical value, the KM trimer appears which satisfies
the continuous scaling law,

E → ξ−2E , λ → ξ−1λ, as → ξas. (28)

Using μ = 12 as an example, we illustrate the KM trimer
and Efimov trimer in Fig. 3(b). The energy of the KM trimer
does not rely on the three-body parameter �, and thus, all the
points (λ/�,−

√
−ME/�2) should fall onto a straight line

pointing to the origin, which is the case in Fig. 3(b), as shown
by the blue dash-dotted line. As can be seen in the inset, the
Efimov trimer is energetically favorable when the SO coupling
is weak. By increasing the SO coupling λ beyond a critical
value at which the Efimov and KM trimers are generated,
the KM trimer becomes the ground state. When the mass
ratio is further increased, the KM trimer vanishes, and more
Efimov states appear, as shown in Fig. 3(c) with mass ratio
μ = 173/6.

The degeneracy between the KM and Efimov trimers
shown in Fig. 3(b) can be understood by noticing that the two
states acquire different scaling symmetries. While the Efimov
trimer is discretely scaling invariant, the KM trimer is contin-
uously scaling invariant. As the discrete scaling symmetry is a
subset of the continuous scaling symmetry, the degenerate en-
ergies for different Efimov branches should exhibit the same
discrete scaling law as in Eq. (26), which is confirmed by our
numerical results.

VI. SUMMARY

In summary, we exactly solved the two- and three-body
problems in a mixture of alkaline-earth-metal and alkali-metal
atoms. In such a system, the nuclear-spin-independent Fes-
hbach resonance is used to tune the interaction between the
AE and alkali-metal atoms. The SO coupling is realized by
coupling the nuclear spin of AE atoms via the clock transition
or the Raman transition. We find a nonuniversal Efimov trimer
and/or universal KM trimer within a different range of mass
ratios between AE and alkali-metal atoms. When the mass
ratio μ = M/m between the SO coupled AE atom M and
the alkali-metal atom m is small, a series of Efimov states
with a discrete scaling law exists. By increasing the mass
ratio beyond a critical value, a universal KM trimer emerges
and coexists with the Efimov trimers. The KM trimer is en-
ergetically more favorable than the Efimov trimer for strong
enough SO coupling, such that it can be realized and observed
in the experiment. If the mass ratio is further increased, the
KM trimer vanishes, and an extra series of Efimov trimers
emerges. In Table I, we illustrate the difference between the
systems that support the KM trimer. Our study enriches the
understanding of SO coupled few-body systems.

TABLE I. Comparison of SO coupling three-body systems in different studies.

Composited particle SO coupling configuration Interaction Ref.

Two identical fermions + one spin- 1
2 atom Imposed on one spin- 1

2 atom Between fermions and the spin- 1
2 atom [29,30]

Two spin- 1
2 fermions (↑,↓) + one spinless atom Imposed on two spin- 1

2 atoms Between fermions (↑) and the spinless atom [31]

Two spin- 1
2 fermions (↑,↓) + one spinless atom Imposed on two spin- 1

2 atoms Between fermions (↑,↓) and the spinless atom This paper
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APPENDIX A: TWO-BODY BOUND-STATE DERIVATION

In the two-body part we consider an alkali-metal atom (denoted as 1) interacting with an AE atom (denoted as 2), and the AE
atom is subject to isotropic spin-orbit coupling. The two-body Hamiltonian is given by Eq. (1) in the main text. In the helicity
basis |k1; k2, α〉, we have

Ĥ0
2b =

∫
dk1dk2

∑
α=±

E0
2b(k1; k2, α)|k1; k2, α〉〈k1; k2, α|,

V̂12 = g

(2π )3

∫
dKdk1dk2

∑
α=±

|K − k1; k1, α〉〈K − k2; k2, α|, (A1)

with E0
2b(k1; k2, α) = k2

1
2m + (k2−αλ)2

2M − λ2

2M .
We solve the two-body problem through the Lippman-Schwinger equation

|�2b〉 = Ĝ2bV̂12|�2b〉, (A2)

where |�2b〉 is the two-body bound state given by Eq. (4) and the two-body Green’s function Ĝ2b reads

Ĝ2b =
∫

dk1dk2

∑
α=±

1

E − E0
2b(k1; k2, α)

|k1; k2, α〉〈k1; k2, α|. (A3)

Multiplying 〈K − k2; k2, α| on both sides, we get the wave function with total momentum K,

�2b(K − k2; k2, α) =
∫

g

(2π )3

dk′ ∑
α′,σ �2b(K − k′; k′, α′)γ σ∗

k2,α
γ σ

k′,α′

E − E0
2b(K − k2; k2, α)

, (A4)

where γ σ
k,α is defined in Sec II. Defining the auxiliary function

f σ
K = g

(2π )3

∫
dk2

∑
α

�2b(K − k2; k2, α)γ σ
k2,α

, (A5)

we have

�2b(K − k2; k2, α)γ σ
k2,α

= 1

E − E0
2b(K − k2; k2, α)

∑
σ ′

f σ ′
K γ σ ′∗

k2,α
γ σ

k2,α
. (A6)

Then we can obtain the self-consistent equation satisfied by f σ
K ,

f σ
K = g

(2π )3

∫
dk2

∑
σ ′

Gσ,σ ′
2b (K − k2; k2) f σ ′

K , (A7)

i.e.,

1

(2π )3

∫
dk

(
G↑↑

2b (K − k2; k2) − 1
g G↑↓

2b (K − k2; k2)

G↓↑
2b (K − k2; k2) G↓↓

2b (K − k2; k2) − 1
g

)(
f ↑
K

f ↓
K

)
= 0, (A8)

with Gσσ ′
2b defined as

Gσσ ′
2b (K − k2; k2) =

∑
α

γ σ ′∗
k2,α

γ σ
k2,α

E − E0
2b(K − k2; k2, α)

. (A9)

By further calculation, we can simplify Eq. (A8) into(
D(E ) + Y (E ) cos θ Y (E ) sin θe−iφ

Y (E ) sin θeiφ D(E ) − Y (E ) cos θ

)(
f ↑
K

f ↓
K

)
= 0, (A10)
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where θ and φ stand for θK and φK, D(E ) and Y (E ) are defined as in the main text, and μ ≡ M
m is the mass ratio. The two-body

bound-state energy E is determined by Eq. (5).

APPENDIX B: PARTIAL-WAVE STM EQUATION

To simplify the STM equation as given by Eq. (13), we derive its partial-wave expansion form in this Appendix.
We first rewrite the auxiliary function F σ

α (k) in a variable separated form in terms of the harmonic functions. Substituting
Eqs. (14) and (15) into the auxiliary function (12), we can obtain the partial-wave expression of the auxiliary functions,

F↑
+ (k) = γ

↓
k,−

[〈
0, 0; 1

2 , 1
2

∣∣ 1
2 , 1

2

〉〈
j − 1, mj − 1; 1

2 , 1
2

∣∣ j − 1
2 , mj − 1

2

〉〈
1
2 , 1

2 ; j − 1
2 , mj − 1

2

∣∣ j, mj
〉
f3(k)Y mj−1

j−1 (�k )

+ 〈
0, 0; 1

2 , 1
2

∣∣ 1
2 , 1

2

〉〈
j, mj − 1; 1

2 , 1
2

∣∣ j − 1
2 , mj − 1

2

〉〈
1
2 , 1

2 ; j − 1
2 , mj − 1

2

∣∣ j, mj
〉
f2(k)Y mj−1

j (�k )

+ 〈
0, 0; 1

2 , 1
2

∣∣ 1
2 , 1

2

〉〈
j, mj − 1; 1

2 , 1
2

∣∣ j + 1
2 , mj − 1

2

〉〈
1
2 , 1

2 ; j + 1
2 , mj − 1

2

∣∣ j, mj
〉
f0(k)Y mj−1

j (�k )

+ 〈
0, 0; 1

2 , 1
2

∣∣ 1
2 , 1

2

〉〈
j + 1, mj − 1; 1

2 , 1
2

∣∣ j + 1
2 , mj − 1

2

〉〈
1
2 , 1

2 ; j + 1
2 , mj − 1

2

∣∣ j, mj
〉
f1(k)Y mj−1

j+1 (�k )
]

− γ
↑
k,−

[〈
0, 0; 1

2 , 1
2

∣∣ 1
2 , 1

2

〉〈
j − 1, mj ; 1

2 ,− 1
2

∣∣ j − 1
2 , mj − 1

2

〉〈
1
2 , 1

2 ; j − 1
2 , mj − 1

2

∣∣ j, mj
〉
f3(k)Y mj

j−1(�k )

+ 〈
0, 0; 1

2 , 1
2

∣∣ 1
2 , 1

2

〉〈
j, mj ; 1

2 ,− 1
2

∣∣ j − 1
2 , mj − 1

2

〉〈
1
2 , 1

2 ; j − 1
2 , mj − 1

2

∣∣ j, mj
〉
f2(k)Y mj

j (�k )

+ 〈
0, 0; 1

2 , 1
2

∣∣ 1
2 , 1

2

〉〈
j, mj ; 1

2 ,− 1
2

∣∣ j + 1
2 , mj − 1

2

〉〈
1
2 , 1

2 ; j + 1
2 , mj − 1

2

∣∣ j, mj
〉
f0(k)Y mj

j (�k )

+ 〈
0, 0; 1

2 , 1
2

∣∣ 1
2 , 1

2

〉〈
j + 1, mj ; 1

2 ,− 1
2

∣∣ j + 1
2 , mj − 1

2

〉〈
1
2 , 1

2 ; j + 1
2 , mj − 1

2

∣∣ j, mj
〉
f1(k)Y mj

j+1(�k )
]
,

F↓
+ (k) = γ

↓
k,−

[〈
0, 0; 1

2 ,− 1
2

∣∣ 1
2 ,− 1

2

〉〈
j − 1, mj ; 1

2 , 1
2

∣∣ j − 1
2 , mj + 1

2

〉〈
1
2 ,− 1

2 ; j − 1
2 , mj + 1

2

∣∣ j, mj
〉
f3(k)Y mj

j−1(�k )

+ 〈
0, 0; 1

2 ,− 1
2

∣∣ 1
2 ,− 1

2

〉〈
j, mj ; 1

2 , 1
2

∣∣ j − 1
2 , mj + 1

2

〉〈
1
2 ,− 1

2 ; j − 1
2 , mj + 1

2

∣∣ j, mj
〉
f2(k)Y mj

j (�k )

+ 〈
0, 0; 1

2 ,− 1
2

∣∣ 1
2 ,− 1

2

〉〈
j, mj ; 1

2 , 1
2

∣∣ j + 1
2 , mj + 1

2

〉〈
1
2 ,− 1

2 ; j + 1
2 , mj + 1

2

∣∣ j, mj
〉
f0(k)Y mj

j (�k )

+ 〈
0, 0; 1

2 ,− 1
2

∣∣ 1
2 ,− 1

2

〉〈
j + 1, mj ; 1

2 , 1
2

∣∣ j + 1
2 , mj + 1

2

〉〈
1
2 ,− 1

2 ; j + 1
2 , mj + 1

2

∣∣ j, mj
〉
f1(k)Y mj

j+1(�k )
]

− γ
↑
k,−

[〈
0, 0; 1

2 ,− 1
2

∣∣ 1
2 ,− 1

2

〉〈
j − 1, mj + 1; 1

2 ,− 1
2

∣∣ j − 1
2 , mj + 1

2

〉〈
1
2 ,− 1

2 ; j − 1
2 , mj + 1

2

∣∣ j, mj
〉
f3(k)Y mj+1

j−1 (�k )

+ 〈
0, 0; 1

2 ,− 1
2

∣∣ 1
2 ,− 1

2

〉〈
j, mj + 1; 1

2 ,− 1
2

∣∣ j − 1
2 , mj + 1

2

〉〈
1
2 ,− 1

2 ; j − 1
2 , mj + 1

2

∣∣ j, mj
〉
f2(k)Y mj+1

j (�k )

+ 〈
0, 0; 1

2 ,− 1
2

∣∣ 1
2 ,− 1

2

〉〈
j, mj + 1; 1

2 ,− 1
2

∣∣ j + 1
2 , mj + 1

2

〉〈
1
2 ,− 1

2 ; j + 1
2 , mj + 1

2

∣∣ j, mj
〉
f0(k)Y mj+1

j (�k )

+ 〈
0, 0; 1

2 ,− 1
2

∣∣ 1
2 ,− 1

2

〉〈
j + 1, mj + 1; 1

2 ,− 1
2

∣∣ j + 1
2 , mj + 1

2

〉〈
1
2 ,− 1

2 ; j + 1
2 , mj + 1

2

∣∣ j, mj
〉
f1(k)Y mj+1

j+1 (�k )
]
,

F↑
− (k) = γ

↑
k,+

[〈
0, 0; 1

2 , 1
2

∣∣ 1
2 , 1

2

〉〈
j − 1, mj ; 1

2 ,− 1
2

∣∣ j − 1
2 , mj − 1

2

〉〈
1
2 , 1

2 ; j − 1
2 , mj − 1

2

∣∣ j, mj
〉
f3(k)Y mj

j−1(�k )

+ 〈
0, 0; 1

2 , 1
2

∣∣ 1
2 , 1

2

〉〈
j, mj ; 1

2 ,− 1
2

∣∣ j − 1
2 , mj − 1

2

〉〈
1
2 , 1

2 ; j − 1
2 , mj − 1

2

∣∣ j, mj
〉
f2(k)Y mj

j (�k )

+ 〈
0, 0; 1

2 , 1
2

∣∣ 1
2 , 1

2

〉〈
j, mj ; 1

2 ,− 1
2

∣∣ j + 1
2 , mj − 1

2

〉〈
1
2 , 1

2 ; j + 1
2 , mj − 1

2

∣∣ j, mj
〉
f0(k)Y mj

j (�k )

+ 〈
0, 0; 1

2 , 1
2

∣∣ 1
2 , 1

2

〉〈
j + 1, mj ; 1

2 ,− 1
2

∣∣ j + 1
2 , mj − 1

2

〉〈
1
2 , 1

2 ; j + 1
2 , mj − 1

2

∣∣ j, mj
〉
f1(k)Y mj

j+1(�k )
]

− γ
↓
k,+

[〈
0, 0; 1

2 , 1
2

∣∣ 1
2 , 1

2

〉〈
j − 1, mj − 1; 1

2 , 1
2

∣∣ j − 1
2 , mj − 1

2

〉〈
1
2 , 1

2 ; j − 1
2 , mj − 1

2

∣∣ j, mj
〉
f3(k)Y mj−1

j−1 (�k )

+ 〈
0, 0; 1

2 , 1
2

∣∣ 1
2 , 1

2

〉〈
j, mj − 1; 1

2 , 1
2

∣∣ j − 1
2 , mj − 1

2

〉〈
1
2 , 1

2 ; j − 1
2 , mj − 1

2

∣∣ j, mj
〉
f2(k)Y mj−1

j (�k )

+ 〈
0, 0; 1

2 , 1
2

∣∣ 1
2 , 1

2

〉〈
j, mj − 1; 1

2 , 1
2

∣∣ j + 1
2 , mj − 1

2

〉〈
1
2 , 1

2 ; j + 1
2 , mj − 1

2

∣∣ j, mj
〉
f0(k)Y mj−1

j (�k )

+ 〈
0, 0; 1

2 , 1
2

∣∣ 1
2 , 1

2

〉〈
j + 1, mj − 1; 1

2 , 1
2

∣∣ j + 1
2 , mj − 1

2

〉〈
1
2 , 1

2 ; j + 1
2 , mj − 1

2

∣∣ j, mj
〉
f1(k)Y mj−1

j+1 (�k )
]
, (B1)

F↓
− (k) = γ

↑
k,+

[〈
0, 0; 1

2 ,− 1
2

∣∣ 1
2 ,− 1

2

〉〈
j − 1, mj + 1; 1

2 ,− 1
2

∣∣ j − 1
2 , mj + 1

2

〉〈
1
2 ,− 1

2 ; j − 1
2 , mj + 1

2

∣∣ j, mj
〉
f3(k)Y mj+1

j−1 (�k )

+ 〈
0, 0; 1

2 ,− 1
2

∣∣ 1
2 ,− 1

2

〉〈
j, mj + 1; 1

2 ,− 1
2

∣∣ j − 1
2 , mj + 1

2

〉〈
1
2 ,− 1

2 ; j − 1
2 , mj + 1

2

∣∣ j, mj
〉
f2(k)Y mj+1

j (�k )

+ 〈
0, 0; 1

2 ,− 1
2

∣∣ 1
2 ,− 1

2

〉〈
j, mj + 1; 1

2 ,− 1
2

∣∣ j + 1
2 , mj + 1

2

〉〈
1
2 ,− 1

2 ; j + 1
2 , mj + 1

2

∣∣ j, mj
〉
f0(k)Y mj+1

j (�k )

+ 〈
0, 0; 1

2 ,− 1
2

∣∣ 1
2 ,− 1

2

〉〈
j + 1, mj + 1; 1

2 ,− 1
2

∣∣ j + 1
2 , mj + 1

2

〉〈
1
2 ,− 1

2 ; j + 1
2 , mj + 1

2

∣∣ j, mj
〉
f1(k)Y mj+1

j+1 (�k )
]

− γ
↓
k,+

[〈
0, 0; 1

2 ,− 1
2

∣∣ 1
2 ,− 1

2

〉〈
j − 1, mj ; 1

2 , 1
2

∣∣ j − 1
2 , mj + 1

2

〉〈
1
2 ,− 1

2 ; j − 1
2 , mj + 1

2

∣∣ j, mj
〉
f3(k)Y mj

j−1(�k )
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+ 〈
0, 0; 1

2 ,− 1
2

∣∣ 1
2 ,− 1

2

〉〈
j, mj ; 1

2 , 1
2

∣∣ j − 1
2 , mj + 1

2

〉〈
1
2 ,− 1

2 ; j − 1
2 , mj + 1

2

∣∣ j, mj
〉
f2(k)Y mj

j (�k )

+ 〈
0, 0; 1

2 ,− 1
2

∣∣ 1
2 ,− 1

2

〉〈
j, mj ; 1

2 , 1
2

∣∣ j + 1
2 , mj + 1

2

〉〈
1
2 ,− 1

2 ; j + 1
2 , mj + 1

2

∣∣ j, mj
〉
f0(k)Y mj

j (�k )

+ 〈
0, 0; 1

2 ,− 1
2

∣∣ 1
2 ,− 1

2

〉〈
j + 1, mj ; 1

2 , 1
2

∣∣ j + 1
2 , mj + 1

2

〉〈
1
2 ,− 1

2 ; j + 1
2 , mj + 1

2

∣∣ j, mj
〉
f1(k)Y mj

j+1(�k )
]
, (B2)

which, in principle, can be determined by the new functions f0,1,2,3(k). Nevertheless, we further restrict the angular mo-
mentum ( j, mj ) = (0, 0), and in this case the partial-wave expression of the auxiliary function can be further simplified into
Eqs. (16)–(19).

Next, we substitute Eqs. (16)–(19) into the coupled STM equation (13) and obtain the explicit form

C1
1 (q)F↑

+ (q) + C1
2 (q)F↓

+ (q)

= 1

(2π )3

∫
dk

2μ(γ ↑
q,+)∗γ ↑

k,+
2ME − (k + λ)2 − (q + λ)2 − μ(k + q)2

F↑
+ (k) + 2μ(γ ↑

q,+)∗γ ↑
k,−

2ME − (k − λ)2 − (q + λ)2 − μ(k + q)2
F↑

− (k)

+ 1

(2π )3

∫
dk

2μ(γ ↓
q,+)∗γ ↑

k,+
2ME − (k + λ)2 − (q + λ)2 − μ(k + q)2

F↓
+ (k) + 2μ(γ ↓

q,+)∗γ ↑
k,−

2ME − (k − λ)2 − (q + λ)2 − μ(k + q)2
F↓

− (k),

C2
1 (q)F↓

+ (q) + C2
2 (q)F↑

+ (q)

= 1

(2π )3

∫
dk

2μ(γ ↑
q,+)∗γ ↓

k,+
2ME − (k + λ)2 − (q + λ)2 − μ(k + q)2

F↑
+ (k) + 2μ(γ ↑

q,+)∗γ ↓
k,−

2ME − (k − λ)2 − (q + λ)2 − μ(k + q)2
F↑

− (k)

+ 1

(2π )3

∫
dk

2μ(γ ↓
q,+)∗γ ↓

k,+
2ME − (k + λ)2 − (q + λ)2 − μ(k + q)2

F↓
+ (k) + 2μ(γ ↓

q,+)∗γ ↓
k,−

2ME − (k − λ)2 − (q + λ)2 − μ(k + q)2
F↓

− (k),

C3
1 (q)F↑

− (q) + C3
2 (q)F↓

− (q)

= 1

(2π )3

∫
dk

2μ(γ ↑
q,−)∗γ ↑

k,+
2ME − (k + λ)2 − (q − λ)2 − μ(k + q)2

F↑
+ (k) + 2μ(γ ↑

q,−)∗γ ↑
k,−

2ME − (k − λ)2 − (q − λ)2 − μ(k + q)2
F↑

− (k)

+ 1

(2π )3

∫
dk

2μ(γ ↓
q,−)∗γ ↑

k,+
2ME − (k + λ)2 − (q − λ)2 − μ(k + q)2

F↓
+ (k) + 2μ(γ ↓

q,−)∗γ ↑
k,−

2ME − (k − λ)2 − (q − λ)2 − μ(k + q)2
F↓

− (k),

C4
1 (q)F↓

− (q) + C4
2 (q)F↑

− (q)

= 1

(2π )3

∫
dk

2μ(γ ↑
q,−)∗γ ↓

k,+
2ME − (k + λ)2 − (q − λ)2 − μ(k + q)2

F↑
+ (k) + 2μ(γ ↑

q,−)∗γ ↓
k,−

2ME − (k − λ)2 − (q − λ)2 − μ(k + q)2
F↑

− (k)

+ 1

(2π )3

∫
dk

2μ(γ ↓
q,−)∗γ ↓

k,+
2ME − (k + λ)2 − (q − λ)2 − μ(k + q)2

F↓
+ (k) + 2μ(γ ↓

q,−)∗γ ↓
k,−

2ME − (k − λ)2 − (q − λ)2 − μ(k + q)2
F↓

− (k),

(B3)

where we have

C1
1 (q) = 1

(2π )3

∫
dk

∑
α

1

E − E0(−k − q; k, α; q,+)
(γ ↑

k,α )∗γ ↑
k,α − 1

g
= D−(q) − W−(q) cos θq, (B4)

C1
2 (q) = 1

(2π )3

∫
dk

∑
α

1

E − E0(−k − q; k, α; q,+)
(γ ↓

k,α )∗γ ↑
k,α = −W−(q) sin θqe−iφq , (B5)

C2
1 (q) = 1

(2π )3

∫
dk

∑
α

1

E − E0(−k − q; k, α; q,+)
(γ ↓

k,α
)∗γ ↓

k,α
− 1

g
= D−(q) + W−(q) cos θq, (B6)

C2
2 (q) = 1

(2π )3

∫
dk

∑
α

1

E − E0(−k − q; k, α; q,+)
(γ ↑

k,α )∗γ ↓
k,α = −W−(q) sin θqeiφq , (B7)

C3
1 (q) = 1

(2π )3

∫
dk

∑
α

1

E − E0(−k − q; k, α; q,−)
(γ ↑

k,α )∗γ ↑
k,α − 1

g
= D+(q) − W+(q) cos θq, (B8)

C3
2 (q) = 1

(2π )3

∫
dk

∑
α

1

E − E0(−k − q; k, α; q,−)
(γ ↓

k,α )∗γ ↑
k,α = −W+(q) sin θqe−iφq , (B9)

C4
1 (q) = 1

(2π )3

∫
dk

∑
α

1

E − E0(−k − q; k, α; q,−)
(γ ↓

k,α
)∗γ ↓

k,α
− 1

g
= D+(q) + W+(q) cos θq, (B10)
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C4
2 (q) = 1

(2π )3

∫
dk

∑
α

1

E − E0(−k − q; k, α; q,−)
(γ ↑

k,α )∗γ ↓
k,α = −W+(q) sin θqeiφq , (B11)

with D±(k) and W±(k) given by Eqs. (21) and (22) respectively. In addition, we expand the following terms as
μ

2ME − (k + αλ)2 − (q + βλ)2 − μ(k + q)2
=

∑
l

aα,β

l (k, q)Pl (cos θkq) =
∑
l,m

Kα,β

l (k, q)Y m
l (�q)

[
Y m

l (�k )
]∗

, (B12)

where Pj is the jth Legendre polynomial and s1,2 = ±. Using the relation Pl (cos θkq) = 4π
2l+1

∑l
m=−l Y m

l (�q)[Y m
l (�k )]∗ and the

orthogonality condition, ∫ π

0
Pn(cos θ )Pm(cos θ ) sin θdθ = 2

2n + 1
δmn, (B13)

we can determine the coefficients aα,β

l , Kα,β

l as

aα,β

l (k, q) = 2l + 1

2

∫
sin θkqdθkqPl (cos θkq)

μ

2ME − (k + αλ)2 − (q + βλ)2 − μ(k + q)2
,

Kα,β

l (k, q) = 4π

2l + 1
aα,β

l (k, q). (B14)

Substituting Eqs. (B4)–(B12) and Eqs. (16)–(19) into Eqs. (B3) and combining the restriction ( j, mj ) = (0, 0), we obtain the
partial-wave STM equations

[D−(q) + W−(q)][ f0(q) − f1(q)] = 1

(2π )3

∫
k2dk{[K+,+

1 (k, q) − K+,+
0 (k, q) − K−,+

1 (k, q) − K−,+
0 (k, q)] f0(k)

− [K+,+
1 (k, q) − K+,+

0 (k, q) + K−,+
1 (k, q) + K−,+

0 (k, q)] f1(k)},

[W+(q) − D+(q)][ f0(q) + f1(q)] = 1

(2π )3

∫
k2dk{[K+,−

1 (k, q) − K−,−
1 (k, q) + K+,−

0 (k, q) + K−,−
0 (k, q)] f0(k)

+ [K−,−
0 (k, q) − K+,−

1 (k, q) − K−,−
1 (k, q) − K+,−

0 (k, q)] f1(k)}, (B15)

where Kα=±,β=±
0 and Kα=±,β=±

1 are given by Eq. (23) in the main text. Redefining

f+(q) = f1(q) + f0(q),

f−(q) = f1(q) − f0(q), (B16)

we have

[D−(q) + W−(q)] f−(q) = 1

(2π )3

∫
k2dk{[K+,+

1 (k, q) − K+,+
0 (k, q)] f−(k) + [K−,+

1 (k, q) + K−,+
0 (k, q)] f+(k)},

[W+(q) − D+(q)] f+(q) = 1

(2π )3

∫
k2dk{−[K+,−

1 (k, q) + K+,−
0 (k, q)] f−(k) + [K−,−

0 (k, q) − K−,−
1 (k, q)] f+(k)}, (B17)

which can be written in the matrix form as given by Eq. (20) in the main text.
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