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Bound states of an ultracold atom interacting with a set of stationary impurities
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In this paper we analyze the properties of bound states of an atom interacting with a set of static impurities.
We begin with the simplest system of a single atom interacting with two static impurities. We consider two
types of atom-impurity interaction: (i) a zero-range potential represented by a regularized δ interaction and
(ii) a more realistic polarization potential, representing the long-range part of the atom-ion interaction. For
the former we obtain analytical results for energies of bound states. For the latter we perform numerical
calculations based on the application of the finite-element method. We then discuss the case of a single atom
interacting with a one-dimensional (1D) infinite chain of static ions. Such a setup resembles the Kronig-Penney
model of a 1D crystalline solid, where the energy spectrum exhibits band-structure behavior. For this system
we derive analytical results for the band structure of bound states, assuming a regularized δ interaction, and
perform numerical calculations, considering the polarization potential to model an atom-impurity interaction.
Both approaches agree quite well when the separation between impurities is much larger than the characteristic
range of the interaction potential.

DOI: 10.1103/PhysRevA.102.063312

I. INTRODUCTION

Hybrid systems of ultracold atoms and trapped impurities
like ions [1–9] or Rydberg atoms [10,11] have been the sub-
ject of intense experimental and theoretical studies over the
years [12]. They have been proposed for quantum simulations
[13–15], quantum computations [16–18], realization of new
mesoscopic quantum states [19,20], probing quantum gases
[21–24], and fundamental studies of low-energy collisions
and molecular states [25–36]. By tuning the geometric ar-
rangement of the impurities, it is possible to simulate various
solid-state and molecular systems [37–40]. Several experi-
ments have been focused on studying controlled chemical
reactions at ultralow temperatures in such systems [5,41–45].

In this work we are considering two systems. The first
system contains two static impurities, while the second is
a one-dimensional (1D) linear crystal of static impurities.
We consider two different potentials for atom-impurity in-
teractions, representing two distinct physical systems: atomic
impurities in the ultracold gas and the hybrid atom-ion system.
For the former we assume a regularized δ potential, while
for the latter we take a polarization potential representing
the long-range part of the atom-ion interaction, which we
regularize at small distances imposing a short-range cutoff.
The regularized δ potential models only s-wave scattering at
ultralow energies and depends only on a single parameter: the
s-wave scattering length. Its zero-range character allows for an
analytical solution of the corresponding Schrödinger equation
for an arbitrary set of δ-like scatterers [40].

The atom-ion interaction, which has a long-range behav-
ior, can be modeled by including only the long-range part
given by the polarization potential −C4/r4 and a short-range
boundary condition. The latter can be represented either
by a short-range phase introduced in the framework of the

quantum-defect theory [25] or by regularizing the short-range
divergence with some regularizing function [46]. In this work
we choose the latter option, assuming parametrization of
the atom-ion potential by the long-range dispersion coeffi-
cient C4 and a cutoff radius b. For such a potential one
can solve the 1D radial Schrödinger equation analytically
and express the scattering length in terms of the C4 and b
parameters [47].

This work is structured as follows. The potentials which
we are considering are introduced in Sec. II. In Sec. III we
solve the Schrödinger equation for an atom interacting with
two impurities and analyze the results for different values of
the short-range scattering length. We perform our analysis
for atomic impurities, where the atom-impurity interaction is
modeled with the δ pseudopotential, and for ionic impurities,
where we assume an atom-impurity interaction in the form of
the polarization potential. In Sec. IV we consider an infinite
chain of ionic impurities. First, we solve the Schrödinger
equation numerically using the finite-element method and we
discuss numerical solutions of the Schrödinger equation for
different values of the atom quasimomentum in a 1D periodic
system. Then we derive an analytic formula determining the
energies of bound states for the regularized δ potential and
study the behavior of energy bands versus the scattering length
and distance between impurities. We summarize in Sec. V and
present some final conclusions.

II. ATOM-IMPURITY INTERACTION

A. Pseudopotential

Within the ultracold regime, where mainly s-wave scat-
tering takes place for bosonic or distinguishable particles,
we can model the atom-impurity interaction by the Fermi
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pseudopotential [48,49] given by

V (r) = gδ(r)
∂

∂r
r, (1)

where g depends on the 3D s-wave scattering length a and

g = 2π h̄2

m
a. (2)

Note that only an atom mass m enters the coupling constant,
as we assume that impurities are stationary, and the reduced
mass μ = m. Such a potential can serve as a good approxi-
mation of a physical potential provided the distance between
impurities L is large compared to the characteristic range of
the interaction Rn of the power-law potential V (r) = −Cn/rn:
L � Rn. In the case of the atom-ion potential R4 = √

2μC4/h̄,
while for the van der Waals potential between neutral atoms
R6 = (2μC6/h̄2)1/4 [50]. To model bound states we have to
impose another constraint a � Rn, which is equivalent to the
condition Eb � En, where the characteristic energy is En =
h̄2/2μR2

n [50]. This shows that the pseudopotential can be
used to reproduce bound states in the universal limit, with
binding energies Eb that are close to the threshold [51,52]. Go-
ing beyond the above-mentioned conditions requires inclusion
of the energy-dependent scattering length in (2) [53–55].

B. Regularized atom-ion interaction potential

We will also consider a more realistic potential, such as
the polarization potential between atoms and ions. The long-
range part of the atom-ion potential is given by V (r)

r→∞−−−→
−C4/r4. With this potential we can associate the characteristic
length and energy scales that are used further in this work:
R∗ = √

2mC4/h̄ and E∗ = h̄2/2m(R∗)2 [56]. Here we will use
a regularized version of this long-range potential in the form
of the Lenz potential [47], which is finite for r → 0,

V (r) = − C4

(r2 + b2)2
, (3)

where b is a parameter that can be related to the scattering
length a [47],

a(b) = R∗
√

1 +
(

b

R∗

)2

cot

⎡
⎣π

2

√
1 +

(
R∗

b

)2
⎤
⎦. (4)

This dependence is shown in Fig. 1. We observe that, accord-
ing to the formula (4), one value of the scattering length can
be reproduced by many values of b. The scattering length
dependence on b exhibits several resonances that are related
to crossing the dissociation threshold by the bound states
supported by (3). The number of bound states n is related
to the cutoff parameter b by the rule b ∈ (bn−1, bn), where
bn = 1/

√
4n2 − 1.

III. SYSTEM WITH TWO IMPURITIES

We investigate the bound states of the system containing
of a single atom that interacts with two impurities placed
symmetrically along the z axis such that their positions are
±d = (0, 0,±d ) and the distance between them is 2d . We
assume that each impurity interacts only with the atom and

FIG. 1. Scattering length as a function of the regularization pa-
rameter given by Eq. (4) for the regularized atom-ion interaction
potential (3).

we do not take into account their mutual interactions. We will
study the dependence of bound-state energies on the scattering
length and on the distance between impurities. The Hamilto-
nian of such a system is

H = − h̄2

2m
� + V (r − d) + V (r + d), (5)

where V denotes the atom-impurity interaction, which is
given by two different atom-impurity potentials introduced in
Sec. II.

A. Atom-impurity interaction modeled by the pseudopotential

We solve the Schrödinger equation, using the Green’s-
function technique. The Green’s function for the three-
dimensional scattering in free space reads (see, e.g., [57])

G(r, r′) = A eik|r−r′ |

|r − r′| , (6)

where A = −m/2π h̄2. Let us define r1 = |r + d| and r2 =
|r − d| so that we have

G(−d, r) = Aeikr1

r1
≡ G(r1), (7)

G(d, r) = Aeikr2

r2
≡ G(r2), (8)

where for convenience we have also introduced the shortened
denotation G(r1 (2)) for the Green’s function. In the case of
the Fermi pseudopotential, the Hamiltonian can be solved
analytically [40], in principle for an arbitrary arrangement of
the impurities. In order to find the energies of the system, we
have to solve the set of equations

k1 = g

{
∂

∂r
r[k1G(−d, r) + k2G(d, r)]

}
r→−d

,

k2 = g

{
∂

∂r
r[k1G(−d, r) + k2G(d, r)]

}
r→d

, (9)
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which can be expressed using the notation with r1 and r2,

k1 = g

{
∂

∂r1
r1[k1G(r1) + k2G(r2)]

}
r1→0

, (10a)

k2 = g

{
∂

∂r2
r2[k1G(r1) + k2G(r2)]

}
r2→0

. (10b)

The regularization operator ∂
∂r r is necessary as it ensures

that the limit [G(r, r′)]|r−r′ |→0 is finite [58,59]. It can be
omitted in the case of the one-dimensional system, when the
Green’s function is not divergent at short distances. The wave
function of the system is given by

�(r) = k1G(−d, r) + k2G(d, r). (11)

Let us now calculate the derivatives of the Green’s function
that appear in Eq. (10a) and their values in the limit of r1 → 0:(

∂

∂r1
r1G(r1)

)
r1→0

= A
(

∂

∂r1
r1

eikr1

r1

)
r1→0

= A
(

∂

∂r1
eikr1

)
r1→0

= Aik(eikr1 )r1→0 = Aik. (12)

Then we have(
∂

∂r1
r1G(r2)

)
r1→0

= A
(

∂

∂r1
r1

eikr2

r2

)
r1→0

= A
(

eikr2

r2
+ r1

∂

∂r1

eikr2

r2

)
r1→0

= Aeik2d

2d
. (13)

Derivatives of the Green’s function and their limits for r2 →
0, appearing in Eq. (10b) can be calculated in an analogous
way. Now we insert the obtained results into the system of
equations (10):

k1 = gA
(

k1ik + k2
eik2d

2d

)
,

k2 = gA
(

k1
eik2d

2d
+ k2ik

)
. (14)

The expression (14) can be rewritten in matrix form as(
gAik − 1 gA eik2d

2d

gA eik2d

2d gAik − 1

)(
k1

k2

)
= 0. (15)

This system of equations has solutions provided that the de-
terminant of the matrix is equal to zero. From this condition
we get two independent solutions

gA
(

ik ± eik2d

2d

)
− 1 = 0. (16)

Since we are looking for bound states, the wave num-
ber k = iκ where κ is real, the energy E = − h̄2κ2

2m , and κ =√
−2mE/h̄2. Taking into account that gA = −a, we can

FIG. 2. Energy spectrum resulting from (17), the energy levels
of a system consisting of an atom interacting with two impurities
by the δ pseudopotential with different scattering lengths: a/R = −5
(black dashed line), a/R∗ = −1 (gray dotted line), a/R∗ = 1 (blue
solid line), and a/R∗ = 5 (orange solid line).

rewrite the expression (16) as

−κ ± e−κ2d

2d
= 1

a
. (17)

The energy levels can now be found numerically for a given
value of the scattering length and d . At the threshold E =κ =0
Eq. (17) yields

± 1

2d
= 1

a
, E = 0. (18)

From this we see that, at the distance d = |a|/2, the new
bound state either appears or disappears at the threshold,
depending on the sign of the scattering length.

Let us now consider two limiting cases. In the limit d → 0,
from Eq. (17) we obtain

κ
d→0−−→ ± 1

2d
, (19)

which diverges as d goes to zero. This singular behavior
results from the Green’s function in the off-diagonal terms,
which are not regularized by the ∂

∂r r operator and as a
consequence yields divergence at d → 0. It is possible to
reformulate a regularization operator in the way that it cor-
rectly reproduces the limit of two δ functions [32]. We note,
however, that the limit d → 0 corresponds physically to com-
bining two impurities in a single molecular complex, which
in principle would have a scattering length different from the
sum of the two scattering lengths of the separate objects. In
the case where the separation of the impurities is very large
(d → ∞), the term e−2dκ/2d goes to zero and we get aκ = 1,
which implies the existence of the bound state for positive
values of the scattering length

E
d→∞−−−→ − h̄2

2ma2
(20)

and no bound states in the case of a < 0.
Figure 2 compares bound-state energies evaluated from

Eq. (17) for different values of the scattering length. For
positive scattering lengths, at large distances the bound state
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energies are degenerate and tend to the energy of a single
bound state (20). In contrast, for negative scattering lengths,
there are no bound states at large distances, as the separate
δ potential does not support any bound states for a < 0.
Nevertheless, at distances d < |a|/2, the two impurities pose a
single bound state, crossing the threshold at d = |a|/2. At ex-
actly the same distance, for positive scattering lengths, one of
the bound states disappears at the threshold and for d < |a|/2
the two impurities support again only a single bound state.
We note that for d > |a|/2, Eq. (17) is not valid for negative
scattering lengths.

B. Atom-impurity interaction modeled by the regularized
atom-ion potential

In this case, we cannot solve the Hamiltonian analyti-
cally and we have to rely on numerics. We begin by looking
for eigenstates for a single ion, using two different numeri-
cal methods: the Numerov algorithm and the finite-element
method. This comparison helps to adjust the parameters of the
grid in the finite-element method, which we later use to solve
the two-ion case.

1. Single-ion case

The interaction potential for a single ion is spherically
symmetric. Therefore, the wave function can be decomposed
as ψ (r) = R(r)Ylm(θ, φ), where R(r) is the radial part and
Ylm(θ, φ) is the spherical harmonic, with quantum numbers l
and m representing the angular momentum and its projection
on the z axis, respectively. In order to find the bound states,
we only need to solve the radial part of the Schrödinger
equation. It is convenient to look for R(r)/r, which simplifies
the Laplacian operator but does not affect the energies. The
Hamiltonian to solve reads

H = − h̄2

2m

d2

dr2
+ h̄2

2m

l (l + 1)

r2
− C4

(r2 + b2)2
. (21)

a. Numerov method. With the Numerov algorithm we
solve the Schrödinger on a grid of equally spaced points be-
tween r = rmin and r = rmax, assuming that the wave function
vanishes at the boundaries. In principle, rmax should be much
larger than R∗ and a. For our computations we take rmin = 0
and rmax = 20R∗.

b. Finite-element method. In this case, we are solving the
Schrödinger equation

− h̄2

2m
�ψ − C4

(ρ2 + z2 + b2)2
ψ = Eψ. (22)

It is convenient to rewrite this equation in the cylindrical
coordinates

− h̄2

2m

(
∂2

∂z2
+ ∂2

∂ρ2
+ 1

ρ

∂

∂ρ

)
ψ + C4

(ρ2 + z2 + b2)2
ψ = Eψ,

(23)

where additionally we assumed an m = 0 symmetry of the
solutions.

In order to find the energy levels of the system, we solve
Eq. (23) numerically using the finite-element method im-
plemented in the Mathematica software [60]. We perform

calculations for a single ion placed at the origin of the coor-
dinate system, in a rectangular box, with −zmax � z � zmax

and 0 � ρ � ρmax. The values of ρmax and zmax should be
relatively large compared to the scattering length in order
to preclude the bound-state wave functions being affected
by the boundary conditions. For our computations we take
zmax = 8R∗ and ρmax = 8R∗. We assume the Dirichlet bound-
ary condition ψ = 0 along all the boundaries except ρ = 0,
where we set the von Neumann boundary condition ∂

∂ρ
ψ (ρ =

0, z) = 0. The regularization parameter b is set such that one
bound state is supported for a given scattering length. It is
worth noting that close to the ion, the potential is getting
relatively deep and the corresponding wave function becomes
quickly oscillating in that region. To address this issue we use
a variable grid size related to the local de Broglie wavelength
λ(r, E ) = 2π/

√
2m|E − Vai(ρ, z)|/h̄2, by assuming that the

area of a single cell in the grid fulfills � � λ(r, E )2/N2.
We test several values of the N parameter, observing that
numerical calculations start converging for N � 20 in the
case of the atom-ion potential supporting one bound state and
N � 30 for deeper potentials supporting two bound states. An
example grid is shown in Fig. 3.

Figure 4 shows the energies of bound states obtained using
both methods for l = 0, 1, 2. We note that both numerical
approaches give almost identical results, which substantiates
the numerical convergence of both methods.

2. Two-ion case

We now turn to the system of two ions. We solve the
Schrödinger equation with the Hamiltonian (5), using the
finite-element method with the same boundary conditions as
in the single-ion case. The value of the cutoff parameter b is
chosen such that the potential is relatively shallow and only
one or two bound states are supported. In contrast to the
pseudopotential model, now we obtain finite results for both
small and large separations between the impurities.

FIG. 3. Example grid used for the finite-element method. The
grid size is determined by the local de Broglie wavelength and it
becomes very dense in the vicinity of the ion at z = 0 and ρ = 0.
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FIG. 4. Energies of bound states in a regularized atom-ion poten-
tial for different values of b computed using the Numerov algorithm
(blue, orange, and light gray lines correspond to the angular momenta
l = 0, 1, and 2, respectively) and the finite-element algorithm (black
points).

In Fig. 5 we plot the energies of bound states for different
values of the scattering length a and for the cutoff param-
eter b as a function of distance d between impurities. In

addition, we include the predictions of the pseudopoten-
tial model (17). For a > 0 and d → ∞, the impurities do
not encounter each other and the bound-states energies tend
asymptotically to the values for a single impurity (dashed
line), calculated from (21) using the Numerov method.
Bound states for the polarization potential behave basi-
cally in a similar way as for the pseudopotential. At some
finite distance, which is now different for positive and neg-
ative scattering lengths, bound states for the polarization
potential cross the threshold, and below that characteris-
tic distance, the system supports only a single shallow
bound state. We note that for large scattering lengths a =
±5R∗, the crossing point is similar for potentials support-
ing one and two bound states. In contrast, for a = ±R∗,
the crossing point is quite different between these poten-
tials and it also deviates from the pseudopotential prediction
d = |a|/2. This is probably due to the finite-size effects
when a ∼ R∗. We suppose that replacement of the scattering
length by the energy-dependent one [53–55] would possi-
bly improve the agreement, at least for the pseudopotential
model.

Similar discrepancies can be observed at large distances for
a = R∗, where all three calculations predict various asymp-
totic values for the bound state of a separated impurity. The

(a) (b)

(c) (d)

FIG. 5. Energy spectrum as a function of d (half of the distance between the impurities) for different values of the scattering length a
and corresponding regularization parameter b supporting one bound state (orange lines) or two bound states (blue lines): (a) a/R∗ = −5 and
b/R∗ = 0.267 48 (orange) or b/R∗ = 0.172 81 (blue), (b) a/R∗ = 1 and b/R∗ = 0.430 89 (orange) or b/R∗ = 0.227 49 (blue), (c) a/R∗ = −1
and b/R∗ = 0.299 42 (orange) or b/R∗ = 0.185 09 (blue), and (d) a/R∗ = 5 and b/R∗ = 0.528 04 (orange) or b/R∗ = 0.249 59 (blue). The
black dot-dashed line shows the energy spectrum calculated with the pseudopotential. The gray dashed line corresponds to the bound state in
the large-d limit, calculated for a single impurity.
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(a) (b)

(c) (d)

FIG. 6. Energy levels of an atom interacting with a periodic system of impurities as a function of the period for different values of scattering
length and corresponding regularization parameter: (a) a/R∗ = −5 and b/R∗ = 0.267 48, (b) a/R∗ = 1 and b/R∗ = 0.430 89, (c) a/R∗ = −1
and b/R∗ = 0.299 42, and (d) a/R∗ = 5 and b/R∗ = 0.528 04. The atom-impurity interaction is modeled by the regularized atom-ion potential.
The insets show close-ups of the spectrum close to E = 0. Blue lines denote the solutions of (26) with q = 0 and orange lines are the results
of (26) with q = π/L. Gray dotted, dot-dashed, and dashed lines correspond to q = π/4L, π/2L, and 3π/4L, respectively.

agreement is much better for higher value of the scattering
length a = 5R∗. When the distance between impurities is
getting close to zero, the bound states calculated for var-
ious models show different behavior. In such a case our
models break down and we do not show this limit in the plot.
This happens for the pseudopotential model because d is not
larger than R∗ and the conditions for the applicability of the
pseudopotential approximation are no longer fulfilled. For the
regularized atom-ion potential, at distances d comparable to
the cutoff parameter b, the potentials start to overlap signifi-
cantly, and in this case the results depend on b, determining
the number of bound states in the regularized potential. In
all the panels we observe the deeply lying bound states sup-
ported by the regularized atom-ion potential. Their energies,
however, substantially depend on the number of bound states
supported by the potential, and even at the same value of the
scattering length they differ. Those deeper lying bound states
are not the target of our analysis.

IV. PERIODIC SYSTEM

Here we consider an atom interacting with an infinite chain
of equally spaced static ions. The interaction Vai is given by
the regularized atom-ion potential (Sec. II B). Similarly to the
two-ion case, we neglect the interaction between the ions. The

Hamiltonian reads

H = − h̄2

2m
� −

∞∑
n=−∞

V (r − dn), (24)

where dn = (0, 0, nL) is the position of nth ion and L is the
distance between the neighboring ions (period). The ions are
placed along the z axis.

Exploiting the fact that the system is axially symmetric
and periodic along the z axis and taking into account the
Bloch theorem, we can write the wave function in cylindrical
coordinates ρ and z in the form

ψ (r) = eiqzuq(ρ, z)eimφ, (25)

where q is the quasimomentum. In the following we consider
only the eigenstates with the symmetry m = 0. Substituting
(25) into the Schrödinger equation with the Hamiltonian (24)
leads to the following equation for uq:

− h̄2

2m

(
∂2

∂z2
+ ∂2

∂ρ2
− q2 + 2iq

∂

∂z
+ 1

ρ

∂

∂ρ

)
uq(ρ, z)

−
∞∑

n=−∞
V (r − dn)uq(ρ, z) = Euq(ρ, z). (26)
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A. Atom-impurity interaction modeled by the regularized
atom-ion potential

In order to find the energy levels of the system, we solve
Eq. (26) numerically using the finite-element method, in a
manner similar to that described for the two-ion system.
We perform calculations for an ion placed in the position
d = (0, 0, L/2) in the rectangular box with z ∈ [0, L] and
ρ ∈ [0, ρmax]. The value of ρmax should be large compared
to the scattering length in order to not affect the bound-state
wave functions, and we take ρmax = 6R∗ for a/R∗ = ±1 and
ρmax = 10R∗ for a/R∗ = ±5. For ρ = ρmax we assume the
Dirichlet boundary condition uq(ρmax, z) = 0, while for ρ = 0
we assume the von Neumann boundary condition ∂

∂ρ
u(ρ =

0, z) = 0. The function uq should be periodic in the z di-
rection, so for z = 0 and z = L we set periodic boundary
conditions. The regularization parameter b is set such that
one bound state is supported for a given scattering length. In
Fig. 6 we show how the energy levels change with the distance
between the neighboring ions for different values of the scat-
tering length and some selected values of the quasimomentum
q. We start by discussing the case of a > 0, i.e., Figs. 6(b) and
6(d). At large distances between the neighboring impurities,
the energy levels for different q converge to the same limit
and the band becomes very narrow. This asymptotic value is
given by the energy of the bound state associated with a single
impurity. As the distance L between the impurities decreases,
the energy band becomes wider and some bound states cross
the threshold, starting with the quasimomentum q = π/L.

For a < 0 [Figs. 6(a) and 6(c)], the energy bands have an
even more complex structure. At large separations between
the impurities, for each quasimomentum there is a single
bound state, which at L → ∞ tends to the energy of the
bound state localized on a single ion. This represents a deeply
lying bound state of the atom-ion potential, and close to the
threshold there are no bound states in this regime, similarly
to the two-ion system. As the ion separation decreases, some
bound states cross the threshold entering from the continuum,
and later different energy bands start to overlap. This process
actually begins for a bound state with q = 0 and continues to
q = π/L, as can be seen in Fig. 6(a) (a = −5R∗). For a =
−R∗, probably due to the finite-range effects, this behavior
is quite different. We can observe that between bound states
with q = 0 and q = π/L, there are no other states crossing the
threshold.

Figure 7 shows some exemplary wave functions of the
bound states. The presented wave functions are, to a large
extent, spherically symmetric. The wave function has the
form of a linear combination of bound-state wave functions
centered at individual impurities. In this sense our ansatz
resembles the linear combination of atomic orbitals method of
quantum chemistry. However, in our case it leads to an exact
solution, not requiring variational calculations.

B. Atom-impurity interaction modeled by the pseudopotential

We now turn to the analytical calculation of the en-
ergy spectrum for an atom interacting with a chain of
impurities, where the interaction is modeled by the pseudopo-
tential (1). We solve the problem using the Green’s-function

FIG. 7. Wave functions for (a) a/R∗ = 1, L/R∗ = 2.5, and q =
π/L (E/E∗ = −0.93) and (b) a/R∗ = 1, L/R∗ = 2.5, and q = 0
(E/E∗ = −1.49). An impurity is placed at (z, ρ ) = (L/2, 0).

technique, starting from the Lippmann-Schwinger equation
(see, e.g., [57]). This yields

ψ (r) =
∫

d3r′G(r, r′)
∞∑

n=−∞
V (r′ − dn)ψ (r′), (27)

where we drop inhomogeneous term, which is not important
for the bound states. In order to calculate the integral, we
insert the atom-impurity interaction potential (1) into (27),
which gives

ψ (r) = g
∞∑

n=−∞
G(r, dn)γn, (28)

where

γn =
(

∂

∂rn
rnψ (r)

)
r→dn

(29)

and rn = r − dn. Since the potential is periodic along the
z axis, using the Bloch theorem, we can rewrite the wave
function ψ as

ψ (r) = eiqzφ(r), (30)

where φ is periodic and satisfies φ(r) = φ(r − dn). Substitut-
ing (30) into the expression (29) for γn, we get

γn =
(

∂

∂rn
rneiqzφ(r)

)
r→dn

= CeiqnL, (31)
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(a) (b)

(c) (d)

FIG. 8. Energy levels of an atom interacting with a periodic system of impurities as a function of the period for different values of
scattering length: (a) a/R∗ = −5, (b) a/R∗ = 1, (c) a/R∗ = −1, and (d) a/R∗ = 5. The atom-impurity interaction is modeled by the regularized
pseudopotential. Blue lines denote the solutions of (26) with q = 0 and orange lines are the results of (41) with q = π/L. Gray dotted,
dot-dashed, and dashed lines correspond to q = π/4L, π/2L, and 3π/4L, respectively. Black dashed and dot-dashed lines correspond to
q = π/8L and 3π/10L, respectively.

where

C =
(

∂

∂rn
rnφ(rn)

)
rn→0

. (32)

The specific value of C is not important, as it drops out in
further calculations. Since the regularization operator removes
1/r singularity from the short-range behavior of the wave
function, we can assume that C is finite. Now we insert the
wave function ψ defined in (28) into the definition of γn (29),
which leads to

γn = g

(
∂

∂rn
rn

∞∑
n′=−∞

G(r, dn′ )γn′

)
rn→0

= g

(
γnβ(E ) +

∑
n′ �=n

G(dn, dn′ )γn′

)
, (33)

where we have introduced

β(E ) =
(

∂

∂r
rG(r + dn, dn)

)
r→0

. (34)

We have obtained two expressions for γn, (31) and (33), which
yield the equation

CeiqnL = gC
(

β(E )eiqnL +
∑
n′ �=n

eiqn′LG(dn, dn′ )

)
. (35)

We can now simplify (35), dividing both sides by C and
multiplying by e−iqnL, which gives

1 = g

(
β(E ) +

∑
n′ �=n

eiq(n′−n)LG(dn, dn′ )

)
. (36)

The value of the Green’s function in (36) is

G(dn, dn′ ) = A eik|n−n′ |L

L|n − n′| , (37)

while β(E ) is

β(E ) =
(

∂

∂r
rAeikr

r

)
r→0

= Aik = −Aκ, (38)

where κ = ik is real for eigenstates with negative energies.
After inserting (38) and (37) into the right-hand side of (36)
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(a)

(b)

FIG. 9. Comparison of the energies of bound states obtained nu-
merically (solid lines) and analytically (dotted lines) for (a) a/R∗ = 1
and (b) a/R∗ = 5. Blue and orange lines correspond to q = 0 and
q = π/L, respectively. The black dashed and dot-dashed lines depict
bound-state energies for a single ion, calculated from the radial equa-
tion using the Numerov and pseudopotential methods, respectively.

we obtain

g

(
β(E ) +

∑
n′ �=n

eiq(n′−n)LG(dn, dn′ )

)

= a

L
{κL + ln[(1 − e−κL+iqL )(1 − e−κL−iqL )]}, (39)

where we have used the series expansion of the logarithm
function in order to make the summation

∞∑
n=1

zn

n
= − ln(1 − z). (40)

This holds, provided |z| < 1 [in our case |z| = |exp(−κL)|,
so the condition κ > 0 has to be satisfied]. Finally, we need to
solve

L

a
= ln[cosh(κL) − cos(qL)] + ln 2 (41)

for κ , which results in the solution

κ = 1

L
arcosh

(
cos(qL) + 1

2 eL/a
)
. (42)

The solutions of this equation are shown in Fig. 8, present-
ing energy bands of bound states for different values of the
scattering length and the quasimomentum, as a function of
the impurity spacings. Basically, we observe behavior very
similar to that in the case of the atom-ion potential, except

that the δ pseudopotential does not support bound states for
a < 0. Due to the same argument, there are no deep bound
states in the spectrum, as observed for atom-ion potential. For
negative scattering lengths, the plots present only the curves
for relatively small q, because for larger q, Eq. (41) predicts
imaginary κ , when cos(qL) + 1

2 eL/a < 1.
In Fig. 9 we plot bound-state energies for positive values of

the scattering length and some selected quasimomenta, com-
paring two types of atom-impurity interactions considered in
the paper. We observe that in the case of the ionic chain,
the pseudopotential method works definitely worse than for
the two-ion system. Similarly to the case of two impurities,
the asymptotic value at L → ∞ obtained from numerics for
the atom-ion potential is slightly lower than for the pseudopo-
tential, which is due to the finite-range effects.

V. SUMMARY

In this work we have considered bound states of an atom
interacting with different setups of static impurities. First, we
calculated energies of bound states for two δ pseudopotentials
and showed that they can even exist for negative values of
the scattering length, which is not possible for a single atomic
impurity. Such bound states, however, exist only when the dis-
tance between impurities is smaller than some characteristic
value of the order of the scattering length. Similar behavior
is observed when we consider a long-range polarization po-
tential. On the other hand, for positive values of the scattering
length and at large distances between impurities, there are two
solutions for bound-state energies. In the asymptotic limit they
tend to the energy of a single atom-impurity molecular state.
At smaller distances, the degeneracy is lifted and at some
characteristic distance between impurities, one of the bound
disappears at the threshold. Calculations performed for the
atom-ion polarization potential show that it exhibits a similar
behavior.

For an infinite chain of ionic impurities, we observe behav-
ior roughly analogous to that for two ions. In this case bound
states aggregate into bands. For positive values of the scatter-
ing length, the energy bands at large separations between ions
correlate with energies of a separate atom-ion bound state. For
negative values of the scattering length, the shallowest energy
band disappears at large ion separations. Finally, we extended
our analytical calculations performed for two impurities to the
case of a 1D infinite chain of δ-like impurities. We derived a
relatively simple analytical equation determining the energy
levels of bound states for this system. In principle, our results
are valid for nonmoving impurities, but they can be a good
approximation also when the impurities are much heavier than
atoms. For such conditions, the motion of heavy impurities
can be treated in the framework of the Born-Oppenheimer
approximation, and solving the Schrödinger equation for the
motion of light atoms in the potential of the stationary impu-
rities is the first necessary step. Our treatment can be applied
also for a system of ionic impurities, where the ions typically
perform small oscillations around equilibrium positions, lead-
ing to the occurrence of phonons [13].

In future investigations the energy-dependent scattering
length should be included in the δ pseudopotential [53,54],
which would allow the finite-range effect of the potential to
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be accounted for. Assuming the energy dependence appro-
priate for the polarization potential, in principle one should
be able to better reproduce the numerical calculations per-
formed with the finite-element method for the ionic chain
and explain the behavior of the energy bands for smaller
values of a. This would require, however, generalization of the
energy-dependent scattering length for the polarization po-

tential to the negative energies, which so far has been only
realized for van der Waals interactions [55].
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