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Self-trapped atomic matter wave in a ring cavity
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We studied a system of atomic Bose-Einstein condensate coupled to a ring cavity within the mean-field theory.
Due to the interaction between atoms and light field, the atoms can be self-trapped. This is verified with both
variational and numerical methods. We examined the stability of these self-trapped states. For a weakly pumped
cavity, they spread during the evolution; while at strong pumping, they can maintain the shape for a long time.
We also studied the moving dynamics of these self-trapped waves, and found out that it can be strongly affected
by the cavity decay rate. For a small cavity decay rate, the self-trapped waves undergo a damped oscillation.
Increasing the cavity decay rate will lead to a deceleration of the self-trapped waves. We also compared the main
results with the semiclassical theory in which atoms are treated as classical particles.
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I. INTRODUCTION

Self-trapping is a ubiquitous phenomenon in nature; for
example, solitons in various systems [1–6], and liquid he-
lium droplets [7] are all some kind of self-trapped state.
The highly tunable atomic Bose-Einstein condensate (BEC)
provides an ideal platform for studying such phenomena. In
the BEC system, the attractive interatom interaction (s-wave
collision) results in a Kerr type self-trapping nonlinearity [8],
and can support bright solitons [9–11]. If quantum fluctuation
(Lee-Huang-Yang correction [12]) is included, self-trapped
droplets can also be formed in the BEC system [13–17].

Interacting with electromagnetic fields can also lead to
nonlinearity in the BEC systems. When a BEC is illuminated
by electromagnetic waves, it feels a potential from the elec-
tromagnetic field. At the same time, the BEC also serves
as a medium, and will backwardly affect the propagation
of the electromagnetic waves. The affected electromagnetic
field will in turn further affect the dynamics of BEC. Due
to this feedback mechanism, nonlinear features arise in the
system. Many interesting phenomena resulting from this type
of nonlinearity have been reported [18]. For atomic gas in a
cavity, because of this feedback effect, a dynamical rather than
a static optical lattice is produced. In such a dynamical lattice
the atoms feel a friction force, and thus can be cavity cooled
and self-organized [19–21]. It also softens an optical lattice,
and leads to asymmetric matter wave diffraction [22,23] and
polaritonic solitons [24]. It also gives rise to phenomena such
as spin-exchange [25,26] and long-range interactions [27,28],
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self-structuring [29,30], photon bubbles [31,32], bistability
[33–36], spin texture [37,38], chaotic dynamics [39], and
parametric resonance [40] in the light-BEC interacting sys-
tems. And in the microwave-BEC interacting systems, soliton
[41,42] and vortex [43] phenomena have also been reported.
Most recently, it is found that due to such nonlinearity, su-
persolids can exist in a driven-dissipative ring-cavity-BEC
system [44,45]; futhermore, a precise gravimeter has been
proposed based on the system [46]. And a type of crystalline
droplet has also been predicted in an atom-cavity setup. [47].

Motivated by this progress, in this work we propose that
a self-trapped matter wave can also be supported by the
cavity-mediated nonlinearity in a driven-dissipative cavity-
BEC system, and study its stability and dynamics using the
mean-field theory. In the considered system (see Fig. 1),
the cavity light field is built up by transversely illuminat-
ing the BEC, then the built-up light field forms an optical
lattice potential for the BEC. We theoretically demonstrated
that this induced optical lattice can support a self-trapped
wave packet. For a weak cavity pumping, the induced optical
lattice is shallow; the localized wave packet cannot be well
trapped, therefore it spreads during the time evolution. And
for a strong pumping, the induced optical lattice can be strong
enough to support a long-time stable self-trapped wave packet.
The moving dynamics of these self-trapped waves show very
different features under different cavity decay rates. This is
due to the adiabaticity of the induced optical lattice. The
induced optical lattice tends to follow the movement of the
self-trapped wave packet; however, it cannot completely catch
up. Thus, the self-trapped wave packet feels a dragging force
from the induced optical lattice falling behind it, therefore
it decelerates, and finally stops. When the self-trapped wave
packet stops, the optical lattice also catches up, and the system
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BEC

FIG. 1. Diagram of the considered system. A quasi-one-
dimensional atomic BEC is loaded into a ring cavity with loss rate
κ . The BEC atoms interact with two degenerate counterpropagating
modes (â+ and â−) of the ring cavity. The system is pumped by
transversely shining a laser on the BEC; the pumping strength is η.

reaches a steady state. If the cavity decay rate is small, and
even if the self-trapped wave packet has been decelerated
to the speed of zero, the optical lattice still cannot catch
up, so the self-trapped wave packet will then be accelerated
in the opposite direction. The deceleration and acceleration
alternately repeat several times, and overall the self-trapped
wave packet displays a damped oscillation. In the bad cavity
limit [48,49] (which means that the cavity decay rate is much
larger than the atom-cavity coupling, the cavity light field
quickly decays to a steady state, and can instantaneously fol-
low the dynamics of BEC), the self-trapped wave packet feels
no dragging force and will constantly move with the initial
given speed. At last, we point out that in different atom-cavity
setups the phenomena of self-organization and friction force
on atoms are also predicted by the semiclassical theory in
which the atoms are treated as classical particles [20,21]. But
here by using the mean-field theory, the atoms are described
by a Schrödinger-like equation, thus the effects of quantum
pressure and tunneling of atoms to neighboring lattice sites
can also be included.

The paper is organized as follows: In Sec. II, the physical
model studied in this paper is presented. In Sec. III, we show
the existence of self-trapped wave packets in the system with
both the variational method and numerical simulation. Exam-
ples of the self-trapped wave packets and their stability are
also shown in this section. In Sec. IV, the moving dynamics
of the self-trapped wave packets are studied in detail. And, we
briefly compare the main results obtained using mean-field
theory with their semiclassical correspondences in Sec. V.
Finally, the paper is summarized in Sec. VI.

II. MODEL

We consider a ring cavity-BEC coupling system [44] which
is schematically shown in Fig. 1. A two-level atomic BEC
is trapped along the cavity axis by a tight transverse confin-

ing potential, and thus can be reduced to one-dimensional.
The atoms are driven in the transverse direction by an off-
resonant (with detuning �a) pump laser, which induces a
Rabi oscillation of frequency �0 between the two internal
atomic states. The transition between the two atomic energy
levels is also off-resonantly coupled to the two counterprop-
agating cavity modes â±eikcx (kc is the wave number of
the cavity modes) with strength G0. In the far-off-resonant
regime |�a| � �0,G0, the excited atomic state can be adi-
abatically eliminated, and in the rotating frame of the pump
laser, the system can be described by the following effective
Hamiltonian:

H = −h̄�c(â†
+â+ + â†

−â−) +
∫

ψ̂†Haψ̂ dx, (1)

where the first term describes the two counterpropagating
cavity modes, and the second term accounts for the BEC and
its interaction with the light field. In this equation, h̄ is the
Planck constant, �c is the detuning between the cavity modes
and pump laser, ψ̂ is the field operator of the BEC, and Ha is
the corresponding single-particle Hamiltonian

Ha = p̂2

2m
+ Vac + Vap, (2)

with

Vac = h̄U0[â†
+â+ + â†

−â− + (â†
+â−e−2ikcx + H.c.)], (3)

Vap = h̄η0(â+eikcx + â−e−ikcx + H.c.). (4)

Here, p̂2/2m is the kinetic energy of the BEC atom,
Vac is the optical potentials due to two-photon scattering
between the two cavity modes, and Vap is the optical potential
due to two-photon scattering between the pump and cavity
modes. The meanings of the symbols are as follows: m is the
mass of the BEC atom, p̂ = −ih̄ ∂

∂x is the momentum operator,
U0 = h̄G2

0/�a describes the strength of optical potential Vac,
and η0 = h̄G0�0/�a is the effective cavity pump strength.
In the following contents, natural unit m = h̄ = kc = 1 will
be applied for simplicity, i.e., the length, time, velocity, and
energy will be measured in units of 1/kc, m/(h̄k2

c ), h̄kc/m,
and h̄2k2

c /m.
The BEC usually contains a large number of atoms. To

support the self-trapped wave, which is the main subject of
this paper, a strong light field is also needed. Thus, the mean-
field approximation [50] can be adopted (in Ref. [45] which
considers a very similar system, the mean-field results fit
the experimental preservation well). The quantum mechanical
operators can be approximated by their corresponding mean
value c numbers, â± → α± and ψ̂ → ψ . We further scale α±
and ψ with the total atom number N , i.e., α± → α±/

√
N ,

ψ → ψ/
√

N . Using such a scaling, the norm of the wave
function ψ becomes ∫

|ψ (x)|2dx = 1.

And we also introduce new parameters η = √
Nη0 and U =

U0N to account for the many atoms. The equations governing
the dynamics of these mean-field variables can be obtained
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by taking the mean values of the corresponding Heisenberg
equations

i
∂

∂t
α± = (−�c + U − iκ )α± + UN±2α∓ + ηN±1, (5)

i
∂

∂t
ψ =

[
−1

2

∂2

∂x2
+ Veff (x)

]
ψ, (6)

where the cavity loss with rate κ has been introduced phe-
nomenologically, and for conciseness of the equations, here
we also defined the following quantities:

N±1 =
∫

|ψ (x)|2e∓ixdx,

N±2 =
∫

|ψ (x)|2e∓2ixdx,

Veff (x) = Vac(x) + Vap(x),

Vac = U (|α+|2 + |α−|2) + U (α∗
+α−e−2ix + c.c.),

Vap = η(α+eix + α−e−ix + c.c.).

Letting ∂
∂t α± = 0 and ψ (x, t ) = ψ (x)e−iμt with μ being

the BEC chemical potential, the steady state of the system
follows equations

μψ (x) =
[
−1

2

∂2

∂x2
+ Veff (x)

]
ψ (x), (7)

α+ = − (−�c + U − iκ )ηN+1 − ηUN+2N−1

(−�c + U − iκ )2 − U 2N−2N+2
, (8)

α− = − (−�c + U − iκ )ηN−1 − ηUN−2N+1

(−�c + U − iκ )2 − U 2N−2N+2
. (9)

Here we point out that Eqs. (8) and (9) also describe the cavity
field amplitudes of the system in the bad cavity limit [48,49].
In the bad cavity limit, the cavity light field quickly decays to
the steady state, then ∂tα± ≈ 0 can be approximately applied,
so Eqs. (8) and (9) hold. Together with Eq. (6), the dynam-
ics of the cavity-BEC system in the bad cavity limit can be
described.

At last, we see that the dynamics of the BEC macroscopic
wave function are governed by a Schrödinger-like equation,
Eq. (6). This equation is a nonlinear one, since the optical po-
tentials Vac(x) and Vap(x) felt by the BEC recursively depend
on the wave function ψ of the condensate. This nonlinearity
can support self-trapped waves in the system, which will be
discussed in the next section.

III. SELF-TRAPPED MATTER WAVE

In the system, a super-radiation phase transition takes place
at the critical pumping strength [44]

ηc =
√

(−�c + U )2 + κ2

8(−�c + U )
. (10)

Below the critical pumping strength (η < ηc), the cavity light
field is almost zero (α± ≈ 0); the atoms feel a negligible op-
tical potential, and will have a uniform distribution. However,
above the critical pumping strength (η > ηc), a considerable
intensity of cavity field can be built up, hence the optical
lattice potential acting on the atoms will play a crucial role.

And it will be natural to think that this induced optical lattice
potential can support a self-trapped matter wave packet. This
will be verified by both the variational method analysis and
numerical simulation in the following contents of this section.

To simplify the variational calculation, we further neglect
the terms related to U,UN±2 (i.e., terms due to two-photon
scattering between the two cavity modes) in Eqs. (8) and
(9) under the assumption κ � U,UN±2. And the simplified
optical field reads

α± ≈ ηN±1

�c + iκ
. (11)

We see the optical field is determined by the two-photon
scattering between the pump and cavity modes. Then, the ratio
between the amplitudes of the two optical potentials Vac and
Vap is calculated to be

Vac

Vap
∼ U |α±|2

η|α±| = U |N±1|
|�c + iκ| 	 1.

So, compared to Vap, Vac can be neglected. Equation (6),
which governs the evolution of atomic BEC, can be simplified
to the following nonlinear Schrödinger equation:

i
∂

∂t
ψ = −1

2

∂2

∂x2
ψ +

[
η2(N+1eix + N−1e−ix )

�c + iκ
+ c.c.

]
ψ.

(12)

The effective Hamiltonian corresponding to this equation can
be written as

Heff =
∫

ψ̂†(x)

(
−1

2

∂2

∂x2

)
ψ̂ (x)dx

+
[

η2

�c + iκ

(∫
ψ̂†(x1)eix1ψ̂ (x1)dx1

)

×
(∫

ψ̂†(x2)e−ix2ψ̂ (x2)dx2

)
+ H.c.

]
. (13)

Taking a Gaussian wave packet localized at position x = 0

ψva(x) =
(

2

πσ 2

)1/4

e−(x/σ )2
(14)

as the variational trial wave function where the wave-packet
width σ is the only variational parameter, the variational en-
ergy is integrated to be

Eva = 1

2σ 2
+ 2�cη

2

�2
c + κ2

exp

[
−σ 2

4

]
. (15)

In Fig. 2, the variational energy Eva is plotted as a func-
tion of variational parameter σ for different pumping strength
η. We clearly see that there exists a minimal point on the
Eva-σ curve, which indicates the existence of a self-trapped
wave packet. And from the figure, one also expects that the
self-trapped wave packet will have a narrower width under a
stronger pumping strength (a larger value of η), as the stronger
pumping can produce a deeper optical lattice. These conclu-
sions will be further verified by the numerical simulations.

Numerically, the steady state of the system is found by
propagating Eqs. (6), (8), and (9) with the imaginary time
method from an initial trial narrow Gaussian wave packet.
Some examples of the numerically found self-trapped wave
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FIG. 2. Variational energy. The variational energy Eva is plotted
as a function of the variational parameter σ (width of the wave
packet) in the trial wave function (14). The four lines correspond to
different pumping strengths η = 6.0, 10.0, 12.5, and 15.0. The black
squares are the minimum points of the lines. Other parameters used
are U = −0.5, �c = −1, and κ = 10.

packets and their variational counterparts for different pump-
ing strength η = 6 (top), 10 (middle), and 15 (bottom) are
shown in the left panels of Fig. 3, where the induced optical
lattice potentials Veff are also plotted. Here the optical lattices
in fact have different bottom energies, but for the convenience
of comparison, we shift all of them to the value of zero. We
see that the variational and numerical results fit each other
very well. And as the pumping strength η increases, the depth

0.0

0.3

0.6

0.9

-2π 0π 2π
0.0

3.0

6.0

9.0

0.0

0.3

0.6

0.9

-2π 0π 2π
0.0

3.0

6.0

9.0

0.0

0.3

0.6

0.9

-2π 0π 2π
0.0

3.0

6.0

9.0

0 25 50 75 100

-8π

0π

8π

0 25 50 75 100

-8π

0π

8π

0 25 50 75 100

-8π

0π

8π

0.0

0.3

0.6

0.9

-2π 0π 2π
0.0

3.0

6.0

9.0

0.0

0.3

0.6

0.9

-2
0

π 0π 2π
0.0

3.0

6.0

9.0

0.0

0.3

0.6

0.9

-2π 0π 2π
0.0

3.0

6.0

9.0

0 25 50 75 100

-8π

0π

8π

0 25 50 75 100

-8π

0π

8π

0 25 50 75 100

-8π

0π

8π

|ψ
|2

V e
ff

x

|ψ
|2

V e
ff

x

|ψ
|2

V e
ff

x

x

t

x

t

x

t

0.0 0.5 1.0

FIG. 3. Some examples of the self-trapped wave packets and
their stability. Left panels: Density profiles |ψ |2 of the self-trapped
waves and the corresponding induced optical lattice potential Veff

for pumping strength η = 6 (top panel), 10 (middle panel), and 15
(bottom panel). The violet solid and green dashed lines are numerical
and variational results for |ψ |2, respectively. The cyan dotted lines
are numerical results for Veff . Right panels: Corresponding time
evolution of the self-trapped waves shown in the left panels. Other
parameters are U = −0.5, �c = −1, and κ = 10.
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FIG. 4. Decelerating motion of the self-trapped wave packet.
Initially, the self-trapped wave packet locates at x = 0 (white solid
line), and its velocity is set to v0 = −3. Top panel: The afterward
evolution of the density profile. The limit traveling distance of the
wave packet is xs = 2.88 (white two-headed arrow). Bottom panels:
The density profiles (violet solid line) and corresponding induced
optical lattice potentials (green dashed line) at t = 0.5 (left panel)
and t = 5.0 (right panel). The black dotted line is plotted to mark
the center of the wave packet. Other parameters used are U = −0.5,
�c = −1, κ = 10, and η = 15.

of the induced optical lattice also increases; as a result, the
width of the self-trapped wave packet deceases. This agrees
with our variational discussion in the previous paragraph.

We also examined the stability of these self-trapped waves
by directly simulating Eqs. (5) and (6). The results are shown
in the right panels of Fig. 3. We found that for a weak pumping
strength (η = 6 in the top panel), the induced optical lattice
potential is not strong enough to retain the atoms around a
single lattice site, they can tunnel to the neighboring sites,
and the self-trapped wave packet spreads. When the pump-
ing strength is strong (η = 10, 15 in the middle and bottom
panels), the self-trapped wave packet can maintain its shape
for quite a long time.

IV. DYNAMICS

Because of the dissipative nature of the system, the mov-
ing dynamics of the self-trapped waves also show additional
features. In the top panel of Fig. 4, we initially give the self-
trapped wave packet a velocity of v0 = −3 by imprinting a
phase factor exp (−iv0x) on the steady state wave packet [51],
and plot its density profile in the afterward evolution. Unlike
the constant-speed moving of the conventional atomic bright
soliton supported by interatom interaction (s-wave collision)
[5], here we see that the self-trapped wave undergoes a de-
celerating motion. This is because according to Eqs. (5) and
(6), there is a scope of timing delay between the change of
light field and the moving of atomic condensate, and the con-
densate will feel a dragging (friction) force from the falling
behind optical potential [46]. As shown in the bottom left
panel, at t = 0.5 the center of the wave packet has traveled to
x = −1.23 (black dashed line), but the bottom of the optical
lattice is still left behind at x = −0.89, and the lattice will
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8
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f̄

η

FIG. 5. Relation between mean friction force f̄ and cavity pump-
ing strength η. The squares and circles are data points collected from
mean-field and semiclassical numerical simulations, respectively.
The lines are simple linear connections of the data points to guide
the eyes. Parameters used to plot this line are U = −0.5, �c = −1,
κ = 10, and v0 = −3.

impede the moving of the condensate. After traveling some
distance, the self-trapped wave packet gets to stop, and the
light field also catches up, thus the system comes back to a
steady state (see bottom right panel of the figure where the
center of the wave packet and the bottom of the lattice overlap
again at t = 5.0).

This friction force can be used to cool atomic gas [19,20].
Moreover, it may also provide an opportunity to simplify
the engineering of the self-trapped waves. For a conventional
BEC bright soliton, if it is required to transfer from one place
to another, one needs to firstly accelerate it, and then one also
needs to slow down and stop it at the destination [52,53].
But for the self-trapped waves considered here, the stopping
process can be omitted; one only needs to kick the self-trapped
wave packet with an appropriate initial velocity, then it will
travel to and stop at the destination automatically.

Next, we denote the mean friction force felt by the self-
trapped wave as f̄ , and study its properties in detail. Its value
can be calculated from equation

f̄ xs = Nmv2
0

2
, (16)

where we equal the work done by the friction force and the
initial kinetic energy of the self-trapped wave. And here xs is
the limit traveling distance of the wave packet (as shown in
Fig. 4), which is determined from numerical results.

We firstly examine the dependence of f̄ on pumping
strength η (see Fig. 5). As the cavity pumping strength η

increases, the strength of the induced optical potential also
increases accordingly. As can be expected, the self-trapped
wave packet feels a stronger friction force at a larger pumping
strength.

In Fig. 6, we plot f̄ as a function of the initial speed v0 of
the self-trapped wave packet. The faster the self-trapped wave
packet moves, the severer the light field falls behind, thus the
friction force f̄ is expected to be proportional to v0. This is
numerically observed at small values of v0 (v0 < 3). However,
as v0 further increases, the friction force is saturated; and
after v0 > 6 the friction force decreases. We found that this
is caused by the escaping of atoms from the self-trapped wave
packet. When the wave packet moves with a fast speed, a con-
siderable fraction of atoms can escape from the self-trapped
wave packet, thus the atomic density, and therefore the depth

0.0
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4.0

6.0

8.0

0 2 4 6 8

f̄

|v0|

FIG. 6. Relation between the mean friction force f̄ and the initial
wave packet moving speed v0. The squares and circles are data
points collected from mean-field and semiclassical numerical sim-
ulations, respectively. The lines are simple linear connections of the
data points to guide the eyes. Parameters used to plot this line are
U = −0.5, �c = −1, κ = 10, and η = 15.

of the optical lattice is reduced. And a shallower optical lattice
will have a weaker friction effect. This is shown in Fig. 7,
in the left panel of which the evolution of atomic density for
v0 = 8 is plotted, and in the right panel the initial and final
density profile is compared. In the figure, the escaping of
atoms from the self-trapped wave packet is characterized by
the precursor in the white box. And integrating the initial and
final density profiles, we found that about 27% of the atoms
have been lost.

Since the friction force results from the time delay of the
cavity light field relative to the moving of the atomic matter
wave, one can expect reducing the friction force by shortening
the cavity relaxation time, i.e., increasing the cavity decay
rate κ . This is also demonstrated by our numerical results (see
Fig. 8), where the mean friction force f̄ felt by the self-trapped
wave is plotted as a function of the cavity decay rate κ .

And we also found that for a small value of the cavity decay
rate κ , the moving dynamics of the self-trapped waves can
show additional features. It undergoes a damped oscillation,
as shown in Fig. 9. In the left panel, the moving of the density
profile (colormap) and center position (black solid line) of
the self-trapped wave is plotted. At the beginning stage, the
delayed light field seriously decelerates the self-trapped wave
packet. Because the light field falls too much behind in this
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FIG. 7. Escaping of atoms from a fast-moving self-trapped wave
packet. The initial speed of the wave packet is v0 = −8. Left panel:
Time evolution of the atomic density |ψ |2. The escaping of atoms
from the self-trapped wave packet is emphasized by the white box.
Right panel: The initial (t = 0, violet solid line) and final (t = 10,
green dashed line) density profiles of the self-trapped wave packet.
Other parameters are U = −0.5, �c = −1, κ = 10, and η = 15.
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FIG. 8. Relation between the mean friction force f̄ and decay
rate of the cavity κ . The squares and circles are data points collected
from mean-field and semiclassical numerical simulations, respec-
tively. The lines are simple linear connections of the data points
to guide the eyes. Parameters used to plot this line are v0 = −2,
U = −0.5, �c = −1, and η = 15.

case, even the speed of the self-trapped wave packet has been
decelerated to zero at t = 0.96 (the first minimal of the black
solid line), the induced optical lattice potential still cannot
catch up (see the right panel where we plot the density profile
and the induced optical lattice potential at this time). As a
result, in an afterward time interval the still falling behind
optical lattice accelerates the self-trapped wave in the opposite
direction. Then, the light field catches up, and decelerates the
condensate again. This deceleration-acceleration process re-
peats several times, therefore the self-trapped wave undergoes
a damped oscillation.

At last, in the bad cavity limit, the light field can instanta-
neously follow the moving self-trapped wave packet, thus it
will have no friction effect on the self-trapped wave. In such
a case, we expect that the self-trapped wave packet will move
with its initial speed all the afterward time. In Fig. 10, the
moving of a self-trapped wave packet is studied under the bad
cavity approximation, i.e., the simulation is done by numer-
ically solving Eqs. (6), (8), and (9). The expected constant
speed motion is demonstrated by the numerical result.
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FIG. 9. Damped oscillation of the self-trapped wave packet un-
der a small cavity decay rate (κ = 2). Left panel: Time evolution
of the atomic density profile |ψ |2. The black solid line is the center
of the self-trapped wave packet. Right panel: Atomic density profile
(violet solid line) and corresponding optical lattice potential (green
dashed line) at t = 0.96 (the first time at which the speed of the wave
packet reaches 0, i.e., the first minimal point of the black line in
the left panel). The black dotted line is plotted to mark the center
of the wave packet. Other parameters used are v0 = −2, U = −0.5,
�c = −1, and η = 3.
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FIG. 10. Constant-speed moving of the self-trapped wave packet
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with bad cavity limit optical field formulas (8) and (9) are solved
numerically. Parameters used are v0 = −2, U = −0.5, �c = −1,
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V. COMPARISON TO THE SEMICLASSICAL THEORY

Taking the atoms as classical polarizable particles, their
motion can be approximately described by a one-dimensional
Vlasov equation [20,21]

∂ f

∂t
+ v

∂ f

∂x
− ∂Veff

∂x

∂ f

∂v
= 0, (17)

where f (x, v, t ) is the phase space distribution of the atoms
where v means the velocity. And the light field is still gov-
erned by Eq. (5), except that the variables N±1 and N±2 are
now defined as

N±1 =
∫

ρ(x)e∓ixdx

and

N±2 =
∫

ρ(x)e∓2ixdx,

with ρ(x) being the spatial distribution of the atoms

ρ(x, t ) =
∫

f (x, v, t )dv.

Such a semiclassical theory also predicts a self-trapped
state of the atoms (see the left panel of Fig. 11). In this figure,
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FIG. 11. A self-trapped state and its time evolution given by
the semiclassical theory. Left panel: Spatial distribution (violet and
green line) of the self-trapped state atoms and the corresponding
optical lattice potential (cyan and brown line). The solid lines are the
mean-field result, while the dotted lines are the semiclassical result.
Right panel: Semiclassical time evolution of the self-trapped state.
The parameters are U = −0.5, �c = −1, κ = 10, and η = 6, which
are the same as in the top panels of Fig. 3.
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we also plot the mean-field result for comparison. It is found
that the semiclassical theory gives a narrower spatial distribu-
tion of the atoms than the mean-field theory. This is because
the quantum pressure (the kinetic term in the Schödinger
equation) which tends to spread the atomic distribution is
absent in the semiclassical theory [while in the mean-field the-
ory, the atoms are described by the Schrödinger-like equation
(6) which can include the effect of quantum pressure].

Another difference between the mean-field and semiclas-
sical theory results is the instability of the self-trapped state
under weak pumping strength. Recall that under weak pump-
ing strength tunneling of atoms to the neighboring lattice sites
will lead to the spreading of the self-trapped state during its
evolution (top right panel of Fig. 3). However, the semiclas-
sical theory treats the atoms as classical particles, thus the
tunneling phenomena cannot be included. As a result, it gives
a nonspreading stable evolution of the self-trapped state (see
the right panel of Fig. 11 where the parameters are chosen the
same as in the top panels of Fig. 3).

We also compared the mean friction force predicted by
mean-field and semiclassical theory, as shown in Figs. 5, 6,
and 8. Because the semiclassical theory predicts a narrower
spatial distribution of the atoms, the produced optical poten-
tial will also be tighter accordingly. And this will make the
semiclassical theory overestimate the friction force.

VI. SUMMARY

In summary, we have studied the self-trapped matter waves
and their moving dynamics in a driven-dissipative ring cavity-
BEC system within the mean-field theory. The self-trapped
wave packets have been found by both variational and numer-
ical methods, and the results fit with each other very well. The

stability of the self-trapped waves is verified by direct numeri-
cal simulations. It is found that for a strong cavity pumping the
self-trapped wave packet can be stable for quite a long time,
while for a weak cavity pumping the self-trapped wave packet
suffers a spatial spreading during its evolution. We also found
that the moving dynamics of these self-trapped waves can be
greatly affected by the cavity loss rate. Three distinct types
of motion of the self-trapped waves have been identified in
the system. For a cavity with a small decay rate, the cavity
light field can alternatively drag and push the self-trapped
wave packet, therefore the self-trapped wave packet endures
a damped oscillation. And for a cavity with a moderate decay
rate, the self-trapped wave packet always fells a dragging
force from the cavity light field, and undergoes a decelerating
motion. In the bad cavity limit, the friction force disappears,
and the self-trapped wave packet constantly moves with the
initial speed. The main results are also compared with a semi-
classical calculation where the atoms are treated as classical
particles. We found that the semiclassical theory predicts a
narrower spatial distribution of the atoms, and will over-
estimate the friction force. It also misses the instability of
the self-trapped state under weak pumping. These dynamical
tunable self-trapped waves may find potential applications in
fields such as matter wave interferometers [54–57].

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (Grants No. 11904063, No. 12074120,
No. 11847059, and No. 11374003), and the Science and Tech-
nology Commission of Shanghai Municipality (Grant No.
20ZR1418500).

[1] P. G. Drazin and R. S. Johnson, Solitons: An Introduction,
2nd ed. (Cambridge University Press, Cambridge, UK,
1989).

[2] B. Guo, X. F. Pang, Y. F. Wang, and N. Liu, Solitons
(De Gruyter, Berlin/Boston, 2018).

[3] Y. S. Kivshar and G. P. Agrawal, Optical Solitons (Academic,
San Diego, 2003).

[4] M. Kono and M. Skoric, Nonlinear Physics of Plasmas
(Springer, Berlin/Heidelberg, 2010).

[5] P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-
González, Emergent Nonlinear Phenomena in Bose-Einstein
Condensates: Theory and Experiment (Springer,
Berlin/Heidelberg, 2008).

[6] R. Carretero-González, D. J. Frantzeskakis, and P. G.
Kevrekidis, Nonlinear waves in Bose-Einstein condensates:
Physical relevance and mathematical techniques, Nonlinearity
21, R139 (2008).

[7] M. Barranco, R. Guardiola, S. Hernández, R. Mayol, J. Navarro,
and M. Pi, Helium nanodroplets: An overview, J. Low Temp.
Phys. 142, 1 (2006).

[8] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, The-
ory of Bose-Einstein condensation in trapped gases, Rev. Mod.
Phys. 71, 463 (1999).

[9] L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles,
L. D. Carr, Y. Castin, and C. Salomon, Formation of a matter-
wave bright soliton, Science 296, 1290 (2002).

[10] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G.
Hulet, Formation and propagation of matter-wave soliton trains,
Nature 417, 150 (2002).

[11] K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet,
Bright matter wave solitons in Bose-Einstein condensates, New
J. Phys. 5, 73 (2003).

[12] T. D. Lee, K. Huang, and C. N. Yang, Eigenvalues and
Eigenfunctions of a Bose System of Hard Spheres and its Low-
Temperature Properties, Phys. Rev. 106, 1135 (1957).

[13] H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-
Barbut, and T. Pfau, Observing the Rosensweig instability of a
quantum ferrofluid, Nature (London) 530, 194 (2016).

[14] I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T.
Pfau, Observation of Quantum Droplets in a Strongly Dipolar
Bose Gas, Phys. Rev. Lett. 116, 215301 (2016).

[15] L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler,
L. Santos, and F. Ferlaino, Quantum-Fluctuation-Driven
Crossover from a Dilute Bose-Einstein Condensate to a Macro-
droplet in a Dipolar Quantum Fluid, Phys. Rev. X 6, 041039
(2016).

063309-7

https://doi.org/10.1088/0951-7715/21/7/R01
https://doi.org/10.1007/s10909-005-9267-0
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1126/science.1071021
https://doi.org/10.1038/nature747
https://doi.org/10.1088/1367-2630/5/1/373
https://doi.org/10.1103/PhysRev.106.1135
https://doi.org/10.1038/nature16485
https://doi.org/10.1103/PhysRevLett.116.215301
https://doi.org/10.1103/PhysRevX.6.041039


JIELI QIN AND LU ZHOU PHYSICAL REVIEW A 102, 063309 (2020)

[16] C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P.
Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture
of Bose-Einstein condensates, Science 359, 301 (2018).

[17] P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and
L. Tarruell, Bright Soliton to Quantum Droplet Transition in a
Mixture of Bose-Einstein Condensates, Phys. Rev. Lett. 120,
135301 (2018).

[18] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Cold
atoms in cavity-generated dynamical optical potentials, Rev.
Mod. Phys. 85, 553 (2013).

[19] P. Domokos, P. Horak, and H. Ritsch, Semiclassical theory of
cavity-assisted atom cooling, J. Phys. B: At., Mol. Opt. Phys.
34, 187 (2001).

[20] W. Niedenzu, T. Grießer, and H. Ritsch, Kinetic theory of cavity
cooling and self-organisation of a cold gas, Europhys. Lett. 96,
43001 (2011).

[21] S. Ostermann, T. Grießer, and H. Ritsch, Atomic self-ordering
in a ring cavity with counterpropagating pump fields, Europhys.
Lett. 109, 43001 (2015).

[22] J. Zhu, G. Dong, M. N. Shneider, and W. Zhang, Strong Local-
Field Effect on the Dynamics of a Dilute Atomic Gas Irradiated
by Two Counterpropagating Optical Fields: Beyond Standard
Optical Lattices, Phys. Rev. Lett. 106, 210403 (2011).

[23] K. Li, L. Deng, E. W. Hagley, M. G. Payne, and M. S.
Zhan, Matter-Wave Self-Imaging by Atomic Center-of-Mass
Motion Induced Interference, Phys. Rev. Lett. 101, 250401
(2008).

[24] G. Dong, J. Zhu, W. Zhang, and B. A. Malomed, Polaritonic
Solitons in a Bose-Einstein Condensate Trapped in a Soft Opti-
cal Lattice, Phys. Rev. Lett. 110, 250401 (2013).

[25] M. A. Norcia, R. J. Lewis-Swan, J. R. K. Cline, B. Zhu, A. M.
Rey, and J. K. Thompson, Cavity-mediated collective spin-
exchange interactions in a strontium superradiant laser, Science
361, 259 (2018).

[26] E. J. Davis, G. Bentsen, L. Homeier, T. Li, and M. H. Schleier-
Smith, Photon-Mediated Spin-Exchange Dynamics of Spin-1
Atoms, Phys. Rev. Lett. 122, 010405 (2019).

[27] Y. C. Zhang, V. Walther, and T. Pohl, Long-Range Interactions
and Symmetry Breaking in Quantum Gases through Optical
Feedback, Phys. Rev. Lett. 121, 073604 (2018).

[28] X. Guan, J. Fan, X. Zhou, G. Chen, and S. Jia, Two-component
lattice bosons with cavity-mediated long-range interaction,
Phys. Rev. A 100, 013617 (2019).

[29] G. R. M. Robb, E. Tesio, G. L. Oppo, W. J. Firth, T. Ackemann,
and R. Bonifacio, Quantum Threshold for Optomechanical
Self-Structuring in a Bose-Einstein Condensate, Phys. Rev.
Lett. 114, 173903 (2015).

[30] S. Ostermann, F. Piazza, and H. Ritsch, Spontaneous Crystal-
lization of Light and Ultracold Atoms, Phys. Rev. X 6, 021026
(2016).

[31] J. T. Mendonça and R. Kaiser, Photon Bubbles in Ultracold
Matter, Phys. Rev. Lett. 108, 033001 (2012).

[32] J. D. Rodrigues, J. A. Rodrigues, A. V. Ferreira, H. Terças, R.
Kaiser, and J. T. Mendonça, Photon bubble turbulence in cold
atomic gases, arXiv:1604.08114.

[33] L. Zhou, H. Pu, H. Y. Ling, and W. Zhang, Cavity-Mediated
Strong Matter Wave Bistability in a Spin-1 Condensate, Phys.
Rev. Lett. 103, 160403 (2009).

[34] L. Zhou, H. Pu, H. Y. Ling, K. Zhang, and W. Zhang, Spin
dynamics and domain formation of a spinor Bose-Einstein

condensate in an optical cavity, Phys. Rev. A 81, 063641
(2010).

[35] L. Zhou, H. Pu, K. Zhang, X.-D. Zhao, and W. Zhang, Cavity-
induced switching between localized and extended states in
a noninteracting Bose-Einstein condensate, Phys. Rev. A 84,
043606 (2011).

[36] A. Dalafi and M. H. Naderi, Intrinsic cross-Kerr nonlinearity
in an optical cavity containing an interacting Bose-Einstein
condensate, Phys. Rev. A 95, 043601 (2017).

[37] M. Landini, N. Dogra, K. Kroeger, L. Hruby, T. Donner, and
T. Esslinger, Formation of a Spin Texture in a Quantum Gas
Coupled to a Cavity, Phys. Rev. Lett. 120, 223602 (2018).

[38] S. Ostermann, H.-W. Lau, H. Ritsch, and F. Mivehvar, Cavity-
induced emergent topological spin textures in a Bose-Einstein
condensate, New J. Phys. 21, 013029 (2019).

[39] M. Diver, G. R. M. Robb, and G.-L. Oppo, Nonlinear and
chaotic dynamics of a Bose-Einstein condensate in an optical
cavity, Phys. Rev. A 89, 033602 (2014).

[40] Z.-C. Li, Q.-H. Jiang, Z. Lan, W. Zhang, and L. Zhou, Non-
linear Floquet dynamics of spinor condensates in an optical
cavity: Cavity-amplified parametric resonance, Phys. Rev. A
100, 033617 (2019).

[41] J. Qin, G. Dong, and B. A. Malomed, Hybrid Matter-Wave–
Microwave Solitons Produced by the Local-Field Effect, Phys.
Rev. Lett. 115, 023901 (2015).

[42] J. Qin, Z. Liang, B. A. Malomed, and G. Dong, Tail-free self-
accelerating solitons and vortices, Phys. Rev. A 99, 023610
(2019).

[43] J. Qin, G. Dong, and B. A. Malomed, Stable giant vortex annuli
in microwave-coupled atomic condensates, Phys. Rev. A 94,
053611 (2016).

[44] F. Mivehvar, S. Ostermann, F. Piazza, and H. Ritsch, Driven-
Dissipative Supersolid in a Ring Cavity, Phys. Rev. Lett. 120,
123601 (2018).

[45] S. C. Schuster, P. Wolf, S. Ostermann, S. Slama, and C.
Zimmermann, Supersolid Properties of a Bose-Einstein Con-
densate in a Ting Resonator, Phys. Rev. Lett. 124, 143602
(2020).

[46] K. Gietka, F. Mivehvar, and H. Ritsch, Supersolid-Based
Gravimeter in a Ring Cavity, Phys. Rev. Lett. 122, 190801
(2019).

[47] P. Karpov and F. Piazza, Crystalline droplets with emergent
color charge in many-body systems with sign-changing inter-
actions, Phys. Rev. A 100, 061401(R) (2019).

[48] J. I. Cirac, M. Lewenstein, and P. Zoller, Laser cooling a trapped
atom in a cavity: Bad-cavity limit, Phys. Rev. A 51, 1650
(1995).

[49] P. Horak, S. M. Barnett, and H. Ritsch, Coherent dynamics
of Bose-Einstein condensates in high-finesse optical cavities,
Phys. Rev. A 61, 033609 (2000).

[50] J. M. Zhang, W. M. Liu, and D. L. Zhou, Mean-field dynamics
of a Bose Josephson junction in an optical cavity, Phys. Rev. A
78, 043618 (2008).

[51] J. Denschlag, J. E. Simsarian, D. L. Feder, C. W. Clark, L. A.
Collins, J. Cubizolles, L. Deng, E. W. Hagley, K. Helmerson,
W. P. Reinhardt, S. L. Rolston, B. I. Schneider, and W. D.
Phillips, Generating solitons by phase engineering of a Bose-
Einstein condensate, Science 287, 97 (2000).

[52] P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-González,
B. A. Malomed, G. Herring, and A. R. Bishop, Statics, dynam-

063309-8

https://doi.org/10.1126/science.aao5686
https://doi.org/10.1103/PhysRevLett.120.135301
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1088/0953-4075/34/2/306
https://doi.org/10.1209/0295-5075/96/43001
https://doi.org/10.1209/0295-5075/109/43001
https://doi.org/10.1103/PhysRevLett.106.210403
https://doi.org/10.1103/PhysRevLett.101.250401
https://doi.org/10.1103/PhysRevLett.110.250401
https://doi.org/10.1126/science.aar3102
https://doi.org/10.1103/PhysRevLett.122.010405
https://doi.org/10.1103/PhysRevLett.121.073604
https://doi.org/10.1103/PhysRevA.100.013617
https://doi.org/10.1103/PhysRevLett.114.173903
https://doi.org/10.1103/PhysRevX.6.021026
https://doi.org/10.1103/PhysRevLett.108.033001
http://arxiv.org/abs/arXiv:1604.08114
https://doi.org/10.1103/PhysRevLett.103.160403
https://doi.org/10.1103/PhysRevA.81.063641
https://doi.org/10.1103/PhysRevA.84.043606
https://doi.org/10.1103/PhysRevA.95.043601
https://doi.org/10.1103/PhysRevLett.120.223602
https://doi.org/10.1088/1367-2630/aaf9e3
https://doi.org/10.1103/PhysRevA.89.033602
https://doi.org/10.1103/PhysRevA.100.033617
https://doi.org/10.1103/PhysRevLett.115.023901
https://doi.org/10.1103/PhysRevA.99.023610
https://doi.org/10.1103/PhysRevA.94.053611
https://doi.org/10.1103/PhysRevLett.120.123601
https://doi.org/10.1103/PhysRevLett.124.143602
https://doi.org/10.1103/PhysRevLett.122.190801
https://doi.org/10.1103/PhysRevA.100.061401
https://doi.org/10.1103/PhysRevA.51.1650
https://doi.org/10.1103/PhysRevA.61.033609
https://doi.org/10.1103/PhysRevA.78.043618
https://doi.org/10.1126/science.287.5450.97


SELF-TRAPPED ATOMIC MATTER WAVE IN A RING … PHYSICAL REVIEW A 102, 063309 (2020)

ics, and manipulations of bright matter-wave solitons in optical
lattices, Phys. Rev. A 71, 023614 (2005).

[53] L. W. S. Baines and R. A. Van Gorder, Soliton wave-speed
management: Slowing, stopping, or reversing a solitary wave,
Phys. Rev. A 97, 063814 (2018).

[54] J. Polo and V. Ahufinger, Soliton-based matter-wave interfer-
ometer, Phys. Rev. A 88, 053628 (2013).

[55] G. D. McDonald, C. C. N. Kuhn, K. S. Hardman, S. Bennetts,
P. J. Everitt, P. A. Altin, J. E. Debs, J. D. Close, and N. P. Robins,

Bright Solitonic Matter-Wave Interferometer, Phys. Rev. Lett.
113, 013002 (2014).

[56] J. L. Helm, S. L. Cornish, and S. A. Gardiner, Sagnac Inter-
ferometry Using Bright Matter-Wave Solitons, Phys. Rev. Lett.
114, 134101 (2015).

[57] O. J. Wales, A. Rakonjac, T. P. Billam, J. L. Helm,
S. A. Gardiner, and S. L. Cornish, Splitting and recombi-
nation of bright-solitary-matter waves, Commun. Phys. 3, 51
(2020).

063309-9

https://doi.org/10.1103/PhysRevA.71.023614
https://doi.org/10.1103/PhysRevA.97.063814
https://doi.org/10.1103/PhysRevA.88.053628
https://doi.org/10.1103/PhysRevLett.113.013002
https://doi.org/10.1103/PhysRevLett.114.134101
https://doi.org/10.1038/s42005-020-0320-8

